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Product integrals are used to show that, if dw, G, H and K
are functions from number pairs to a normed complete ring N
which are integrable and have bounded variation on [a, b] and
v~ exists and is bounded on [a, b], then the integral equation

B(x) = w(x)+(LRLR) f (BH + G + BKB)

has a solution B(x) = v "'(x)u(x) on [a, b], where u and v are
defined by the matrix equation

o, von=twi@. 10T (145, ~K))

The above results are used to show that if p,q,h and r are
quasicontinuous functions from the numbers to N such that h is
left continuous and has bounded variation and p,q and h
commute, then the solution on [a,b] of the differential-type
equation f**+f*p +fqg =r is

f) = f@) [T (1-gamy+®) [ az [T - gan),
where f(x)—f(a)= (L)jxf*dh,B is the solution of

B(x)=(L) f qdh +(LL) f B(~pdh)+(LR) f Bdhp,

and z is defined in terms of p,q,r,h and .

1. Imntroduction. Adam [1] introduced the concept of con-
tinuous continued fractions and showed that the solution of y'=
g'y?— f' could be given as a continuous continued fraction, provided f’
and g’ are continuous and positive. Wall [11] {12] showed that, if
F,, F,, F,, and F,, are continuous functions of bounded variation from
the real numbers to the complex numbers and |b — a| is sufficiently
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small, then the solution of

X

(1) wix) =2z +f wzdF2,+fbx wd(Fzz—F,.)—f: dF,,

b

is wx)=[M,(x,b)z + M(x, b)][M(x,b)z + M,(x,b)]"", where F =

[]I::: II::Z] and [ﬁ;: ]L[Z] is the function such that M(x,y)=

y
1 +f M(x, s)dF(s). MacNerney, using the Stieltjes integral in [7] and

the subdivision-refinement-type mean integral in [8], extended Wall’s
results to some types of quasicontinuous linear transformations and
showed that the solution of Equation (1) can also be expressed as a
continuous continued fraction [8, Theorem 5.3]. In this paper the
product integral theory developed by MacNerney [8] {9] and the author
[3] is used to find and express (in §3) the solution of

B() = w(x)+(LRLR) [ (BH + GB + BKB)

and to find and express (in §4) the solution of
f**+f*p+fq=r,

where w, p, q,r, G, H, K are quasicontinuous functions from numbers or
pairs of numbers to a normed complete ring N.

2. Definitions and notations. The symbol R denotes the
set of real numbers and N is a ring which has an identity element 1 and a
norm | -| with respect to which N is complete and |1| =1 (henceforth,
the symbol 1 will be used for this identity element). Functions from R
to N and from R X R to N will be represented by lower case letters and
upper case letters, respectively. All sum and product integrals are
subdivision-refinement-type limits. If G is a function from R X R to
N, the product integral of G exists on [a, b1 iff there exists A € N such
that if € is a positive number then there is a subdivision D of [a, b] such
that if {x;}; is a refinement of D then |A = G,G," - G,|<e, where
G =G(xi_,,x) for i=1,2,---,n. The symbol ,[I"Gwill be used to
represent the limit A. A similar definition holds for the sum
integral. Upper case letters preceding an integral symbol show how

b
the integrand is to be evaluated: i.e., (LRLR)f (fH + Gf + fKf) =

b
f M, where for x <y
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M(x,y)=f(x)H(x,y)+ G(x,y)f(y)+ f(x)G(x, y)f(y).

b b
Also, G € OA° on [a,b]ifff G exists andf |G -JG|=0; GEOM°
on [a,b] iff ,IPU+G) exists for a=x=y=b and
b
f |(1+ G)-T(1+ G)|=0; G € OB’ on [a, b] iff there is a number M

and a subdivision D of [a, b] such that, if {x;}; is a refinement of D ,then
3% |G (xi-1, x;)| = M ; the function v ™' exists on [a, b] means v(x)v(x)™' =
v(x)'v(x)=1for x €[a,b]. The function G' exists on [a, b] means
there is a subdivision {x;}; of [a,b] suchthatif 0<i=n and x,_,=x <
y=x;, then G(x,y)'G(x,y)=G(x,y)G(x,y)'=1. If {x;}; is a sub-
division, the symbols f._,, f, and G; will be used as shorthand notations
for f(xi), f(xi) and G(x;_;,x;), respectively. For additional details
pertaining to these definitions, see [3], [4], and [9]. The main results of
this paper will be designated as theorems; the supporting theorems will
be labeled as lemmas.

3. A Riccati integral equation. In this section we derive a
solution for the integral equation

f(x) = w(x) + (LRLR) f (fH + Gf + fKf).

Since the OA° property plays an important role in this paper, please
note that the function G € OA° if at least one of the following
conditions is satisfied:

(1) there is a function g such that

Gx,y)=g(y)—gx);

2) if G(x,y)=f(x)H(x,y), where f is quasicontinuous and H €
OA° and OB°, [4, Theorem 2];

(3) if G is an integrable function from number pairs to a real
Hilbert space which is finite dimensional, [2, Theorem 2].

Also note that, if H, K, W, G are functions from R X R to N which
belong to OA° and OB, then [I‘:/ g] represents a matrix Q such that
Q €0A° and OB°® and, by Lemma 3.1, Q € OM".

LeEMMA 3.1. If G is a function from R X R to a normed complete
ring and G € OB°, then the following statements are equivalent :

(1) GEOA®on [a,b] and

2) GE€OM°on {ab].
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This is Theorem 3.4 of [3].

THEOREM 3.2. Given. (1) [a,b] is a number interval. (2) wis a
function from R to N and H,G and K are functions from R XR to N
such that each of dw,H,G and K belongs to OA° and OB°.

(3) u and v are functions from R to N such that if x € [a, b] then
u(x) and v(x) are defined by the matrix equation

oo, veol=twi@, 1T (r+[ 8 2 &)

and v~ exists and is bounded.
(4) fis a bounded function from R to N, f(a) = w(a) and f(x) =
v(x)'u(x) for x €Ela,b]. ‘

Conclusion. If x €[a,b], then
f(x)=w(x)+(LRLR) j (fH + Gf + fKf).
Furthermore, if w is a constant function, then

s =] T a=61-w@xwr [T a+ K [T a-6)]
[w(a) a]‘[x (1 +H)] )
Proof. Let Q be the function such that Q = [‘11; H 1 :g] ; then

Q-1€0A° and OB® and, by Lemma 3.1, Q — 1€ OM°. Suppose
x €(a,b) and {x;}; is a subdivision of [a,x]. If 0<i = n, then there
exist a; and b; € N such that

[o(x)f(x), v(x)] = [u(x), v(x)]
—w(a), 1.1 Q. IT @

= tux), ot T | 0 T
_ 1+H -K
_'[ui—h vi—l] [ Awi 1 _G,'}+[a” br]

= Vi lfion, 1] [ Aw, 1—0,]”“"’ bi]
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= Ul—l[fl—-l(l + Hl)+Awi" ——fi—l Kl +(1 _G)]—{'[ai’bi]'

Therefore,
' ) f=fi (1+H)+Aw +v" _a
and
v =i K+ 1-G +v' by
hence,

(—fi~l K,- +1- G,' + U_li_|b,')ﬁ :f,‘-|(] + H,)+AW1 + v-]i_|a;
and
f, _f,,] = AW,‘ +ﬁ_] H, + G,f, +f,'4] K,f, - Uil,'A]b,f,' + U'I ;_,ai.

Since f,u, v and v™' are bounded and since 2} (Ja;| +|b;]) can be made
arbitrarily small with an appropriate choice of a subdivision (since
Q € OM"), then the following integral exists and

f(x) - f(a) = w(x)— f(a) + (LRLR) f (fH + Gf + fKf).
Since

)

n p‘ ql
Il [0 r,

:[pq
0 r

1

where p =11 p. g =2, (IL,.,"'p)gq;(Il;;.,"r;) and r =11,_,"r,, and since
all the following integrals and product integrals exist, then

i 10 [y 23 2]

where A =, II'(1+H), B =(LR) [x[,,ﬂ’(+ H)(1 - K)[,II* (1-G)]

a

and D = ,II' (1= G): hence, if w is a constant function, then
f(x)=[w(a)B+ D] "'"[w(a)Al.

THEOREM 3.3. Given. (1) [a.b] is a number interval
(2) wis a function from R to N and H, G and K are functions from
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R X R to N such that each of dw, H, G and K belongs to OA°® and OB’;
(3) wu and v are functions from R to N such that, if x € [a, b], then
u(x) and v(x) are defined by the matrix equation

[u(x), v(x)}=[w(a), 1] n (I+ Hi{w :(I}(D

and v(x)™' exists;
(4) f is a bounded function from R to N, f(a)=w(a),
(1- G, —fi.,K,))" exists and

f(x)=w(x)+ (LRLR) f (fH + Gf + fKf)

for x €la.b].
Conclusion. If x €la,b], then f(x)=v(x)" u(x).

Proof. Suppose x €[a,b] and {x;}; is a subdivision of [a,b]. If
0 <i = n, then there exists ¢ € N such that

f(%) = w(x)+(LRLR) [ (fH + Gf + K)

= AW,' +f,-,| +ﬁv| Hi + G,f; +f;'_| K,f, + €;
and fi=b7ia, where bi=1-G - f. K, and a;, =
fie(1+ H)+(Aw; +€). Fori=1,2,3,---,n let R, be the 2 X2 matrix
I+H, _K‘]; let a,= w(a) and b, = 1; then {a;}¢ and {b;}:

Rl:[AWi'*‘E,' l_G,
are elements of N such that, if 0<i =n, then f, =b7'a, and

[a. bi]= [fi—l- 1R; = [bi_—ll ai-, 1]R; = b7, [ai-\. bi)]R.

Therefore

fan b1 = (I1 b7 ) 1T R

=n

and

M (IT b ) bt 1=TT bidan b1 = 1o 1] R.
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Let Q be the function from R X R to the set of 2 X 2 matrices such

that Q = [IJWH I :g} Since f is quasicontinuous and since each

of dw, H, G and K belong to OA°and OB°,then Q —I and — G - fK €
OA° and OB® and it follows from Lemma 3.1 that Q — I and — G — fK

b
belong to OM°, the corresponding product integrals exist, f |Q -TIQ| =

b
Oand | |(1-G - fK)-TI(1-G —fK)|=0. For each subdivision {x;};

of [a, x], there exist elements d,, d., and d; such that Equation (1) can be
rewritten

{w) T a-6-mr+alth n=th (T Q+d+d,) .

where 1 - G; — f_, K; is playing the role of b, and

¢=HU—G~th%UJTU—G—mm

and
n n n i1 n
a=ITrR-Ta=3 (ﬂ Q) (R~ Q) 1 &
i= i= i= j= i=i+
. 0 0] . 0 0 .
Since R, - Q, = e 0l it follows from the OM® and OA° properties
that each of |d;|, |d-| and |d;] can be made arbitrarily small; hence

(L) (=G —=fK)If(x). 1] = [fo. N.IFQ = [u(x), v(x)]. It fol-
lows from the meaning of equality for matrices that (L), II" (1-G —
fK) = v(x), v(x)f(x)=u(x) and f(x)=v(x)" u(x).

LEmMMA 3.4. If GEOB® on [a.b] and € >0, then there is a
number p € (a, b such that, if {x;}; is a subdivision of [a,p]. then
G <e.

THEOREM 3.5. Given. H,W.K and G are functions from R X R
to N such that each of H, W, K and G belongs to OA° and OB® on [a, b]
and u and v are functions from R to N and are defined by the matrix
equation

[u(x). p(0)] = [u(a), v(@)] JT (H {,’;’ ZD
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for x €[a,b]. Conclusion. (1) If p&(a,b] and 0<k<1 and
lv(a)— 1|+ 2} |uo, W, + v, Gi| < k for each subdivision {x;}; of [a,p],
then v™' exists and is bounded on [a,pl. (2) If |v(a)—1|+
lu(a)Wi(a,a*)+v(a)G(a.a*)| <1, then there exists p € (a, b] such that
v~ exists and is bounded on [a,p].

Proof. Since H,W,K and G € OA°® and OB’ on [a,b], then

H W , , [H W]
[K G]EOA and OB° on [a,b] and, by Lemma 3.1, K G S

OM°on [a, b]; also, u and v are quasicontinuous and bounded on [a, b].
We now prove Conclusion 1. Let x €[a,p] and let {x;}{ be a
subdivision of [a,x]. Fori=1,2,---, n, there exist a; and b, € N such

that
[u(x). v(x)] = [u(a), v(@)] JT (” [1P<I g])

= [Ui-y, V-] H (”’ ”{I ‘g])

I+H W
= [ui—'ls vi~|] [ K l + G ] + [ai’ bl]

=[u; (1 + H) + v, K;, ui Wi + v, + v,i-1Gi1+[a, bil
and
v — 1=, — D+ u_, W, +v,._,G;+ b;

hence, by iteration and the norm properties,
IU(X)“ ” = |U,, - ]l élU()“‘ Il+2 IU,'_l w + U G,|+2 lb,'
1 1

<k+3 |bl.
1

Let r =(k + 1)/2. Since [H Wl € OM" and u and v are bounded on

K G
[a, b], then there is a subdivision {x;}; of [a,x] such that 2} |b;|<r—k
and, hence, |v(x)—1|<r<1. Letv denote v(x);thenv =1+(v — 1),
v~ exists, and

vi=1-(v-NDH+@—-1V—-(—-1V+---

and
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=0 =|lv—I)"'sU-r) "

Therefore, v™' exists and is bounded by [1 —(k +1)/2]"' on [a.p].

Since u and v are bounded and G and W € OB° on [a, b], then
there exist numbers p and k satisfying Conclusion 1, provided |v(a)—
1|+|u(a)W(a,a*)+v(a)G(a,a*)| < 1; hence, Conclusion 2 follows as a
corollary to Conclusion 1.

LEMMA 3.6. IfGisa function from R X R to N such that G € OA°
and OB°, then |G| € OA".

A proof for this lemma is given in [6].
LeEmMMA 3.7. If G is a function from R X R to N, and G € OA° and
b b
OB?°, then f Gl §f |G|
Outline of proof.

b n
;=3
a 1
LeEmMMA 3.8. Given. H and G are functions from R X Rto R and ¢

is a number such that H=0,G =0,1-G=c¢ >0,and Hand G € OA°
and OB° on [a,b]; f is a bounded function from R to R and k is a

number such that f(x) =k +(LR)fx(fH + fG) for x €E[a,b].

fx' G_G,’+§":'G,I.
X 1

Conclusion. If x €[a,b], then f(x)=k,J*(1+ H)(1-G)™". This
is Theorem 4 of [4].

LeEMMA 3.9. If G € OA® and OB® and f is quasicontinuous on
[a,b], then fG and Gf € OA° on [a,b].

This is a special case of [4, Theorem 2].

THEOREM 3.10. Given. (1) [a,b] is a number interval ;

(2) wis a function from R to N and H, G and K are functions from
R X R to N such that each of dw, H, G and K belongs to OA° and OB°
on [a,b];

(3) fand g are bounded functions from R to N and c is a number
such that 1—|B|=c >0, where B(x,y) = G(x,y)+g(x)K(x,y) and on
[a,b] each of f and g is a solution of the integral equation
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f(x) = w(x)+ (LRLR) f (fH + Gf + fKF).

Conclusion. 1If x €[a,b], then f(x) = g(x).

Proof. Since f and g are bounded and since dw, H,G and K €
OA’ and OB°, then each of f,g and |f—g]| is a quasicontinuous
function. Let A be the function A(x,y)= H(x,y)+ K(x,y)f(y) for
a =x <y =b; then it follows from Lemmas 3.6 and 3.9 that A, B,|A|

b
and |B|€ OA® and OB® and that (LR)f (f—g| |A|+IB| If -zl
exists. If x €[a, b], then

o0 -gel=|@Rr) [ =814 + BG -]
=0+(R) ["1If-gllA|+|B|If -]l (Lemma 3.
It follows from Lemma 3.8 that
f)-g)I=0-JT a+[Apa-|B) =o.

Therefore, if x €[a,b], then f(x) = g(x).

The restrictions 1 —|B|=Zc¢ >0 and (1-G; - f-,K;)"' cannot be
deleted from the hypothesis of Theorem 3.10 and Theorem 3.3,
respectively. Consider the following example. Let u,v, and g be
functions from R to R such that u(x) =0forx €[0, 2], v(x)=g(x)=0
forx €[0, 1]and v(x)=g(x)=1forx€(1,2]. Eachof uandvisa

solution on [0, 2] for the equation f(x) = (R)j fdg. See [5] for solu-
0

tions of equations in which the restriction 1 —|B| = ¢ > 0 does not hold.
Theorems similar to Theorems 3.2, 3.3 and 3.10 can be proved for

fx)=u(x)v(x)",
f(x)= w(x)+ RLRL) [ (G + Hf + {Kf).

and
oo =T o[ "],
where Q = [1_—4—1? ]cin] and

T Q =limQr, %) -+ Q(x1, x)Q (X, x,).
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We will now compare the Riccati equation for Riemann-Stieltjes

integrals with the Riccati equation for the (LRLR )-integral. In this and
the next paragraph, G is continuous at p means G(p ,p)=0=

b
G(p.p*); also, the symbol (RS)[ E(f) is used to denote a Riemann-

Stieltjes-type integral: i.e., for each subdivision {x;}; of [a,b], the
approximating sum has the form X} E[f(c¢;)], where xi_,=c¢, = x; for
i=1,2,---,n. Suppose that w, H,G and K satisfy the hypothesis of
Theorem 3.2. If f is the solution of the Riccati equation

f@) = w@)+®S) [ H+RS) [ Gf+®S) [ K1
on [a,b], then f is the solution of
() f(x) = w(x)+ (LRLR) [ (FH + Gf + fKf)
on [a,b]. If f is a solution of
@) f)=w) +RS) [ GH + Gf + 1K)

on [a, b] and either f is continuous on [a,b] or each of H,G and K is
continuous on [a,b], then f is the solution of Equation 1 on
[a,b]. Equation 2 can have a solution f on [a, b] even though each of
f,w,H,G and K has a discontinuity.

ExampLE. Suppose that N is a field, a < p = b, and g is a function
of bounded variation which is continuous on [a, p) and on [p, b]; f is the
function such that

fx)= 1+ (LRLR) | (fdg + def + fdgf)
for x €[a,p) and
f(x)= —2—f(p)+ (LRLR) [ " (fdg + dgf + fdgf)

for x €p, b]; also,

g(p)—glp)= =201+ f(p)f(pHf(p7) +21.
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The function f is the solution on [a, b] of Equation (2) with dg = H =
G = K ; however, f is not the solution of Equation (1) unless f(p~) =
— 1. Furthermore, if g(p) is defined differently, then Equation (2) has
no solution on [a,p].

In order for the Riemann-Stieltjes equation to have a solution
which is not a solution of the (LRLR)-equation, there must be an
interdependence between the functions w, H, G and K. The following
discussion illustrates this. Suppose that N is a field and that w, H, G
and K are functions that satisfy the hypothesis of Theorem 3.2 and that
on [a, b] the function f is a solution of Equation (2) but is not a solution
of Equation (1); then there is a number p €[a, b] such that f is not
continuous at p. For convenience suppose that f(p ™) # f(p) and, in the
following manipulations, let f,,f,,Aw, H,G and K denote f(p), f(p),
w(p)—w(p ), H(p~,p), G(p~,p) and K(p~,p), respectively. Then

F0)= 1o )+ 8w +(RS) [ GH +Gf + KD,

fr=fi+Aw + fH + Gf, + fKf,,
=fi+Aw + ,H + Gf, + K[,
f2H+Gf2+f2Kf2:le+Gfx+f1Kf|

and
(f.— fO(H + Kf,) +(G + i K)(f,~ f) = 0.
Since f,—f,#0 and N is a field, then
H+ G+ Kf,+fK =0.
Substituting for f, and simplifying, we obtain

3) Kf2+(2+ H + G)Kf,+(H + G + AwK) =0.

Since f,=f(p7)= w(p‘)+(RS)FV(fH + Gf + fKf), then the value of

f(p") depends only on the values of w, H,G and K on the half open
interval [a, p); however, Equation (3) depends on the values of w, H, G
and K on the closed interval {a,p]. Hence, these functions cannot be
defined independently. For example, if K# 0 and a different value is
assigned to w(p), then Equation (3) is no longer true and the Riemann-
Stieltjes equation has no solution on [a, p] unless compensating values
are assigned to H(p~,p), G(p~,p) and K(p~,p). However, the new
(LRLR)-Riccati equation will have a solution on [a,p].
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4. A differential-type equation. In this section we find
the solution of f**+ f*p + fg = r, where f* and f** are defined as
follows. If [a,b] is a number interval and 4 is a left continuous
function from R to N such that dh € OB°, then D(h, a, b) denotes the
set of ordered pairs of functions such that (f,g) € D(h,a,b) iff g is a
quasicontinuous function from R to N such that f(x)—f(a)=

X
(L)J gdh for x €[a,b]. If (f,g)€ D(h,a,b), then g is denoted by f*.
Also,
f**=((**and f=w iff (L)J’ fdh = (L)f wdh for x €[a,b]. Inthis

section all integrals and product integrals are Cauchy-left-type integrals
unless indicated otherwise.

LEmmA 4.1. If . and (g, e®HED(h,a,b), then
(f+g f*+g*) &€ D(h,a,b).

Lemma 4.2, If (f,f*) and (g,g*) € D(h,a,b), g*,h and g com-
mute and z is the function such that z(x) = g(x*)—g(x) for x €[a, b],
then (fg.f*g +fg*+f*z)€ D(h,a,b).

Indication of proof. Since (g,g*) and (f,f*) € D(h,a, b), then g is

left continuous and df € OB®; hence,

[ drag =y [ ap
@) [ wpg =®) [ 1dng - gy
and
@) [ (rg +fg*+1*2)dh = (LLL) [ (d)g + fdg + (=]
~RLL) | ((df)g +fdg —(df)dg +(d2]

~RL) | ((dfg +fdg)
= f(x)g(x)—f(a)g(a)
LemMmAa 4.3. Given. [a,b] is a number interval; f and h are

functions from R to N such that f(a) = h(a) and dh € OB®;, G is a
function from R X R to N such that G € OB® and OA°
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Conclusion. The following statements are equivalent:
(O if x E[a,b], then f(x)=h(x)+(L)J fG; and
2) if x €{a,b], then

f)=fa) JT (1+G)+(R) f dan IT (1+G).

This lemma is a special case of Theorem 5.1 of [3].
THEOREM 4.4. Given. (1) [a,b] is a number interval; (2)
h,p,q,u,v,3 and s are functions from R to N such that h is left

continuous, dh € OB®, p and q are quasicontinuous on [a,b] and, if
x €E{a,b], then u(x) and v(x) are defined by the matrix equation

(). e =10, L) IT (1+] 70 7 ]an).

v(x)™" exists, B(x)=v(x)'u(x) and s(x)=B(x")—B(x); also, v is
bounded on [a,b]; (3) if a=x =y =b, then p(x), p(y), q(x), q(y),
h(x) and h(y) commute; (4) f and r are functions from R to N and r is
quasicontinuous.

Conclusion. The following statements are equivalent.

(1) There exist functions f* and f** such that (f,f*) and
(f*,f**) € D(h,a, b) and such that on [a, b]

fo 4+ frp +fa = .

(2) If x €[a,b]}, then

f) = faxLy JT (1-Bdh)+(R) f dz(L) [T (1-Bdh).

where a=p—B-s, z(x)=f(a)+(L)fxwdh, g(x)=
f4(a)+(L) f rdh and
W) = @) JT (1= adh)+ R) [ de(@) JT (1 adh).

Proof. Since dh € OB’ and h is left continuous and since p and g
are quasicontinuous, then u# and v are left continuous and
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quasicontinuous. Since v~' is bounded and B = v~'u, then B is left
continuous, quasicontinuous and commutes with h. If x €[a,b], it
follows from Theorem 3.2 that

B =(L) [ qdh +(LL)]‘B(_,,dh)+(LR)f" Bdhp.

Let a,s and k be the functions such that s(t)=B({t")—B(t), a =
p—B—s, k(a)=0, and k = g + B°— Bp + Bs; then, for x €[a,b],

@) [ kdn =) ["q+p7~pp +ps)an
= (L) f qdh +[(LR) f Bdhp — (L) J Bdth]
+(LL) f B(~ pdh)+(LL) f Bsdh.

Since B is left continuous, then

(L) f Bdhdg = (LL) f Bsdh,

kadh — B(x)—B(a) and (B, k) E D(h, a, b); k will be denoted by B*.
Note that B, a, B*, p,q and h commute on [a, b] and that g = B* + Ba.
Proof of 1—2. Since the triple (f,f*), (B,B8%), s satisfies the
hypothesis of Lemma 4.2, then (B, f*B+fB*+f*s)e
D(h,a,b). Hence,
(f*+1B)*+(f*+ fB)a

=f¥* + f*B + B*+ f*s + f*a + fBa

=+ A B +s+a)+f(B*+Ba)

=f et fa =r

and
f*+Bry=r—(*+fB)a.

If we integrate each member of the preceding equation with respect to h
and recall that B(a) =0, we obtain
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(*+ f8)0) = )+ (L) [ (7 + f8)(— adh),

where g(x)=f*(a)+(L)fxrdh. It follows from Lemma 4.3, 1 -2,
that

(F*+ 1B)(x) = f*(@) JJ] (1-adh)+(R) f dg [T (1-adn)

for x €E[a,b]. Let w(x) respresent the right member in the preceding
equation. If x €[a,b], then f*(x) = w(x)— f(x)B(x) and by integrat-
ing both members we obtain

fr =200+ @) [ f(-pan,

where z(x)=f(a)+(L)fx wdh and z(a)=f(a). It follows from
Lemma 4.3, 1 — 2, that

f)=f@) JT (- Bdh)+(R) ] dz JT (1-Bdh).

Proof of 2— 1. Functions f** and f* will be defined such that
(f,f* and (f*,f**)€ D(h,a,b) and such that on [a,b] f**+ f*p +

fa=r
Let f*=w —fB. Since f satisfies the second statement of the
conclusion, it follows from Lemma 4.3, 2— 1, that for x €[a, b]

f) =20 +(L) [ 7~ pn)
= f@+@) [ wdh +(L) [ 7~ gdn)

= f@+ @) [ e

and (f,f*) € D(h, a, b).
Let f** be the function such that

fPr=r—(*+Ba —(f*B + fB* + f*s).
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Since B(a) =0 and
(f*+fB)x)=w(x)
= @) T (1 =adn)+®) | dg [T (1-adh)

for x €[a, b}, it follows from Lemma 4.3, 2— 1, that
(% + 8)0) = g )+ (L) [ (F* + 1)~ adh)
and, hence,
Fr0 =00+ (L) [+ 1)~ adh) — 1B o)

Since (fB,f*B + fB*+ f*s)& D(h,a,b) and B(a) =0, it follows from
the definition of f** that

(L) [ g = (L) [ 1=+ fB)a = (7B + 8%+ £*5)1dh

= — @+ |g@)+ L) [T+ 8= adh)
—f(x)g(x)]
=f*(x)—f*(a)
for x € [a, b]; hence, (f*, f**)&€ D(h,a, b).
Since
f**+f*p +fq =[r —(f*+ fBla — (f*B + fB*+ f*s)]
+fHa+B+s)+f(B*+aB)=r,
then the triple f, f*, f** satisfies the given equation.
Suppose that on [a, b] the functions h,p and q are defined as in
Theorem 4.4 except for the restrictions pertaining to v ™. If h € C°, it
follows from Theorem 3.5 that there is a subdivision {x;}; of [a, b] and

functions {B:}!, {w:}i and {v;}i such that for i=1,2,---,n and
X € [xiy, x.]

), w0l =10, 11, 0T (14 70 7] an).
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Bi(x) = v (x)" u;(x), and v 7' exists and is bounded on [x;_, x;]. Hence,
fori =1,2,---,n, Theorem 4.4 gives the solution of f**+ f*p +fq =r
on [x.;, x;] which 1is unique for a given pair f*(x,_;) and
f(x;.)). Therefore, Theorem 4.4 can be used to find a unique solution
on [a, b] for given values of f(a) and f*(a).

A theorem similar to Theorem 4.4 can be stated and proved for the
equation f**+ pf* + qf = r; however, Theorem 5.2 of [3] would be used
in the proof instead of Lemma 4.3. If (f,f*) means f(x)—f(a)=

(R) J' f*dh and h is right continuous, a theorem similar to Theorem 4.4

can be stated and proved.
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