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Product integrals are used to show that, if dw, G, H and K
are functions from number pairs to a normed complete ring N
which are integrable and have bounded variation on [a, b] and
v ' exists and is bounded on [q, b1, then the integral equation

B(x) = w(x)+(LRLR) f (BH + GB + BKB)

has a solution 8(x) = v~ '(x)u(x) on [a, b}, where u and v are
defined by the matrix equation

[u(x), v(x)] =[w(a), 1] “HX (I+ [le :gD

The above results are used to show that if p,g,h and r are
quasicontinuous functions from the numbers to N such that h is
left continuous and has bounded variation and p,q and h
commute, then the solution on [a,b] of the differential-type
equation f**+f*p +fq =r is

f)=f@ JT (1—gamy+®) [ dz [T (- gan),
where f(x)—f(a) = (L)fxf*dh,B is the solution of

B(x)=(L) f qdh +(LL) f B(~-pdh)+(LR) f Bdhp,

and : is defined in terms of p,q,r,h and B.

1. Introduction. Adam [1] introduced the concept of con-
tinuous continued fractions and showed that the solution of y’'=
g'y?—f' could be given as a continuous continued fraction, provided f’
and g’ are continuous and positive. Wall [11] [12] showed that, if
F,, F,,, F,, and F,, are continuous functions of bounded variation from
the real numbers to the complex numbers and |b — a| is sufficiently
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small, then the solution of

X

(1) w(x)=z+f deF2,+J: wd(Fzz—Fl,)—fbx dF,,

b

is w(x)=[M,(x,b)z + M,(x,b)|IM(x,b)z + Mn(x,b)]”', where F =

[]I::: II::Z] and [%;: ]It/I/[Z] is the function such that M(x,y)=

y
1 +J M(x,s)dF(s). MacNerney, using the Stieltjes integral in [7] and

the subdivision-refinement-type mean integral in [8], extended Wall’s
results to some types of quasicontinuous linear transformations and
showed that the solution of Equation (1) can also be expressed as a
continuous continued fraction {8, Theorem 5.3]. In this paper the
product integral theory developed by MacNerney [8] [9] and the author
[3] is used to find and express (in §3) the solution of

B() = w(x)+(LRLR) [ (BH + GB + BKB)

and to find and express (in §4) the solution of
frefep +fa =,

where w, p, q,r, G, H, K are quasicontinuous functions from numbers or
pairs of numbers to a normed complete ring N.

2. Definitions and notations. The symbol R denotes the
set of real numbers and N is a ring which has an identity element 1 and a
norm | -| with respect to which N is complete and |1| =1 (henceforth,
the symbol 1 will be used for this identity element). Functions from R
to N and from R X R to N will be represented by lower case letters and
upper case letters, respectively. All sum and product integrals are
subdivision-refinement-type limits. If G is a function from R X R to
N, the product integral of G exists on [a, b] iff there exists A € N such
that if € is a positive number then there is a subdivision D of [a, b] such
that if {x;}; is a refinement of D then |A = GG, - G,|<¢€, where
G =G(xi_.,,x,) for i=1,2,---,n. The symbol ,[I’Gwill be used to
represent the limit A. A similar definition holds for the sum
integral. Upper case letters preceding an integral symbol show how

b
the integrand is to be evaluated: i.e., (LRLR)f (fH + Gf + fKf) =

b
f M, where for x <y
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M(x,y)=f(x)H(x,y)+ G(x, y)f(y)+ f(x)G(x, y)f(y).

b b
Also, G € OA° on [a,b]ifff G exists andf |G - [G|=0; G € OM®
on [a,b] iff ,IPA+G) exists for a=x=y=b and
b
f (1+ G)~TI(1 + G)| = 0; G € OB" on [a, b] iff there is a number M

and a subdivision D of [a, b] such that, if {x;}; is a refinement of D ,then
211G (x:-1, ;)| = M ; the function v ' exists on [a, b] means v(x)v(x)"' =
v(x)'v(x)=1for x €[a,b]. The function G’ exists on [a, b] means
there is a subdivision {x;}; of [a,b] suchthatif0<i=nand x,_;=x <
y =x, then G(x,y)'G(x,y)=G(x,y)G(x,y)'=1. If {x;}; is a sub-
division, the symbols f._,, f, and G; will be used as shorthand notations
for f(xi.), f(x;) and G(x;-;,x;), respectively. For additional details
pertaining to these definitions, see [3], [4], and {9]. The main results of
this paper will be designated as theorems; the supporting theorems will
be labeled as lemmas.

3. A Riccati integral equation. In this section we derive a
solution for the integral equation

f(x) = w(x) + (LRLR) J (fH + Gf + fKf).

Since the OA° property plays an important role in this paper, please
note that the function G € OA° if at least one of the following
conditions is satisfied:

(1) there is a function g such that

Gx,y)=g0()—gx);

2) if G(x,y)=f(x)H(x,y), where f is quasicontinuous and H €
OA° and OB®, [4, Theorem 2};

(3) if G is an integrable function from number pairs to a real
Hilbert space which is finite dimensional, [2, Theorem 2].

Also note that, if H, K, W, G are functions from R X R to N which

0 0 H

belong to OA® and OB®, then [W G]
Q € 0A° and OB’ and, by Lemma 3.1, Q € OM°.

represents a matrix Q such that

LemmAa 3.1. If G is a function from R X R to a normed complete
ring and G € OB°, then the following statements are equivalent :

(1) G€OA®on [a,b] and

2) GeOM° on [a,b].
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This is Theorem 3.4 of [3].

THEOREM 3.2. Given. (1) [a, b} is a number interval. (2) wis a
function from R to N and H,G and K are functions from R XR to N
such that each of dw,H,G and K belongs to OA° and OB°.

(3) u and v are functions from R to N such that if x € [a,b] then
u(x) and v(x) are defined by the matrix equation

oo, vl =), 10T (145 2 &)

and v~' exists and is bounded.
(4) fis a bounded function from R to N, f(a) = w(a) and f(x) =
v(x)'u(x) for x €[a,b]. '

Conclusion. If x €E[a,b], then
f(x)=w(x)+(LRLR) J' (fH + Gf + fKY).
Furthermore, if w is a constant function, then

s =] a=61-waxwr [T a+ K [T a-6)|
[w(a) a]‘[x (]+H)] )
Proof. Let Q be the function such that Q = [(]1; H 1 :g] ; then

Q-1€0A° and OB® and, by Lemma 3.1, Q — 1€ OM°. Suppose
x €(a,b] and {x;}; is a subdivision of [a,x]. If 0<i = n, then there
exist a; and b; € N such that

[o(x)f(x:), v(x)]=[u(x), v(x;)]
=wea), 1] Q..[T @

=t o6 T | b 2
_ ] +H, “‘K,'
=[Ui1, vioy] [ Aw, 1-G, ] +la, bi]

SR A NS EYPA'Y
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= lel [fl‘](l +H1)+Awiv _fi—l Kl +(1 _G)]+[a,,b,].

Therefore,
(') fi=fio(I+H)+Aw +07' La
and
v o, = —fia Ki+1-G +v7' by
hence,

(-fi~l K,‘ + 1 - G,’ + U_] ,;(b,')f,' = f,;((] + H()+AW, + v—l,-_,ai
and

fi—fa=Aw, +f_  H +Gf +f Kf—v' bf+v' a.

Since f,u, v and v~' are bounded and since X} (Ja;| +|b;]) can be made
arbitrarily small with an appropriate choice of a subdivision (since
Q € OM"), then the following integral exists and

f(x)—f(a)=w(x)—f(a)+(LRLR) f (fH + Gf + fKf).

Since

”n p‘ ql
Il ‘0 r,

“[6 )

where p =111 pi, g = 2., (I1,.," 'p)g;(IL;.;.,"r;) and r =11,_, "r,, and since
all the following integrals and product integrals exist, then

e T [0 26 s F

0 1-G 0 D

where A =, II'(1+H), B =(LR) r[‘,ﬂ'(+ (1 - K)[,II* (1-G)]

a

and D = ,I1' (1 — G); hence, if w is a constant function, then
f(x)=[w(a)B+ D] "'[w(a)A].

THEOREM 3.3. Given. (1) [a.b] is a number interval ;
(2) wis a function from R to N and H, G and K are functions from
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R X R to N such that each of dw, H, G and K belongs to OA° and OB®;
(3) wu and v are functions from R to N such that, if x € [a, b], then
u(x) and v(x) are defined by the matrix equation

[u(x), v(x)] =[w(a), 1] n (I+ [fw :g])

and v(x)™" exists;
(4) f is a bounded function from R to N, f(a)=w(a),
(1- G, —f.,K,))"" exists and

f(x)= w(x)+(LRLR) f (fH + Gf + fKf)

for x Ela. b].
Conclusion. 1If x €[a, b], then f(x)=v(x)" u(x).

Proof. Suppose x €[a,b] and {x;}; is a subdivision of [a,b]. If
0 < i = n, then there exists ¢ € N such that

) = w(x)+(LRLR) [ (fH + Gf + K

=Aw, +f+fi. H +Gf+f_ Kf +e
and fi=b7ia, where bi=1-G - f- K; and a;, =
fio(1+ H)+(Aw; +€). Fori=123,--n,let R, be the 2 X2 matrix
R = [ I+ H, _Ki]; let a,=w(a) and b,=1; then {a;}; and {b;};

- AW; + €; 1—- G,‘
are elements of N such that, if 0<i =n, then f, = b7'a; and

la, b]= [fiﬂ, 1IR; = (bl a;, 1IR; = b, [ai-i, biy]R.

Therefore

I
i=

(awbu1= (11 b7) 15 1 TT R

n

and

M (IT b} bulfa =TT brlen b.1=Tfo, 1T R,
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Let Q be the function from R X R to the set of 2 X 2 matrices such
that Q = [l;er I :g] Since f is quasicontinuous and since each

of dw, H, G and K belong to OA°and OB°,then Q —I and -G —-fK €
OA° and OB’ and it follows from Lemma 3.1 that Q — I and — G — fK

b
belong to OM°, the corresponding product integrals exist, J |Q -TIQ|=

b
Oand | [(1-G—-fK)—TI(1-G —fK)|=0. For each subdivision {x;}}

of [a, x], there exist elements d,, d., and d; such that Equation (1) can be
rewritten

{w) T a-6-mr+altf =15 (1T Q+d:+ ).

where 1 - G; — f._, K; is playing the role of b, and
di=[10-G-f.K)—@)J] 1-G-fK),
i=1
dl:IJ Qi—un- Q

and

n n n

d3=ﬂ Ri~l—[ Qi:Z (:Ijl Qi)(Ri“Qi) ﬁ R;.

i=1 i=1 i=1 j=i+1

Since R, - Q, = [2 g , it follows from the OM® and OA° properties

that each of |d|, |d.| and |d;| can be made arbitrarily small; hence
(L) (=G —=fK)f(x). 1] = [fo. N.IFQ = [u(x), v(x)]. It fol-
lows from the meaning of equality for matrices that (L) [I* (1-G —
fK) = v(x), v(x)f(x)=u(x) and f(x)=v(x) " u(x).

LEmMA 3.4. If GE OB’ on [a.b] and € >0, then there is a
number p € (a,b] such that, if {x;}; is a subdivision of [a,p]. then
2G| <e.

THEOREM 3.5. Given. H,W,K and G are functions from R X R
to N such that each of H, W, K and G belongs to OA°® and OB° on [a,b]
and u and v are functions from R to N and are defined by the matrix
equation

e ver =@ v I (14§ )
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for x €[a,b]. Conclusion. (1) If p&€(a,b] and 0<k <1 and
lv(a) = 1|+ 2} luy Wi + v, Gi| < k for each subdivision {x;}; of [a,p],
then v™' exists and is bounded on [a,pl. 2) If |v(a)—1|+
lu(a)Wi(a,a*)+v(a)G(a,a*)| <1, then there exists p € (a, b] such that
v~ exists and is bounded on [a,p].

Proof. Since H,W,K and G € OA° and OB°® on [a,b], then
[H W}EOA" d OB on [a,b] and, by Lemma 3.1 [H W]E
K G an on [a,b] and, by ma 3.1, | 4

OM°on {a, b]; also, u and v are quasicontinuous and bounded on [a, b].
We now prove Conclusion 1. Let x €[a,p] and let {x;}| be a
subdivision of [a,x]. Fori=1,2,---,n, there exist a; and b; € N such

that

[u(x;), v(x)] = [u(a),v(a)] unh (” [I}g VGVD

= [Ui-y, v:-1] H (I + [Ig V(‘?/])

— 1 ][]+I_Ii W
St vl g 146

=[u_ (1 + H) + v, Ki, uio, W, + v+ v,.,Gi ] + [a;, b ]

]+[a,—, b:]

and

v — 1= —D+u_ W, +v_,G +b;;

hence, by iteration and the norm properties,
IU(X)_ ]I = ’U,, - ]| élv()‘_ ”+ Z Iu;_, “/, + Vi G,l+ z |b,|
I 1

<k+i |bi].
1

Let r =(k +1)/2. Since [H W} € OM" and u and v are bounded on

K G
[a, b], then there is a subdivision {x;}; of [a, x] such that =} |b;|<r—k
and, hence, |v(x)—1|<r<1. Let v denote v(x);then v =1+ (v — 1),
v~ exists, and

v'=1-(v-DH+@—-1Y-(o—-1)V +---

and
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Pl =(-lo=1p)"'=s0-r)"
Therefore, v~' exists and is bounded by [1 —(k + 1)/2}"' on [a,p].
Since u and v are bounded and G and W € OB° on [a, b], then
there exist numbers p and k satisfying Conclusion 1, provided |v(a) —
1|+|u(a)W(a,a*)+v(a)G(a,a*)| < 1; hence, Conclusion 2 follows as a

corollary to Conclusion 1.

LEMMA 3.6. IfGis a function from R X R to N such that G € OA°
and OB°, then |G|€ OA°.

A proof for this lemma is given in [6].

LeEmMMA 3.7. IfGis a function from R X Rto N, and G € OA° and
b b
OB?°, then J' G' §f |G|

Outline of proof.

I d=2

fx' G—G,-l +3|G.
Xt !

LemMmA 3.8. Given. H and G are functions from R X Rto R and c
is a number such that H=0,G =z0,1-G =c¢ >0,and Hand G € OA°
and OB° on [a,b]; f is a bounded function from R to R and k is a

number such that f(x)=k +(LR)fx(fH + fG) for x €[a,b].

Conclusion. 1If x €[a,b], then f(x)=k,II*(1+ H)(1 - G)™". This
is Theorem 4 of [4].

LeEMMA 3.9. If G € OA°® and OB° and f is quasicontinuous on
[a,b], then fG and Gf € OA° on [a,b].

This is a special case of [4, Theorem 2].

THEOREM 3.10. Given. (1) [a,b] is a number interval ;

(2) wis a function from R to N and H, G and K are functions from
R X R to N such that each of dw, H, G and K belongs to OA°® and OB°
on [a,b];

(3) fand g are bounded functions from R to N and c is a number
such that 1—|B|=c >0, where B(x,y)=G(x,y)+g(x)K(x,y) and on
[a,b] each of f and g is a solution of the integral equation
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f(x) = w(x)+ (LRLR) f (fH + Gf + fKf).

Conclusion. If x €[a,b], then f(x)=g(x).

Proof. Since f and g are bounded and since dw,H,G and K €
OA® and OB°, then each of f,g and |f—g| is a quasicontinuous
function. Let A be the function A(x,y)= H(x,y)+ K(x,y)f(y) for
a =x <y =b; then it follows from Lemmas 3.6 and 3.9 that A, B,|A|

b
and |B|€ OA® and OB® and that (LR)f (0f—g| |Al+1B| If-gll
exists. If x €[a, b], then

o=l =|@r) [ - g14 + BG -]
=0+(R) ["1If-gllA|+|B]If-¢g|] (Lemma 3.
It follows from Lemma 3.8 that
)~ g =0-JT (1+]AD - [B) =o0.

Therefore, if x €[a, b], then f(x) = g(x).

The restrictions 1—|B|=Zc¢ >0 and (1-G, —f-,K;)"' cannot be
deleted from the hypothesis of Theorem 3.10 and Theorem 3.3,
respectively. Consider the following example. Let u,v, and g be
functions from R to R such that u(x) =0forx €[0, 2], v(x)=g(x)=0
for x €[0, 1]and v(x)=g(x)=1for x €(1,2]. Eachof u and v isa

solution on [0, 2] for the equation f(x) = (R)f fdg. See [5] for solu-
0

tions of equations in which the restriction 1 —|B| = ¢ > 0 does not hold.
Theorems similar to Theorems 3.2, 3.3 and 3.10 can be proved for

foo)=ux)v(x)™",
f(x) = w(x)+(RLRL) f (fG + HFf + fKf),

and
vt =T e[ "],
where Q = []—+I? ]‘jWG] and

unx Q =lmQx,-, x,) - - Q(x,, x2)Q (X0, X1).
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We will now compare the Riccati equation for Riemann-Stieltjes

integrals with the Riccati equation for the (LRLR )-integral. In this and
the next paragraph, G is continuous at p means G(p ,p)=0=

b
G(p.p*); also, the symbol (RS)[ E(f) is used to denote a Riemann-

Stieltjes-type integral: i.e., for each subdivision {x;}; of [a,b], the
approximating sum has the form 2! E{f(c;)], where xi_;=c¢, =x; for
i=12,---,n. Suppose that w, H,G and K satisfy the hypothesis of
Theorem 3.2. If f is the solution of the Riccati equation

f@)=w)+®S) [ fH+®RS) [ Gr+®s) [ s
on [a,b], then f is the solution of
() f(x) = w(x)+ (LRLR) | (FH + Gf + fKf)
on [a,b]. If f is a solution of
@) f@) = w0+ RS) [ (H +Gf + fKf)

on [a, b] and either f is continuous on [a, b] or each of H,G and K is
continuous on [a,b], then f is the solution of Equation 1 on
[a,b]. Equation 2 can have a solution f on [a, b] even though each of
f,w,H,G and K has a discontinuity.

ExampLE. Suppose that N is a field, a <p = b, and g is a function
of bounded variation which is continuous on [a, p) and on [p, b]; f is the
function such that

f(x)=1+(LRLR) f " (fdg + dgf + fdgf)
for x €[a,p) and
f(x)= =2~ (") + (LRLR) [ (fdg +dgf + fdgf)

for x €[p, b]; also,

gp)—gp)= 201+ fEHNf(pHf(p)+2l
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The function f is the solution on [a, b] of Equation (2) with dg = H =
G = K ; however, f is not the solution of Equation (1) unless f(p~) =
— 1. Furthermore, if g(p) is defined differently, then Equation (2) has
no solution on [a,p].

In order for the Riemann-Stieltjes equation to have a solution
which is not a solution of the (LRLR)-equation, there must be an
interdependence between the functions w, H, G and K. The following
discussion illustrates this. Suppose that N is a field and that w, H, G
and K are functions that satisfy the hypothesis of Theorem 3.2 and that
on [a, b] the function f is a solution of Equation (2) but is not a solution
of Equation (1); then there is a number p € [a, b] such that f is not
continuous at p. For convenience suppose that f(p ) # f(p) and, in the
following manipulations, let f,, f,,Aw, H,G and K denote f(p~), f(p),
w(p)—w(p’), Hp~,p), G(p~,p) and K(p~,p), respectively. Then

F0)= 1o )+ 8w +(RS) [ GH + G + KD,

fr=Ff+Aw+ fiH + Gf, + fKf,,
=fi+Aw +L,H + Gf, + f,Kf,,
f-H + Gf.+ ,Kf, = f{H + Gf, + f,Kf,

and
(f:= f)(H + Kf)) +(G + fiK)(f,~ f) = 0.
Since f,—f,#0 and N is a field, then
H+ G+ Kf,+fK =0.
Substituting for f, and simplifying, we obtain

3) K+ Q+H+G)Kf +(H+G +AwK) = 0.

Since f,=f(p7)= w(p’)+(RS)fp_(fH + Gf + fKf), then the value of

f(p~) depends only on the values of w, H,G and K on the half open
interval [a, p); however, Equation (3) depends on the values of w, H,G
and K on the closed interval [a,p]. Hence, these functions cannot be
defined independently. For example, if K# 0 and a different value is
assigned to w(p), then Equation (3) is no longer true and the Riemann-
Stieltjes equation has no solution on [a, p} unless compensating values
are assigned to H(p~,p), G(p~,p) and K(p~,p). However, the new
(LRLR)-Riccati equation will have a solution on [a,p].
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4. A differential-type equation. In this section we find
the solution of f**+ f*p + fq = r, where f* and f** are defined as
follows. If [a,b] is a number interval and A is a left continuous
function from R to N such that dh € OB®, then D(h, a, b) denotes the
set of ordered pairs of functions such that (f,g) € D(h,a,b) iff g is a
quasicontinuous function from R to N such that f(x)—f(a)=

X
(L)J gdh for x €{a,b]. If (f,g)€ D(h,a,b), then g is denoted by f*.
Also,
f**=(¢**and f=w iff (L)f fdh = (L)fx wdh for x €[a,b]. In this

section all integrals and product integrals are Cauchy-left-type integrals
unless indicated otherwise.

LEmMA 4.1. If . and (g.g®€eD(h,a,b), then
(f+g f*+g*€ D(h,a,b).

Lemma 4.2, If (f,f*) and (g,g*)€ D(h,a,b), g*,h and g com-
mute and z is the function such that z(x) = g(x*)—g(x) for x €E[a, b],
then (fg.f*g +fg*+f*z)€D(h,a,b).

Indication of proof. Since (g,g*) and ({, f*)ED(h a,b), then g is
left continuous and df € OB°; hence,

[ drdg =) [y,
@) [ @pg =®) [ 1dng - @n g
and
@) [ (g +fg*+fr2)dh = (LLL) [ (g +dg + (2]
~RLL) [ af)g + fdg ~ (df)dg +(df)2]

~RL) [ [(dfg + fdg)
= f(x)g(x)—f(a)g(a)
LEMMA 4.3. Given. [a,b] is a number interval; f and h are

functions from R to N such that f(a)=h(a) and dh € OB’ G is a
function from R X R to N such that G € OB® and OA°
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Conclusion. The following statements are equivalent:
(1) if x<€la,b], then f(x)= h(x)+(L)J fG; and
(2) if x €E[a,b], then

f)=f@) JT (1+G)+(R) f dn JT (1+G).

This lemma is a special case of Theorem 5.1 of [3].
THEOREM 4.4. Given. (1) [a,b] is a number interval; (2)
h,p,q,u,v,B and s are functions from R to N such that h is left

continuous, dh € OB®, p and q are quasicontinuous on [a,b] and, if
x €E{a,b], then u(x) and v(x) are defined by the matrix equation

(). een =10, )T (1+] 70 7 lan).

v(x)™" exists, B(x)=v(x)'u(x) and s(x)=B(x")—B(x); also, v is
bounded on [a,b]; 3) if a =x =y =b, then p(x), p(y), q(x), q(y),
h(x) and h(y) commute; (4) f and r are functions from R to N and r is
quasicontinuous.

Conclusion. The following statements are equivalent.

(1) There exist functions f* and f** such that (f,f*) and
(f*.f**)€ D(h,a, b) and such that on [a, b]

fo+frp + g = .

2) If x €la,b], then

) = fla)L) JJT (1= Bdh)+(R) f dz(L) ] (1-pBdn),

where a=p—B-s, z(x)=f(a)+(L)J'deh, gx)=
f*(a)+(L) Jx rdh and
w(x) = fa)L) JT (1-adh)+(R) f dg(L) [ (1-adh).

Proof. Since dh € OB’ and h is left continuous and since p and g
are quasicontinuous, then u and v are left continuous and
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quasicontinuous. Since v~' is bounded and B = v7'u, then B is left
continuous, quasicontinuous and commutes with h. If x €[a,b], it
follows from Theorem 3.2 that

B =(L) [ adh +(LL)IX3(_,,dh)+(LR)IX Bdhg.

Let «,s and k be the functions such that s(t)=B({t")—B(t), a =
p—B—s, k(a)=0, and k = q + B*>— Bp + Bs; then, for x E[a, b],

@) [ kdn =) ["a+p7-pp +ps)an
~(L) f qdh + [(LR) f Bdhg — (L) f Bdhdﬁ]
+(LL) f B(~ pdh)+(LL) f Bsdh.
Since B is left continuous, then

(L) f Bdhdg = (LL) f Bsdh,

jxkdh = B(x)—B(a) and (B,k) € D(h,a,b); k will be denoted by B*.
Note that B8, a, B*, p,q and h commute on [a, b] and that g = B* + Ba.
Proof of 1—2. Since the triple (f,f*), (B,B%*), s satisfies the
hypothesis  of Lemma 4.2, then UB.f*B +fB*+f*s)e
D(h,a,b). Hence,
(f*+1B) +(f*+ fB)a

= f* 4 f5B + fB* + f*s +f*a + fBa

=f**+f*B+s+a)+f(B*+Ba)

= et frp +fq =

and
f*+fB)Y=r—-(Ff*+1B)a.

If we integrate each member of the preceding equation with respect to h
and recall that B(a) =0, we obtain
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(4 f8)0) = )+ (L) [ G+ 8~ adh),

where g(x)=f*(a)+(L)f rdh. 1t follows from Lemma 4.3, 1—2,
that

(F*+ 18)x) = f*@) JJ] (1-adh)+(R) f dg [T (1-adh)

for x €E[a,b]. Let w(x) respresent the right member in the preceding
equation. If x €[a, b], then f*(x) = w(x)— f(x)B(x) and by integrat-
ing both members we obtain

f =200+ @) [ (- pan),

where z(x)=f(a)+(L)fx wdh and z(a)=f(a). It follows from
Lemma 4.3, 1 — 2, that

f0)=f(a) JJI (1= Bdh)+(R) f dz JT (1- gdh).

Proof of 2— 1. Functions f** and f* will be defined such that
(f,f* and (f*,f**)€ D(h,a,b) and such that on [a,b] f**+ f*p +

fq=r
Let f*=w —fB. Since f satisfies the second statement of the
conclusion, it follows from Lemma 4.3, 2— 1, that for x €[a, b]

f) =200+ @) [ (- pan)
=f(a)+(L)fx wdh +(L)fxf(—/3dh)

— f(a)+(L) fo*dh

and (f,f*) € D(h, a,b).
Let f** be the function such that

fFr=r—(*+fB)a —(f*B + fB*+f*s).
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Since B(a) =0 and
(f*+fB)x)=w(x)
= @) JT (1= adn)+R) [ dg [T (1-adh)

for x €[a, b}, it follows from Lemma 4.3, 2— 1, that
(7 + 8)0) = g )+ (L) | (F* + 1)~ adh)
and, hence,

FHx) = g(x) +(L) j (F* + f8)(— adh) — f(x)B(x).

Since (fB,f*B + fB*+ f*s)& D(h,a,b) and B(a) =0, it follows from
the definition of f** that

(L) fx f**dh = (L) jx [r=(*+fB)a —(f*B +fB*+ f*s)]dh

= — @+ g0+ @) [ ¢*+ 1)~ adn)
- f(x)g(X)]
= f*(x)—f*(a)
for x €[a, b]; hence, (f*,f**)& D(h,a, b).
Since
f**+f*p +fq =[r = (f*+ fBla —(f*B + B*+f*s)]
+f¥a+B+s)+f(BF+aB)=r,
then the triple f, f*, f** satisfies the given equation.
Suppose that on [a, b] the functions h,p and q are defined as in
Theorem 4.4 except for the restrictions pertaining tov™'. If h € C, it
follows from Theorem 3.5 that there is a subdivision {x;}; of [a,b] and

functions {B:}i, {u:} and {v;}} such that for i=1,2,---,n and
X € [xi_y, x.]

), w01 =10, 10, 0T (1+] 727 lan).
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Bi(x) = v;(x)"u;(x), and v 7' exists and is bounded on [x;_;, x;]. Hence,
for i =1,2,---,n, Theorem 4.4 gives the solution of f**+ f*p +fq =r
on [x._;, x;] which is unique for a given pair f*(x,_,) and
f(x;-;). Therefore, Theorem 4.4 can be used to find a unique solution
on [a, b] for given values of f(a) and f*(a).

A theorem similar to Theorem 4.4 can be stated and proved for the
equation f**+ pf* + qf = r; however, Theorem 5.2 of [3] would be used
in the proof instead of Lemma 4.3. If (f,f*) means f(x)—f(a)=

(R) J' f*dh and h is right continuous, a theorem similar to Theorem 4.4

can be stated and proved.
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