COMPLETELY OUTER GALOIS THEORY OF PERFECT RINGS

JAMES MICHAEL OSTERBURG
Let G be a finite completely outer group of automorphisms of a perfect ring R. Let Δ be the crossed product of R with G. Then Δ modules which are R projective are Δ projective and Δ submodules which are R direct summands are Δ direct summands.

Let R be a ring with identity. All modules and homomorphisms are unital. Let $G = \{1, \sigma, \cdots, \tau\}$ be a finite group of automorphisms of R. By Ru_σ, $\sigma \in G$, we mean a bi-R module where $r (r'u_\sigma) = (rr')u_\sigma$ and $(r'u_\sigma)r = (r'r^\sigma)u_\sigma$ for $r, r' \in R$ and $r^\sigma = \sigma(r)$. We call G a completely outer group of automorphisms of R, if for each pair $\sigma \neq \tau$ of automorphisms in G, the bi-R modules Ru_σ and Ru_τ have no nonzero isomorphic subquotients. This notion was defined by T. Nakayama in [3, p. 203] and Y. Miyashita in [2, p. 126].

Let S be the fixed ring of R under G, i.e. $\{r \in R \mid \sigma(r) = r \text{ for all } \sigma \in G\}$. If G is completely outer, then R over S is a G-Galois extension and the center of R is the centralizer of S in R. See [2, Proposition 6.4, p. 127]. Furthermore, if R is a commutative ring and R over S is G-Galois, then G is a completely outer group of automorphisms of R. See [2, Theorem 6.6, p. 128]. If R is a simple ring and G contains no inner automorphisms, then G is a completely outer group of automorphisms of R and conversely. See [2, Corollary, p. 128].

The crossed product Δ of R with G is $\bigoplus_{\sigma \in G} Ru_\sigma$ with $(xu_\sigma) \times (yu_\tau) = xy^\sigma u_{\sigma \tau}$ for any x and y in R. We can view R as a left Δ module by defining $(xu_\sigma)r = xr^\sigma$ for x and r in R. Thus R is a bi Δ-S module.

We now assume R is a left perfect ring. These rings were studied by H. Bass [1].

Let $J(\Delta)$ (respectively $J(R)$) denote the Jacobson radical of Δ (respectively R).

Lemma 1. $J(\Delta) = J(R) \Delta = \Delta J(R)$. Thus for any left Δ module M, $J(R)M$ is a Δ submodule of M.

Proof. Because $\sigma(J(R)) = J(R)$ for all $\sigma \in G$, $J(R) \Delta = \Delta \cdot J(R)$. Thus for any simple, nonzero left Δ module M, $J(R)M$ is a Δ submodule. Now M is a finitely generated R module, since Δ is a finitely generated R module. Nakayama's Lemma then shows
$J(R)M = 0$. Since $J(R)$ annihilates every simple left Δ module, $J(R) \subseteq J(\Delta)$.

Since $J(\Delta)$ is a bi-R submodule of Δ, $J(\Delta) = J(\Delta) \cap Ru_1 + J(\Delta) \cap Ru_2 + \cdots + J(\Delta) \cap Ru_n$. See [2, Proposition 6.1, p. 126]. Let $x = \delta = ru_\sigma \in J(\Delta) \cap Ru_\sigma$ for δ in $J(\Delta)$ and $r \in R$. Assume $\delta = \sum_{\sigma} \gamma_\sigma u_\sigma$, $y_\sigma \in R$, then $x = y_\sigma u_\sigma = ru_\sigma$, so $ru_1 = y_\sigma u_1 = xu_\sigma \sigma \in J(\Delta) \cap Ru_1$. It follows that $1 - y_\sigma s$ is right invertible in R for all s in R; since $u_1 - y_\sigma su_1$ in $J(\Delta)$ all s in R. Thus $y_\sigma \in J(R)$; hence $x = y_\sigma u_\sigma \in J(R)u_\sigma$. Therefore $J(R)\Delta = \Delta(\Delta)$.

REMARK. Lemma 1 is true even if R is not left perfect.

LEMMA 2. As a right S module, S is a direct summand of R_S. Let $J(S)$ (respectively $J(R)$) denote the Jacobson radical of S (respectively of R), then $J(S) = S \cap J(R)$ and $J(R) = J(S)R = RJ(S)$. Thus if M is a left $\Delta(R)$ module $J(S)M$ is a left $\Delta(R)$ submodule.

Proof. Let $\tilde{\Delta} = \Delta / J(\Delta)$ and $\tilde{R} = R / J(R)$. Because R is perfect, \tilde{R} is a semisimple, Artinian ring, which makes $\tilde{\Delta}$ a semisimple, Artinian ring. Thus $\tilde{\Delta}$ is a finitely generated, projective $\tilde{\Delta}$ module. By the Dual Basis Lemma, there exists $f_1, \cdots, f_n \in \text{Hom}_R(\tilde{R}, \tilde{\Delta})$ and $\tilde{x}_1, \cdots, \tilde{x}_n \in \tilde{R}$ such that $\tilde{x} = \sum_{i=1}^n f_i(\tilde{x})\tilde{x}_i$. Since $\text{Hom}_R(\tilde{R}, \tilde{\Delta}) \subseteq \text{Hom}_R(\tilde{\Delta}, \tilde{\Delta}) = \tilde{\Delta}$ we conclude $\text{Hom}_R(\tilde{R}, \tilde{\Delta}) = \sum_{\sigma} \gamma_{\sigma} u_\sigma \tilde{R}$. Thus each $f_i, i = 1, \cdots, n$, is of the form $\sum_{\sigma} \gamma_{\sigma} u_\sigma r_{\sigma}$, for some suitable $r_{\sigma} \in R$. Let $\tilde{x} \in \tilde{R}$, then $\tilde{x} = \sum_{i=1}^n f_i(\tilde{x})\tilde{x}_i = \sum_{i=1}^n (\sum_{\sigma} \gamma_{\sigma} u_\sigma r_{\sigma})\tilde{x}_i = \tilde{x} \sum_{i=1}^n \sigma u_\sigma (r_{\sigma})^\sigma$. Thus $1 = \sum_{\sigma} \gamma_{\sigma} (r_{\sigma})^\sigma$. Let $\tilde{d} = \sum_{i=1}^n r_{\sigma} \tilde{x}_i$, then $\text{tr} \tilde{d} = \tilde{1}$; hence $\text{tr} \tilde{d} - 1 \in J(\Delta) \cap S$.

Now $J(R) \cap S \subseteq J(S)$, for let $x = j = s, j \in J(R)$ and $s \in S$, then $1 - sy$ is right invertible in R for any y in S. Assume $(1 - sy)z = 1$, $z \in R$, then $(1 - sy)z^\sigma = 1$ for all $\sigma \in G$; hence $z \in S$. So $1 - sy$ is right invertible in S for all y in S, thus $x \in J(S)$ or $J(R) \cap S \subseteq J(S)$.

Thus $\text{tr} R + J(S) = S$, so by Nakayama’s Lemma $\text{tr} R = S$. Thus there is a c in R such that $\text{tr} c = 1$. Hence $\text{tr} : R_S \rightarrow S_S$ is onto and so splits. Thus S_S is a direct summand of R_S.

The conclusion concerning the Jacobson radical of S follows from [2, Theorem 7.10, p. 132].

PROPOSITION 1. A left Δ module is completely reducible as a Δ module if and only if it is completely reducible as an R module. Moreover, a module is completely reducible as a left R-module if and only if it is completely reducible as an S module.

Proof. A Δ module is annihilated by $J(\Delta)$ if and only if it is annihilated by $J(R)$ if and only if it is annihilated by $J(S)$.
PROPOSITION 2. Let R be a left perfect ring and G a completely outer group of automorphisms acting on R. Then S, the fixed ring of R under G, and Δ, the crossed product of R with G are left perfect.

Proof. Since R is left perfect its Jacobson radical $J(R)$, is left T nilpotent. So the Jacobson radical of $S, J(S)$, which is contained in $J(R)$ (by Lemma 2) is left T nilpotent.

Also $S/J(S)$ is an Artinian ring since S_S is a direct summand of R_S. See Lemma 2 and [2, Proposition 7.3, p. 130]. Thus S is a left perfect; hence, S is semiperfect.

Now R as a right S module is finitely generated and projective; moreover, Δ is isomorphic to $\text{End } R_S$ [2, p. 116]. Since S is a direct summand of R, as a right S module (Lemma 2) R is an S generator.

Let e_1, \cdots, e_n be completely primitive idempotents orthogonal idempotents of S such that $1 = e_1 + \cdots + e_n$. Furthermore, let e_1, \cdots, e_k be a maximal family of mutually nonisomorphic idempotents. Then $\bar{R} = R/J(S)R$ is isomorphic, as a right S module, to $\Sigma_{i=1}^k + (\tilde{e}_i \cdot \tilde{S})^{m_i}$, where $\tilde{e}_i = e_i + J(S)$, $\tilde{S} = S/J(S)$ and $m_i < \infty$ since \bar{R} is finitely generated right S module. Thus R as a right S module, is isomorphic to $\Sigma_{i=1}^k \oplus \Sigma_{i=1}^{m_i} \oplus P_{ij}$, where P_{ij} is right S isomorphic to $e_i S$, since idempotents can be lifted.

Let f_{ij} be the projection of R onto P_{ij}, then $f_{ij} \in \text{End } R_S = \Delta$ and the f_{ij}'s are orthogonal idempotents such that

$$1 = \sum_{i=1}^k \sum_{j=1}^{m_i} f_{ij}.$$

Also $e_i S e_i = \text{End}_S(e_i S) = \text{End}_S(P_{ij}) = f_{ij} \Delta f_{ij}$.

Since $e_i S e_i$ is a local ring, $f_{ij} \Delta f_{ij}$ is a local ring. Hence f_{ij} is a completely primitive idempotent; therefore Δ is semiperfect.

We know that Δ modulo its Jacobson radical, $J(\Delta)$, is semisimple and idempotents can be lifted modulo $J(\Delta)$. Let M be a left Δ module, by [1, Lemma 2.6, p. 473] in order that M have a projective cover it suffices that for any left Δ module B requiring no more generators than $M, B = J(\Delta)B$ implies $B = 0$. But $B = J(\Delta)B = J(R)B$ and R being left perfect implies $B = 0$. Thus every left Δ module M has a projective cover and Δ is then left perfect.

Let T be an arbitrary left perfect ring and let $J(T)$ denote the Jacobson radical of T. Then for any nonzero left T module $M, J(T)M$ is a proper submodule. See [1, p. 473]. Hence the natural map $\pi : M \to M/J(T)M$ is a minimal epimorphism.

Let M and N be left T modules and f a left T epimorphism from M to N. By \bar{f}, we mean the induced map from $M/J(T)M \to N/J(T)N$ given by $\bar{f}(m + J(T)M) = f(m) + J(T)N$ for $m \in M$.

LEMMA 3. The following are equivalent:

(1) \(f : M \rightarrow N \) is a minimal \(T \) epimorphism.

(2) \(\bar{f} : M/J(T)M \rightarrow N/J(T)N \) is an isomorphism. See [4, Proposition 8, p. 713].

PROPOSITION 3. Let \(M \) and \(N \) be left \(\Delta \) modules and \(f \) a minimal \(\Delta \) epimorphism form \(M \) to \(N \). Then \(f \) is a minimal \(R \) epimorphism and \(f \) is a minimal \(S \) epimorphism.

Proof. Certainly \(f \) is an \(R \) and an \(S \) epimorphism. Since \(J(\Delta)M = J(R)M = J(S)M \) and \(J(\Delta)N = J(R)N = J(S)N \), then \(\bar{f} \), which is a \(\Delta \) isomorphism, is an \(R \) and an \(S \) isomorphism.

PROPOSITION 4. Let \(M \) be a left \(\Delta \) module which is projective as an \(S \) module, then \(M \) is projective as a \(\Delta \) module.

Proof. Let \(P \) be the \(\Delta \) cover of \(M \) and \(f : P \rightarrow M \) a minimal \(\Delta \) epimorphism. Since \(M \) is \(S \) projective, \(f \) splits as an \(S \) epimorphism. Thus \(P \) as an \(S \) module is isomorphic to \(\ker f + X \), for some \(S \) submodule \(X \) of \(P \). But \(f \) is a minimal \(S \) epimorphism (Proposition 3), therefore \(\ker f = 0 \). So \(f \) is a \(\Delta \) isomorphism and \(M \) is \(\Delta \) projective.

PROPOSITION 5. Let \(M \) be a left \(\Delta \) module which is projective as an \(R \) module. Then \(M \) is projective as a \(\Delta \) module.

Proof. Let \(P \) be the \(\Delta \) projective cover of \(M \) and \(f \) a minimal \(\Delta \) epimorphism. Now \(f \) splits as an \(R \) map, and \(f \) is a minimal \(R \) epimorphism, so \(\ker f = 0 \).

PROPOSITION 6. Let \(M \) and \(N \) be left \(\Delta \) modules such that \(M/J(\Delta)M \) and \(N/J(\Delta)N \) are isomorphic as \(R \) modules. If \(M \) is \(R \) projective there exists a \(\Delta \) epimorphism \(\phi : M \rightarrow N \). Moreover, if \(N \) is \(R \) projective, then \(M \) and \(N \) are \(\Delta \) isomorphic. See [3, Lemma 5, p. 212].

Proof. We assume that \(M \) and \(N \) are completely reducible \(\Delta \) modules. Hence they are completely reducible \(R \)-modules, by Proposition 1.

Now Nakayama in [3, p. 214] has shown that if \(M \) and \(N \) are isomorphic as \(R \) modules, then they are isomorphic as \(\Delta \) modules.

If \(M \) and \(N \) are arbitrary left \(\Delta \) modules, then \(M/J(\Delta)M \) and \(N/J(\Delta)N \) are nonzero, completely reducible left \(\Delta \) modules. We have
assumed they are isomorphic as left R modules; hence by the above argument, they are isomorphic as left Δ modules. Call the isomorphisms from $M/J(\Delta)M$ to $N/J(\Delta)N, f$.

Let $\pi : M \rightarrow M/J(\Delta)M$ and $\pi' : N \rightarrow N/J(\Delta)N$ be the natural maps. Since M is R projective, it is Δ projective. Thus we can find a Δ homomorphism g from M to N such that $\pi'g = f\pi$. Now g is an epimorphism since π' is a minimal Δ map.

If N is also R projective, it is Δ projective. Thus g is an isomorphism.

Proposition 7. Let M and N be left Δ modules and f a Δ epimorphism from M to N. If f is a minimal epimorphism as an R map, then f is a minimal epimorphism as a Δ map. Furthermore, if M and N are R projective, then f is an isomorphism.

Proof. We know that $M/J(R)M$ and $N/J(R)N$ are isomorphic as R modules and completely reducible. Hence they are isomorphic as Δ modules. Thus f is a minimal Δ map.

If M and N are R projective, then they are projective as Δ modules. Thus f splits; let $g : N \rightarrow M$ be a Δ map such that fg is the identity on N. Since the natural map $\pi : M \rightarrow M/J(\Delta)M$ is minimal g is an isomorphism.

Proposition 8. Let M, N be left Δ modules such that M is a projective R module. If N is an R direct summand of M, then N is a Δ direct summand of M.

Proof. Since M is R projective and N is a direct summand, then N is R projective. Hence M and N are Δ projective.

If N is an R direct summand of M, then $J(R)M \cap N = J(R)N$ so $J(\Delta)M \cap N = J(\Delta)N$. Thus $N/J(\Delta)N$ is a Δ submodule of the completely reducible Δ module $M/J(\Delta)M$.

Thus $N/J(\Delta)N$ is a Δ direct summand of $M/J(\Delta)M$, so there is a Δ epimorphism $\phi : M \rightarrow N/J(\Delta)N$. Let $\pi' : N \rightarrow N/J(\Delta)N$, be the natural map. Since M is Δ projective there exists a Δ map $\psi : M \rightarrow N$ such that $\pi'\psi = \phi$. Now ψ is an epimorphism since π' is minimal. Thus ψ splits as a Δ map and N is then a Δ direct summand of M.

Proposition 9. Let M and N be left Δ modules such that $N/J(R)N$ is an R homomorphic image of $M/J(R)M$ and M is projective as an R module. Then N is a Δ homomorphic image of M. Moreover,
if N is R projective, then N is a Δ direct summand of M.

Proof. Let f be an R epimorphism from $M/J(R)M$ to $N/J(R)N$. Since $R/J(R)$ is a semisimple, Artinian ring, f splits; hence $N/J(R)N$ is a R direct summand of $M/J(R)M$.

Now G is a completely outer group of automorphisms of $R/J(R)$. The crossed product of $R/J(R)$ and G is $\Delta/J(\Delta)$.

Applying Proposition 8 we see that $N/J(R)N$ is a Δ direct summand of $M/J(R)M$. Thus there is a Δ map ϕ from M to $N/J(R)N$. Let $\pi': N \to N/J(R)N$ be the natural map. Since M is R projective, there is a Δ map $g: M \to N$ such that $\pi'g = \phi$. Now g is an epimorphism, since π' is a minimal Δ map.

If N is R projective, then N is Δ projective. So g splits.

PROPOSITION 10. Let $g = |G|$, then R^g is Δ isomorphic to Δ.

Proof. $(R/J(R))^g$ is R isomorphic to $\Delta/J(R)\Delta$.

Thus Proposition 6 implies R^g and Δ are isomorphic.

PROPOSITION 11. R has a normal basis.

Proof. Proposition 10 imples S^g is S isomorphic to R so R has a normal basis by [2, Theorem 1.7, p. 118].

REFERENCES

Received November 19, 1973.

UNIVERSITY OF CINCINNATI
Shimshon A. Amitsur, *Central embeddings in semi-simple rings* 1
David Marion Arnold and Charles Estep Murley, *Abelian groups, A, such that Hom(A, --) preserves direct sums of copies of A* 7
Martin Bartelt, *An integral representation for strictly continuous linear operators* 21
Richard G. Burton, *Fractional elements in multiplicative lattices* 35
James Alan Cochran, *Growth estimates for the singular values of square-integrable kernels* 51
C. Martin Edwards and Peter John Stacey, *On group algebras of central group extensions* 59
Peter Fletcher and Pei Liu, *Topologies compatible with homeomorphism groups* 77
George Gasper, Jr., *Products of terminating \(_3 F_2(1)\) series* 87
Leon Gerber, *The orthocentric simplex as an extreme simplex* 97
Burrell Washington Helton, *A product integral solution of a Riccati equation* 113
Melvyn W. Jeter, *On the extremal elements of the convex cone of superadditive \(n\)-homogeneous functions* 131
R. H. Johnson, *Simple separable graphs* 143
Margaret Humm Kleinfeld, *More on a generalization of commutative and alternative rings* 159
A. Y. W. Lau, *The boundary of a semilattice on an \(n\)-cell* 171
Robert F. Lax, *The local rigidity of the moduli scheme for curves* 175
Glenn Richard Luecke, *A note on quasidiagonal and quasitriangular operators* 179
Paul Milnes, *On the extension of continuous and almost periodic functions* 187
Hidegoro Nakano and Kazumi Nakano, *Connector theory* 195
James Michael Osterburg, *Completely outer Galois theory of perfect rings* 215
Lavon Barry Page, *Compact Hankel operators and the F. and M. Riesz theorem* 221
Joseph E. Quinn, *Intermediate Riesz spaces* 225
Shlomo Vinner, *Model-completeness in a first order language with a generalized quantifier* 265
Jorge Viola-Prioli, *On absolutely torsion-free rings* 275
Stephen Jeffrey Willson, *Equivariant maps between representation spheres* 291