THE LOCAL RIGIDITY OF THE MODULI SCHEME FOR CURVES

ROBERT F. LAX
THE LOCAL RIGIDITY OF THE MODULI
SCHEME FOR CURVES

R. F. LAX

Let \(Y \) be a smooth, quasi-projective scheme of finite type over an algebraically closed field of characteristic zero. Let \(X \) be the quotient of \(Y \) by a finite group of automorphisms. Assume that the branch locus of \(Y \) over \(X \) is of codimension at least 3. In this note, it is shown that \(X \) is locally rigid in the following sense: the singular locus of \(X \) is stratified and, given a point on a stratum, it is shown that there exists a locally algebraic transverse section to the stratum at the point which is rigid. This result is then applied to the coarse moduli scheme for curves of genus \(g \), where \(g > 4 \) (in characteristic zero).

1. Stratifying quotient schemes. Let \(k \) be an algebraically closed field. Let \(V \) be a smooth, irreducible quasi-projective algebraic \(k \)-scheme. By a quotient scheme, we mean a scheme \(V = V'/G \), where \(G \) is a finite group of automorphisms of \(V' \). In [3], Popp defines a stratification of such schemes.

Given a point \(P \in V \) and a point \(P' \in V' \) lying over \(P \), one may define the inertia group of \(P' \):

\[
I(P') = \{ \sigma \in G \mid \sigma x \equiv x \pmod{\mathcal{M}_P}, \text{ for all } x \in \mathcal{O}_{V', P} \}.
\]

If \(P'' \in V' \) is another point lying over \(P \), then \(I(P') \) and \(I(P'') \) are conjugate subgroups of \(G \).

Let \(Z_p \) denote the closed subscheme of \(\text{Spec } (\mathcal{O}_P) \) which is ramified in the covering \(f: V' \to V \) and let \(Z_p \) be the inverse image of \(Z_p \) in \(\text{Spec } (\mathcal{O}_P) \). Denote by \(Z'_1, \ldots, Z'_s \) those irreducible components of \(Z_p \) of dimension \(n - 1 \) (where \(n = \dim V \)). Let \(H_1, \ldots, H_s \) denote the inertia groups of the generic points of \(Z'_1, \ldots, Z'_s \) respectively and let \(H(P') \) denote the subgroup of \(I(P') \) generated by the \(H_i, i = 1, 2, \ldots, s \). (If \(s = 0 \), put \(H(P') = (1) \).) Let

\[
\bar{I}(P') = I(P')/H(P')
\]

and call this the small inertia group of \(P' \). Under the assumption that \(V' \) is smooth, Popp shows that \(\bar{I}(P') \) is independent of the cover; i.e.,
for any smooth cover \(V'' \to V \), if \(P'' \in V'' \) is a point lying over \(P \), then \(\overline{I}(P'') = \overline{I}(P') \). Thus, we may write \(\overline{I}(P) \) and speak of the small inertia group of \(P \).

Let \(W \) be an irreducible subscheme of \(V \) and suppose \(P \in W \). Then one says that \(V \) is equisingular at \(P \) along \(W \) if the following two conditions hold:

1. \(P \) is a smooth point of \(W \)
2. Suppose \(P' \) is a point lying over \(P \) and \(W' \) is the irreducible component of \(f^{-1}(W) \) containing \(P' \). Then the canonical homomorphism \(\overline{I}(W') \to \overline{I}(P') \) is a (surjective) isomorphism.

Let

\[
\text{Eqs} \left(\frac{V}{W} \right) = \{ P \in W \mid V \text{ is equisingular at } P \text{ along } W \}.
\]

Popp shows, under the assumption that \(k \) is of characteristic 0, that this notion of equisingularity satisfies the axioms which any good notion should (cf. [6]).

In particular, given \(Q \in V \), let \(M_Q \) denote the family of closed, irreducible subschemes \(W \) of \(V \) such that \(Q \in \text{Eqs} \left(\frac{V}{W} \right) \). Then the family \(\{ \text{Eqs} \left(\frac{V}{W} \right) \mid W \in M_Q \} \), for fixed \(Q \), has a greatest element called the stratum through \(Q \).

Another important property is that if \(E \) is a stratum and \(P \in E \), then there exists a neighborhood \(U \) of \(P \) in \(V \) and a minimal biholomorphic embedding \(\psi : U \to \mathbb{C}^e \) (where \(e = \dim \mathcal{M}_P / \mathcal{M}_P^2 \)) such that \(\psi(U) \) is topologically isomorphic to the direct product of \(\psi(U \cap E) = \mathcal{E} \) and a locally algebraic transverse section to \(\mathcal{E} \) at \(\psi(P) \) (see [3] for details).

The above straification, in characteristic 0, is really quite neat: if \(E \) is a stratum and \(P \in E \), then \(E = \{ Q \mid Q \text{ is analytically isomorphic to } P \} \).

2. The local rigidity of certain quotient schemes.

Definition. Let \(V \) be a quotient scheme in characteristic 0. Stratify \(V \) as in §1. Then we will say \(V \) is locally rigid if given a point \(P \) on a stratum \(E \), then there is a locally algebraic transverse section to \(E \) at \(P \) which is rigid.

Proposition 1. Let a finite group \(I \) act by holomorphic automorphisms of \(\mathbb{C}^n \), leaving the origin fixed. If \(I \) acts freely outside some \(I \)-invariant complex subspace \(W' \) (through the origin) of codimension \(\geq 3 \), then \(X = \mathbb{C}^n / I \) is rigid.

Proof. As is noted in [5], this is a valid generalization of Theorem 3 of [4].
THEOREM 1. Suppose k is an algebraically closed field of characteristic 0. Let Y be a smooth, quasi-projective algebraic k-scheme and let G be a finite group of automorphisms of Y. Let $X = Y/G$. If the branch locus of Y over X is of codimension at least 3, then X is locally rigid.

Proof. Suppose x is a point of X. Let I denote the inertia group of x. Note that since there is no ramification in codimension 1, we have $I = \bar{I}$. In a neighborhood of x, we can linearize the action of I (cf. [1], [3]) so that X at x is locally analytically isomorphic to \mathbb{C}^n/I at the point Q which is the image of the origin under the canonical map $\mathbb{C}^n \to \mathbb{C}^n/I$.

Choose coordinates z_1, \cdots, z_n in \mathbb{C}^n such that z_1, \cdots, z_r span the fixed space of I (we may do this since the fixed space is linear). Then

$$\mathbb{C}^n/I \equiv \text{Spec}(\mathbb{C}[z_1, \cdots, z_r] \otimes \mathbb{C}[z_{r+1}, \cdots, z_n])'. $$

The stratum on which Q lies is

$$E = \text{Spec}(\mathbb{C}[z_1, \cdots, z_r])$$

and the transverse section we desire is

$$S = \text{Spec}(\mathbb{C}[z_{r+1}, \cdots, z_n]).$$

Locally at x, the space X is isomorphic to $E \times S$, not just topologically, but analytically as well. It follows from this and our hypotheses that the branch locus of the map $\text{Spec}(\mathbb{C}[z_{r+1}, \cdots, z_n]) \to S$ has codimension at least 3. Hence, applying Proposition 1, we may conclude that S is rigid.

We may apply this theorem to M_g, the coarse moduli scheme for curves of genus g, in characteristic zero. M_g is the quotient of the smooth, higher-level moduli scheme $J_{g,n}$, for n sufficiently large, by the group $GL(2g, \mathbb{Z}/n)$ [2]. In [2], Popp computes the dimension of ramification points of the map $J_{g,n} \to M_g$. An inspection of his computations shows that, for $g > 4$, the branch locus of this map has codimension at least 3. Applying our theorem then yields:

PROPOSITION 2. M_g, the coarse moduli scheme for curves of genus g in characteristic 0, is locally rigid if $g > 4$.

REFERENCES

1. H. Cartan, *Quotient d'un espace analytique par un groupe d'automorphismes*, in Algebraic

Received November 1, 1973 and in revised form May 7, 1974.

LOUISIANA STATE UNIVERSITY
Pacific Journal of Mathematics
Vol. 56, No. 1 November, 1975

Shimshon A. Amitsur, Central embeddings in semi-simple rings

David Marion Arnold and Charles Estep Murley, Abelian groups, A, such that \(\text{Hom}(A, - - \cdot) \) preserves direct sums of copies of A

Martin Bartelt, An integral representation for strictly continuous linear operators

Richard G. Burton, Fractional elements in multiplicative lattices

James Alan Cochran, Growth estimates for the singular values of square-integrable kernels

C. Martin Edwards and Peter John Stacey, On group algebras of central group extensions

Peter Fletcher and Pei Liu, Topologies compatible with homeomorphism groups

George Gasper, Jr., Products of terminating \(3F_2(1) \) series

Leon Gerber, The orthocentric simplex as an extreme simplex

Burrell Washington Helton, A product integral solution of a Riccati equation

Melvyn W. Jeter, On the extremal elements of the convex cone of superadditive \(n \)-homogeneous functions

R. H. Johnson, Simple separable graphs

Margaret Humm Kleinfeld, More on a generalization of commutative and alternative rings

A. Y. W. Lau, The boundary of a semilattice on an \(n \)-cell

Robert F. Lax, The local rigidity of the moduli scheme for curves

Glenn Richard Luecke, A note on quasidiagonal and quasitriangular operators

Paul Milnes, On the extension of continuous and almost periodic functions

Hidegoro Nakano and Kazumi Nakano, Connector theory

James Michael Osterburg, Completely outer Galois theory of perfect rings

Lavon Barry Page, Compact Hankel operators and the F. and M. Riesz theorem

Joseph E. Quinn, Intermediate Riesz spaces

Shlomo Vinner, Model-completeness in a first order language with a generalized quantifier

Jorge Viola-Prioli, On absolutely torsion-free rings

Philip William Walker, A note on differential equations with all solutions of integrable-square

Stephen Jeffrey Willson, Equivariant maps between representation spheres