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INTERMEDIATE RIESZ SPACES
J. QuinN

A Riesz space E will be defined to be intermediate with
respect to the Riesz space L if L can be embedded in E as a
Riesz subspace L * in such a way that the elements of E are both
the infimum and the supremum of elements in L”*. The main
objectives of this paper are to investigate the extendability of
certain order convergence properties from a Riesz space to its
intermediate spaces and to compare the prime ideal structure of
a Riesz space to the prime ideal structure of its intermediate
spaces.

With regards to the first objective, one of the most useful inter-
mediate Riesz spaces investigated is the order cauchy completion. The
sequence {x,} in L is order cauchy provided there exists y, | 0 in L
such that, for m =n, |x, —x,|=y. L is order cauchy complete
provided every order cauchy sequence converges. The order cauchy
completion of L is a Riesz space L ;. which is intermediate with respect
to L and each of whose elements is both the supremum of a countable
subset of L and the infimum of a countable subset of L. It is shown
that such properties as the Egoroff property, the diagonalization prop-
erty, and regularity are possessed by L if and only if possessed by
L,.. This result is shown to be, in some sense, the best possible
result. With regards to the second objective, if E is intermediate with
respect to L and if I is an ideal in L then by I(E) is denoted the ideal in
E generated by I. L has the prime extension property with respect to
E if P(E)is prime in E whenever P is a prime in L. One of the central
results implies that L has the prime extension property with respect to
E if and only if whenever ¢,, ¢, € E* are such that ¢, A e, = 0 there exist
v, Y. E L with y, = e, and y, = e, such that y, Ay, =0.

If an Archimedean Riesz space L is order separable, then it is
known that its Dedekind completion L" is order separable as
well. Even more, order convergence in L and L" are (under these
circumstances) very strongly related in the sense that if {x,} CL" is a
sequence in L" such that x, | 0 then there exists a sequence {y,}CL
with y, | 0 such that, for each n,x, =y,. These two facts were used in
[4] to show that the diagonal property extends from an order separable
Archimedean Riesz space to its Dedekind completion. These same
facts were used in [16] to obtain analagous results for several other
order convergence properties. Some studies along a different vein in
[13] and [8] involved comparing the prime ideal structure or the band
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structure of an Archimedean Riesz space with the corresponding
structure in its Dedekind completion. The property that the Dedekind
completion L* of an Archimedean Riesz space L. has which made the
above comparisons possible is the property that L. can be embedded in
L* in such a way that each of L*’s elements is both the infimum and
supremum of elements in L’s embedded copy. It seems reasonable to
suppose, therefore, that comparisons as were made in [8] and [13] can
be made for any two Riesz spaces which are related in this way. With
respect to the problem of obtaining a coherent theory for the extendabil-
ity of order convergence properties from a Riesz space to one contain-
ing it, one would at least want to assume that the two Riesz spaces are
related in the manner mentioned above. However, it should also be
clear that the Dedekind completion of an Archimedean Riesz space is in
general not very appropriate for this kind of a study especially when the
order convergence properties being considered are sequential in nature.

In the sequel, the Riesz space E will be defined to be intermediate
with respect to the Riesz space L if I can be embedded in E as a Riesz
subspace L” in such a way that the elements of E are the infimum and
the supremum of elements in L*. As already mentioned, our main
objectives are to investigate the extendability of certain order con-
vergence properties from a Riesz space to its intermediate spaces and to
compare the prime ideal structure of a Riesz space to the prime ideal
structure of its intermediate spaces. The main results pertaining to the
former objective are to be found in §6. The main results pertaining to
the latter objective are in §10. In §1, we define the concept of an
intermediate Riesz space and discuss the general theory of such
spaces. The concept of the intermediate completion of a Riesz space is
also introduced here. The discussion concerning the intermediate
completion is very brief since the basic theory can be extracted from
several papers on lattice ordered groups. Section 2 is used to introduce
three intermediate Riesz spaces of particular interest, one of which (the
order cauchy completion) is the intermediate Riesz space most approp-
riate for investigating the extendabiltiy of sequential order convergence
properties. :

The approach used to establish the existence and uniqueness of
these spaces is a very general one and does not give much insight into
their structure. To a large extent this could be remedied by appeal to
the literature. However, not every property we need to establish can
be so obtained (at least not conveniently). The theory of upper and
lower elements contained in §§3 and 4, which is reminiscent of that
theory to be found in §60 of [9, Note XVI,], not only provides all the
structure results obtainable from the literature but in addition provides
several other results which are both interesting in themselves and are
needed to obtain some of our main results in §§6 and 10.
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Sections 5 and 7 are totally given over to examples. Section 8
gives sufficient conditions in terms of certain projection properties for
the order cauchy completion of an Archimedean Riesz space to be
Dedekind complete or Dedekind-o-complete. One of these results is
particularly important for one of the main results in §10. In §9 we give
two interesting applications to the theory of topological vector lattices
of some of the concepts considered previous to this section.

1. Intermediate Riesz spaces. In this section we will
define and discuss briefly the general concept of an intermediate Riesz
space. In conjunction with this discussion we will discuss the concept
and theory of the intermediate completion of an arbitrary Riesz space.

DEerFINITION 1.1. Let L be a Riesz space. The Riesz space E is
said to be intermediate with respect to L if there exists a Riesz
isomorphism ¢ embedding L as a Riesz subspace of E such that, for
each e EE,

e =sup{dp(x):xEL, p(x)=e}=inf{dp(x): x EL, p(x)=e}.

The Riesz isomorphism ¢ will be referred to as an intermediate
embedding.

The MacNeille conditional completion of a partially ordered set as
applied to a vector lattice L (we denote L’s completion by L") consists
of the cuts [A, B]in L such that A # ¢ and B # ¢ (see [12]). L can be
very naturally embedded in L" and, assuming this has been done, each
element £ in L" has the form X=sup{xE€L:x=x%}=
inf{ly €L :y=x}. Ingeneral, L" fails to be a vector lattice (indeed, it
is a vector lattice if and only if L is Archimedean). Everett [5]
introduced (for lattice ordered groups) a related space which tends to
correct this shortcoming. For a more complete discussion of Everett’s
space than that contained in [5], the reader is referred to [3]. To obtain
Everett’s extension we begin with L". It was proved in [5, Th. 6, p.
115] that the element X in L" has an additive inverse if and only if
inf{b —a:b,a €L withb=x and a =x}=0. The Everett extension
L* of L then is taken to be the set of all elements of L* which have an
additive inverse. It is not difficult to see that L* is a vector lattice
which is intermediate with respect to L.

We make a definition.

DerFINITION 1.2. Let L be a Riesz space. The Riesz space K is
said to be an intermediate completion of L if the following conditions
are satisfied:

(i) K is intermediate with respect to L.

@i1) If A is any bounded above subset of K and U is the set of all
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upper bounds for A then sup A exists in K if and only if inf{u —a:
ueUanda€A}=0.

We have already seen that intermediate completions exist, since the
Everett extension is such a space.

In fact, using standard techniques, the following proposition can be
established.

ProposiTION 1.3. Let L be a Riesz space and let L, and L, be
intermediate completions of L. Furthermore, let ¢, and ¢, be inter-
mediate embeddings of L into L, and L,, respectively. Then, there
exists a Riesz isomorphism y of L, onto L, such that y|¢,(L) = ¢p,°d7'.

CorOLLARY 1.4. Every Riesz space has a unique up to lattice
isomorphism intermediate completion.

In the sequel, we will denote the intermediate completion of a Riesz
space L by L*. We will denote the Dedekind completion of an
Archimedean Riesz space L by L*. The reader should keep in mind
that if L is Archimedean then L* = L".

It is easy to see that if the Riesz space E is intermediate with
respect to the Riesz space L then E* is an intermediate completion for
L and hence E* = L*. The following is an immediate consequence of
this fact and Proposition 1.3.

CorOLLARY 1.5. Let L be a Riesz space. The Riesz space E is
intermediate with respect to L if and only if E is Riesz isomorphic to a
Riesz subspace E' of L* such that L C E' C L*.

Thus, intermediate Riesz spaces can be thought of as spaces which
“lie between’ a given Riesz space and its intermediate completion.

2. Some specific intermediate spaces. There are three
specific intermediate Riesz spaces in addition to the intermediate
completion already discussed which we need to consider. The first of
these we will call the intermediate-o-completion.

DEerFINITION 2.1. Let L be a Riesz space. The Riesz space K will
be called an intermediate-o-completion of L if the following conditions
are satisfied.

(i) K is intermediate with respect to L.

(i) If A is any bounded above countable subset of K and U is the
set of all upper bounds for A then sup A exists in K if and only if
influ—a:uceU and a € A}=0.

(iii) There exists an intermediate embedding ¢ of L into K such
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that if E is any subspace of K which satisfies (ii) and contains ¢ (L)
then E = K.

THEOREM 2.2. Every Riesz space L. has a unique up to lattice
isomorphism intermediate-ag-completion.

Proof. We first note that L* is a Riesz space which satisfies
conditions (i) and (ii) of Definition 2.1. Let ¢ be an intermediate
embedding of L into L* and let K be the intersection of all Riesz
subspaces of L* which contain ¢(L) and satisfy condition (ii) of
Definition 2.1. Then K clearly satisfies all the conditions of Definition
2.1. Thus, intermediate-o-completions exist. Now, suppose that K,
and K, are intermediate-o-completions of L and suppose that 7, and =,
are intermediate embeddings of L into K, and K., respectively, such
that condition (iii) of Definition 2.1 is satisfied. Let 7} and 7% be
intermediate embeddings of K, (respectively, K,) into K* (respectively,
K%). Let ¢,=miom and ¢,= 7wiom. Since K¥=K*=[L* we can
apply Proposition 1.3 to obtain an isomorphism of K* onto K% such
that /(L) = p,ob;'. It follows easily from the fact that condition
(i1i) is satisfied for 7, and 7, that

Y(mi(K) 2D 7YK?)
and
‘-l’—'('n'é(Kz)) 2 mi(K)).

Hence, y(m (K ) = 7% K,). So, wi'oom|is a Riesz isomorphism of
K, onto K,. The theorem is proved.

Condition (ii) of Definition 2.1 will reduce to K being Dedekind-o -
complete in the event that L is Archimedean.

DEeriNITION 2.3. Let L be an Archimedian Riesz space. The
Dedekind-o-complete Riesz space K is said to be a Dedekind-o-
completion for L if the following conditions are satisfied:

(i) K is intermediate with respect to L.

(ii) There exists an intermediate embedding ¢ of L into K such
that if ¢(L)C E is a Dedekind-o-complete Riesz subspace of K then
E =K.

CoROLLARY 2.4. Every Archimedean Riesz space L has a unique
up to lattice isomorphism Dedekind-o-completion.

The next intermediate Riesz space we wish to consider is the order
Cauchy completion.
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DEeFINITION 2.5. Let L be a Riesz space. The sequence {x,}in L
is said to be order cauchy if there exists a sequence {z,} CL" withz, | 0
such that, whenever m = n, |x, -xmlgzn where m,n=1,2,---, .

DEerFiNITION 2.6. The Riesz space L is said to be order cauchy
complete if every order cauchy sequence in L order converges to an
element of L.

The concept of an order cauchy sequence was first introduced in [5]
by C. J. Everett (he called this concept o-regular). His work was later
completed and extended by F. Papangelou in [14]. This next result is a
consequence of [14, Lemma 2.10, p. 86].

ProposITION 2.7. Let L be a Riesz space. The sequence {x,}in L
is order cauchy if and only if there exist sequences {x,} and {x} in L with
xpd.xi L xi—xil0and x| =x,=x, forn=1,2,---,.

We will take the following as our definition of an order cauchy
completion.

DeriniTiOoN 2.8. Let L be a Riesz space. The order cauchy
complete Riesz space K will be called an order cauchy completion of L
if the follwing conditions hold.

(i) K is intermediate with respect to L.

(i) There exists an intermediate embedding ¢ of L into K such
that if (L) C E is an order cauchy complete Riesz subspace of K then
E =K.

It follows readily from Proposition 2.7 that the intermediate com-
pletion and the intermediate-o-completion of a Riesz space L are order
cauchy complete. Using exactly the same techniques as were used in
the proof of Theorem 2.2, we can now establish the following:

THEOREM 2.9. Every Riesz space L has a unique up to lattice
isomorphism order cauchy completion.

Finally, we wish to discuss the concept of a relatively uniform
completion.

DEerINITION 2.10. Let L be a Riesz space. The sequence {x,} in
L is said to be relatively uniform cauchy if there exist an element
x € L* and a sequence {A,} of real numbers with A, | 0 such that
Ax | 0and, for m =n, |x, —x,|=Ax where m,n=1,2,---, .
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DerFINITION 2.11. The Riesz space L is said to be relatively
uniform complete if every relatively uniform cauchy sequence in L has
an order limit in L.

It is clear that any order cauchy complete Riesz space is relatively
uniform complete. Thus, the intermediate completion, the
intermediate-o -completion, and the order cauchy completion of a Riesz
space are all relatively uniform complete.

DErFINITION 2.12. Let L be a Riesz space. The relatively uni-
form complete Riesz space K is said to be a relatively uniform
completion for L if the following conditions are satisfied.

(i) K is intermediate with respect to L.

(i) There exists an intermediate embedding ¢ of L into K such
that if ¢ (L) C E is a relatively uniform complete Riesz subspace of K
then E = K.

Again, using exactly the same techniques as were used in the proof
of Theorem 2.2, we can establish the following result.

THEOREM 2.13. Every Riesz space L has a unique up to lattice
isomorphism relatively uniform completion.

In the sequel, if L is a Riesz space, we will denote the intermediate-
o-completion of L by L', the order cauchy completion of L by L., and
the relatively uniform completion of L by L;,. We will continue to
denote the intermediate completion of L by L* and the Dedekind
completion of an Archimedean Riesz space L by L". The notation L’
will be used as well to denote the Dedekind-o-completion of L if L is
Archimedean. It is clear from the development of this section that L7,
is intermediate with respect to L, L. is intermediate with respect to
both L7, and L, L’ is intermediate with respect to L., L, and L, and
L* is intermediate with respect to all of the forementioned spaces.

3. Spaces which lie between two Riesz spaces. We
begin this section by establishing a technical lemma which we need.

LEMMA 3.1. Let E be a Riesz space and D C E*. Then D is the
generating positive cone for a Riesz subspace D' = D — D of E if and
only if D satisfies the following conditions :

Let x,x,€D

(a) x,+x,€D,

(b) x,=x, then x,—x, €D,

(c) 0€D,
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(d) either x,v x, or x, A X, is in D,
(e) if « >0 is a real number then ax, € E.

Before proving this lemma, we note that the standard lattice
identity, x +y=xvy+x Ay, combined with conditions (a) and (b)
implies that if either x,v x, or x, A x, is in D then both are in D.

Proof. From conditions (a), (c) and (e) it follows that D' is a
subspace of E. It is not difficult to show that the addition of condition
(b) enables us to establish that the partial order on D’ induced by D
coincides with that inherited from E (i.e., ETN D’ = D). To establish
that D’ is a Riesz subspace of E with positive generating cone D we
need now only show that if x € D' then x* = (x v0)(in E) is in D and
combine this with what we have already pointed out (this suffices by
virtue of [11, Th. 11.5(v) p. 56]). To this end, let x =y, — y, be in D’
where y,, y.€ D. It follows from [11, Th. 11.8, p. 58] that x* =
(yy—y.)"=y,vy.—y, (in E). By conditions (d) and (b) we have
y.vy.— Yy, €D. The lemma is proved.

Throughout the remainder of this section L will denote a Riesz
space and E will denote a Riesz space which is intermediate with
respect to L. For convenience, we will assume that L is a Riesz
subspace of E such that for each e € E we have

e=inf{xEL:x=Ze}=sup{yEL:y=e}.
We make the following definitions:

DEFINITIONS 3.2. (i) We will say that an element e € E* is a lower
element if there exists a sequence {x,} C L such that x, | e (in E).

(il) We will say that an element ¢ € E” is an upper element if there
exists a sequence {x,} CL* such that x, 1 e (in E).

(iii) We will say that an element ¢ € E* is sequentially reachable
from L if there exists a sequence {x,} C L~ such that x, > ¢ (in E).

(iv) We will say that an element ¢ € E™ is sequentially symmetric
with respect to L if it is both an upper element and a lower element.

Let {((L,E),u(L,E), s(L,E),and o(L, E) denote, respectively, the
set of all lower elements, upper elements, sequentially reachable
elements, forementioned sequentially symmetric elements in E.

Consider, for the time being, the subspace of E generated by
u(L,E) G.e., u(L,E)—u(L,E)). First of all we show that I(L,E)C
u(L,E)—u(L,E). To this end, let e €I(L,E). Then there exists a
sequence {x,}CL"* such that x, | ¢ (in E) for n=1,2,---,. Let
Yo =X, —X,, for n=1,2,3,---,. Then 0=y, ? x,— e which implies
that x,—e € u(L,E) and hence that e € u(L,E)—u(L, E).
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We clearly have that if x,y €u(L,E) then x vy €u(L,E). We
wish to show now that u(L, E) — u(L, E) is a Riesz subspace of E under
the partial ordering induced by E. To see this all we need to note is
that if D=E*N{u(L,E)—u(L,E)] then D—D =u(L,E)—u(L,E)
and D satisfies all the conditions of Lemma 3.1.

We now wish to establish that [I(L,E)—I(L,E)=
u(L,E)—u(L,E). We have already seen that I[(L,E)—I(L,E)C
u(L,E)—u(L,E). Let x €u(L,E). Then there exists a sequence
{x,}CL"suchthatx, T x forn=1,2,---,. Since x € E*, there exists
ay€L"suchthat y=x. If y=x we are done. Assume, therefore,
that y>x. Then, {y-x,JCL* and y-x, | y—-x for n=
1,2,---,. Thus, y—x€I(L,E) which implies that x €I(L,E) -
I(L,E).

We have established the following therem.

THeEOReM 3.3. For any L and E,u(L,E)—u(L,E)=
I(L,E)—I(L,E). Furthermore, u(L,E)—u(L,E) is a Riesz subspace
of E.

REMARK 3.4. Since o(L,E)=u(L,E)NI(L,E), it is easy to see
that the following held:

G IflI(L,E)Cu(L,E), then o(L,E)=I(L,E).

Gi) If u(L,E)CI(L,E), then o(L,E)=u(L,E).

@iii) If u(L,E)=I(L,E), then o(L,E)=u(L,E)=I(L,E).

THEOREM 3.5. Let L,y g =o(L,E)—o(L,E). Then L, is a
Riesz subspace of E with generating positive cone o (L, E); and, if x, — x
(in L, k) forn =1,2,-- -, there exists a sequence {y,} CL"* with 'y, | 0
such that |x = x,|=y, forn=1,2,---,.

Proof. To show that L,,r is a Riesz subspace of E with
generating positive cone o(L,E) we need only show that o(L, E)
satisfies conditions (a), (b), (¢), (d) and (e) of Lemma 3.1. Conditions
(a), (c), (d) and (e) are all obvious, hence, all we need to show is
condition (b). To this end, let x,,x,€ o(L, E) with x,=x,. Let {x}}
and {x}} be sequences in L* such that x} | x, (in E) and x} 1 x, (in E)

forn=1,2,---,. Then, x2—x} | xo—x,forn=1,2,---,. Similarly,
let {y,} and {y’} be sequences in L* such that y, | x, and y; 1 x, for
n=12,---,. Then,(y.—y»)" 1 x.—x,. This says that x,— x, is both

an upper and a lower element and hence is in (L, E). Thus condition
(b) of Lemma 3.1 is satisfied by o (L, E) and we have established that
L,.e,=0(L,E)—0o(L,E) is a Riesz subspace of E with generating
positive cone o(L, E).
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For the remainder of the proof we need only show that if {x,} is any
sequence in o(L,E)= L}, such that x, | 0 for n =1,2,---, then
there exists a sequence {y,}CL* with y,=x, and y, | 0 for n =

1,2,---,. Since {x,}Co(L,E), for each n, there exists a sequence
{zam» m =1,2,---}CL"* such that z,, | .x.. Letting y, =inf o<, {z.,}
forn =1,2,-- -, itis routine to show that y, | 0 and satisfies the desired

conditions. The theorem is proved.
The next theorem provides us with some further insight into the
relationships between the sets u(L, E) and [(L, E).

THEOREM 3.6. If either u(L,E) or I(L,E) is the generating posi-
tive cone of a Riesz subspace of E, then both u(L,E) and [(L,E) are
generating positive cones and in fact u(L,E)=I(L,E)=0o(L,E).

Proof. Suppose that u(L,E) is a generating positive cone for
u(L,E)—u(L,E). By virtue of Theorem 3.3, we have I(L,E)C
{u(L,E)—u(L,E)]"=u(L,E) and by Remark 3.4 this implies that
I(L,E)=o0(L,E). Hence, I(L,E) is the generating positive cone of
the Riesz subspace L,,r of E. Since [(L,E)-I(L,E)=
u(L,E)—u(L,E), we see that o(L,E)=I(L,E)=u(L,E). The case
when [(L, E) is the generating positive cone for a Riesz subspace of E
follows in exactly the same manner by interchanging the roles of
u(L,E) and I(L, E) in the above argument. The theorem is proved.

We have established thus far that there are Riesz subspaces of E
which are naturally associated with the sets o(L,E), u(L,E) and
I(L,E) (namely, L,og=0(L,E)—o¢(L,E) and u(L,E)—u(L,E)=
I(L,E)—I(L,E)). Itisevident that the same is true for the set s(L, E)
since it is clearly a generating positive cone for a Riesz subspace of
E. From now on we will denote u(L,E)—u(L,E) by L,.r and
s(LLE)-s(L,E) by L,,r. We will of course continue to denote
o(L,E)—o(L,E) by L.

Since L, k), Lur and L, g, are again Riesz spaces and since E is
again intermediate with respect to each of these spaces, we can consider
such spaces as

Loxigy= (Lot.BoLocisrErs

Licwey= (LoweDutwoarrEr

Legg = (LoB))stos 0B

etc. For the time being we will not concern ourselves with any of the
“higher order” spaces except those obtained by repeated application of
the ““s” operation.
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To be more precise, let a be a countable ordinal. We define the
family {L ,=.g }i=a<o(Q) = first uncountable ordinal) by

0] Liwey= Lowr;

(i) L,ur= UpgwaL,swk), for a a limit ordinal;

(i) L e = (Lowe)siwwrbr

ReMArk 3.7. If cl(L, E) denotes the closure of L in the order
topology on E, it is easily seen that, for each 1=a <, L. C
cl(L, E) (just note first that the ““s’ operation corresponds to taking
pseudo order closures and use the theory in [11, p. 82]). Furthermore,
a standard argument of set theory will establish that cl(L, E)=
Ujsae<a Leswg)- In Particular, this implies that cl(L,E) is a Riesz
subspace of E.

At this point we would like to introduce one additional class of
spaces.

DerinrTioN 3.8. Let L be a Riesz space and let E be a Riesz
space which is intermediate with respectto L. The element e € E* will
be called a relatively uniform reachable element of E if there exist a
sequence {x,}CL", a sequence {A\,}CR" and an x € L* such that
Ax | 0 and, for each n =1,2,---, |x, —e| = A.x.

We will denote by ru(L, E) the set of all elements of E* which are
relatively uniform reachable from L.

REMARK 3.9. Forany L and E,ru(L,E)C o(L,E). To see this,
let e € E* and let {x,} and {A,} be sequences in L* and R*, respectively,
such that |x, —e|=A,x | 0 for some x € L*. Then, for each n, — A,x
=e—Xx,=Ax and hence x, — A x=e=x, +Ax. For each n, let z,
and 2z, be defined by z.,=inf< {x;+Ax} and z,=
Sup<i=. {(x; —Ax)*}. Then {z}} and {z}} are sequences in L* such that
z, | e and z, 1 e. Hence, e €o(L,E). ‘

It is clear that ru(L, E) is the generating positive cone for a Riesz
subspace of E. Welet L,z =ru(L.E)—ru(L,E). For each count-
able ordinal a, one defines the spaces L .~ r) in the same way that the
spaces L -, were previously defined.

LEmMA 3.10. For any L and E, L, g, = L,k

Proof. Lete €E bein o(L,.r,E). Then, there exist sequences
{x:} and {x7} in o(L,E) such that x, | e and x, 1 e. Since x,€
o(L, E) there exists, for each n, a sequence {x,,} in L* such that
Xim 4 wXi Similarly, for each n, there exists a sequence {x’,}in L*

such that x), 1 .x. Let, for each n,z, and z), be defined by z,=
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inf,<;<, {x',}and z, = sup,;<, {x7.}. Then, {z.} and {z} are sequences
in L* such that z, | ¢ and z; 1 e. We have shown that L,: g C
L..r- Since showing the other containment is trivial, the assertion is
proved.

REMARK 3.11. It follows easily from Lemma 3.10 thatif L C L, C
L,wgthen L, 5= L,.r. Hence, for every 1 =a < (), we have that
L wwe C Lowr. If cl'(L, E) denotes the relatively uniform closure
of L in E (see [11, pp. 84-86]) then it can be established that
cl'(L,E) = Ujza<a L ywpy and hence that cI'(L,E)C L,.r and is a
Riesz subspace of E.

We say that a Riesz space L is order separable if every nonempty
subset D possessing a supremum in L contains an at most countable
subset possessing the same supremum in L as does D.

LEmMMA 3.12. Let L be a Riesz space and let E be a Riesz space
which is intermediate with respect to .. Then L is order separable if
and only if E is order separable.

Proof. Itis easy to see that if E is order separable then L is order
separable. Thus we are left with showing that if L is order separable
then E is order separable. It follows from [11, Th. 23.2 (iii), p. 125] that
a Riesz space L is order separable if and only if whenever {x, } is a net in
L with x, | 0 there exists a sequence {x,}C{x,} such that
X.. | 0. Let {x,} be a net in E such that x, | 0. Let V=
{y€L:y=x, forsome a}. Clearlyinf V =0 (since E is intermediate
with respect to L). Since L is order separable, there exists {y,} CV,
forn =1,2,---,suchthatinf{y,} =0. Let{a,}C {a}bechosen so that,
for each n, x,.=x, and x, =y, Then x, |0 and {x,.}C
{x.}. Hence, E is order separable. The assertion is proved.

CoROLLARY 3.13. Let L be an order separable Riesz space and let
E be any Riesz space which is intermediate with respect to L. Then
L,wr=E.

Proof. Without loss of generality, we assume that L is a Riesz
subspace of E such that for every e € E we have that e =
supfx EL:x=e}=inf{yEL :y=e}. By virtue of Lemma 3.8, it
follows that E is order separable and hence that, for any e € E, we have
sequences {x,}, {y.} CL such that x, 1 e and y, | e. But then each
element of E* is in o(L,E). We have established that L, = E.
The assertion is proved.

4. Spaces between L. and L*. In this section the investi-
gations begun in the preceding section are continued for the special case
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when the intermediate space E is taken to be L* (L’s intermediate
completion). Again we assume that L is a Riesz subspace of L* such
that for each x € L*,

X=sup{xEL:x=x}=inf{yEL:y=x}.

We will simplify the notation of the previous section by denoting
a(L,L*), I(L,L*), u(L,L*), ru(L,L*), s(L,L*), Lewi+» Luwr»
Ly and Lo v (Where 1 =a <Q) by o(L), I(L), u(L), ru(L),
s(L), L,, L,, L. and L,-, respectively.

THeOREM 4.1. Let L be a Riesz space. The following statements
are valid:

(i) Lo =L,

Gi) Ifx, | 0in L., there exists y, | 0 in L such that, for each
n=12,-"%x, =Y,

(iii) L is order separable if and only if L . is order separable.

(iv) If L is order separable, then L, = L*.

(v) If L is an Archimedean order separable Riesz space, then
L, =L"

(vi)y L,=cl'(L)=VUzical iy

(Vll) L= Cl(L) = Ujsa<n Ls°"

Proof. 1t is not difficult to establish, using Proposition 2.7, that no
proper Riesz subspace of L, containing L can be order cauchy
complete. That L, is order cauchy complete is a consequence of
Proposition 2.7 and Lemma 3.10. Thus, L, satisfies the conditions of
Definition 2.8. The validity of (i) now follows from Theorem 2.9.

The validity of (ii) follows from (i) and Theorem 3.5.

The validity of (iii) follows from Lemma 3.12.

That (iv) is valid is a consequence of (i) and Corollary 3.13.

That (v) is valid is a consequence of (iv) and of the fact that in this
case L"= L*,

The validity of (vi) is an easy consequence of Theorem 2.13.

That (vii) is true follows from Theorem 2.2.

REMARK 4.2. It follows from (iii) and (v) of Theorem 4.1 that, for
Archimedean Riesz spaces, L is order separable if and only if L" is
order separable (see [11, Th. 32.9, p. 196]). Assertions (i), (ii) and (vii)
of Theorem 4.1 could have been obtained in other ways from results in
[14].

We have the following containment schemes:

REMARK 4.3. If L is a Riesz space, then
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L7, L,. r L
[ I I I
L g L(ru)“ g CII(L) g Lo g Lu g Lsﬂ g Cl(L) g L*’
and

u(L)

N
N

L*C (ruy*(L)Co(L) ~ sf(L)C L CL*.
c c
I(L)

This next result provides us with some more information concern-
ing the above containment schemes.

THEOREM 4.4. Let L be a Riesz space. Then the following are
equivalent :

(i) u(L) is a generating positive cone for a Riesz subspace of L*.

(i) I(L) is a generating positive cone for a Riesz subspace of L*.

(iii) uw(L)=I(L)=o0(L).

Givy L,=1L".

(v) IKL)Cu(L).

(vi) u(L)CI(L).

Proof. The implications (i) = (ii) = (iii) follow from Theorem
3.6. To see that (iv) = (v) we use the containment scheme in Remark
43toseethat (L)C L' *=0o(L)Cu(L). Theimplications (v) = (vi)
and (vi) = (i) follow by first applying Remark 3.4 and then Theorem
3.6. Thus all that remains to be shown is that (iii) = (iv). To this end,
let {x,}CL:=0o(L), for n=1,2,---, be such that inf{x, —v:n =
1,2,---,vE€ V}=0 (where V is the set of all lower bounds for
{x,}). We may as well assume that x, | x € L** since otherwise we
can replace the sequence {x,} by the sequence {y,} where, for each
n=1,2,---,y. =inf,«<, {x;}. Since, for each n,x, € o(L) there exists
a sequence {z,n,,m =1,2,---}CL" such that z,, | .x,. Taking y, =
inf,<;<, {z:n}, we obtain a sequence {y,} in L* such that y, | x, where
n=1,2,---,. This says that x €I(L), but I(L) = o (L) (by condition
(iii)), hence x € 0(L). We have proved that (iii) = (iv). The theorem
is proved.

5. Some examples. In this section, we give some examples
which show (with one exception) that the containment schemes in
Remark 4.3. are best possible. The one exception is with respect to the
containment L,-C L. In our first example we show that there is an
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Archimedean Riesz space L such that LCL,=
L7, CL,. Unfortunately, we do not know whether it is always true
that L.,»= L,, and hence that L,, = L7,. In other words, the consider-
ation of the spaces L, for @ =2 may be superfluous. We will have a
few more remarks to make about this situation a little later on.

ExaMpLE 5.1. Let L be the Archimedean Riesz space whose
elements are the piece-wise polynomial functions defined on the unit
interval. It is not difficult to see, using [11, Th. 32.6 p. 195], that L* and
C([0, 1])" (where C([0, 1]) is the Riesz space of continuous, real valued
functions on the unit interval) are the same. Hence, C([0, 1]) is
intermediate with respect to L. Clearly, L, =L;,=C(0,1]). On
the otherhand, it follows from Theorem 4.1 (i) and (v) together with the
fact that L and C([0, 1]) are order separable that L"= C([0, 1])" =
L, =L, Since,asiswell known, C([0, 1]) is not Dedekind complete.
we have that L# L, #L,=1L".

In view of Theorem 4.4, we see that the only possibility for
nontrivial inclusions between L, and L' in the inclusion scheme in
Remark 4.3 occurs when u(L)Z (L) and [(L)Z u(L). In this next
example, an Archimedean Riesz space L is given suchthat L# L,# L'.

ExaMPLE 5.2. Let X be an uncountable cardinal and let F(X) be
the Riesz space of all bounded real valued functions on X. Let L be
the Riesz subspace of F(X) consisting of all finitely nonconstant
functions f € F(X). Clearly, L"=F(X). We will show first that
I(LYZ u(L). 1t then follows from Theorem 4.4 that u(L)Z I(L) and
that L,# L'. Let {x.;k =1,2,---,}CX be any countably infinite sub-
set of X. Define the functions f, in L* by:

_[0;forx=x,k=1,2,--+,n,
2 (x) = { 1; otherwise,

where n =1,2,---,. Then, 0=f, | f(in L") where

O;forx=x,k=12,---,

fx= { 1; otherwise

If g €L is such that 0=g =, then g(x) =0 except for at most a
finite number of x € X. Hence, there can be no sequence {g,};-, CL"
such that g, 7 f and thus fZu(L). We have established that
I(LYZ u(L), u(L)ZI(L) and L,#L'.

We will now show that L,# L. To this end, let {x,;k =1,2,---,}
be a countably infinite point set in X. Define the functions f, by
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£l ):{l/k; fork =1.2.---.n n=x,
" 0; otherwise,
where n =1,2,---,. Define the functions g, by

_ {I/k; forx=x.k=1,2,--,n,
8(X)=11/n; otherwise.

where n =1,2,---,. Then, {f.}, {g.}CL* and f, 1 f. g. | f where
(ks x=x,k=1,2,--",
fx)= { 0; otherwise.

Thus, fE o (L) but f& L. We have shown that L # L.

We will now find the Dedekind-o-completion of L. Consider
D(X)={f € F(X):f is countably non-constant}. Obviously, D(X) is
Dedekind-o-complete and D(X)DL. Let f€D(X)" and let
{x.;k =1,2,---,} be the at most countable subset of X off of which f is
constant. Suppose a €ER is such that f(x)=a for
xEX~—{x:;k=12---}). Let{x,;n=12,---} be the subsequence
of {x;;k=1,2,---} such that f(x,)<a for n=1,2,---,. Let
{x,;p=12,---}={x;k=12,---}—{x,,;n=1,2,---} (we might as
well assume that both of these sets are actually countably
infinite). Define f,(x) by,

= f(xk,.); xX=x,nh=12---,m,
fM(X)—{ a; otherwise,

where m =1,2,---,. Define g.(x) by,
(fx)—asforx=x,p=12,---.m,
g,,,(x)—{ 0; otherwise,

where m =1,2,---,. Now, {f.}. {gn}CL", g. T (f—a)v0OE u(L).
fol(fra)EINL),and (f—a)v0)+(fra)=f Hence, D(X)=L, is
the Dedekind-o-completion of L (i.e., D(X)=L’).

It follows from our previous discussions that if L is Archimedean
and order separable then L, = L' = L,. = L" (indeed, we used this fact
in Example 5.1). The following is an example of a non-order separable
non Dedekind-o-complete Archimedean Riesz space L such that
L,=L". '

ExaMpLE 5.3. Let F(X) and D(X) be the Riesz spaces of Exam-
ple 52. Let L be the Riesz subspace of D(X) consisting of all
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functions f € D(X) such that if « is that real number for which the
cardinality of the set {x € X : f(x) = a} is uncountable and if {x,} =
X—-{x€ X :f(x)=a}, then the sequence {f(x,):n=1,2,---} has
finitely many limit points. We want to show that D(X)=L,. It is
sufficient to show that D(X)" C o(L). To this end, let f € D(X)"* and
let o be that real number such that {x : f(x) = a} is uncountable. Let
{x,.} = X —{x : f(x) = a} (we may assume {x, } is countably infinite since
otherwise fE€ L). Let M = max{f(x,); n =1,2,---}. Define u, by

w,(x)= [ JO) X =X =12, m,
m {M;x:xmnzm_{_l’m_'_z’”_’q
a; otherwise,

where m =1,2,---,. Define v, by

O;x=x,n=m+1,m+2,---,

n ; = ne = 927 ° -7 b
v,,,(x)={ f(x.); x=xn,n=1 m
a ; otherwise,

where m =1,2,---,. We have that {u,}, {v,}CL". It is clear that
u, | f and v, 1 f This saysthat f€ u(L)NI(L)=0(L). Thus L'=
D(X)=L,.

The reader should note that in both of the preceding examples
L' = D(X) is not Dedekind complete.

We have remarked that for any Archimedean Riesz space L, L' =
U.<a Ls=. In this next example, we show that there exists an Archime-
dean Riesz space L such that, for each a <), L,-# L,--.. For the
terminology and theory behind this example we refer the reader to [7,
pp. 344-404].

ExampLE 5.4. Let X be the unit interval and let F(X) be the
Riesz space of all bounded real valued functions on X. For our Riesz
space L, we will take the collection of all simple functions f € F(X)
such that f = 27, a; x,, where, for each i, A; is an ambiguous set of type
1 (i.e., A; is both F, and G;). Since characteristic functions of
singleton sets and the function y,,, are all in L, it follows immediately
from [11, Th. 32.6, p. 195] that L" = F(X). By virtue of [7, Th’s 1 and 2
p. 374; Th. 4, p. 389] we have that for each a <, L;-# L,--.. The
Dedekind-o-completion L' of L is just the space of analytic representa-
ble functions (see the Lebesgue-Hausdorff Theorem in [7, p. 393)).

6. Extending order convergence properties. We begin
by giving the definitions of some order convergence properties. We
will number each property and in the sequel when we say a Riesz space
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L has property (r) where r €{1,2,3,4,5} we will be referring to these
properties by number.

(1) The Riesz space L is said to have the o-property (property
(1)) if for any sequence {u, :n =1,2,---} in L*, there is a sequence
{A,:n =1,2,---} of positive real numbers and an element u € L* such
that u, = A,u for all n.

(2) The Riesz space L is said to have property (2) if in L order
convergence for sequences and relatively uniform convergence are
equivalent.

(3) Order convergence in the Riesz space L is said to be stable (L
is said to have property (3)) if for every sequence {x, :n =1,2,---}in L
with x, — 0 there exists a sequence of real numbers {A, :n=1,2,---,}
such that A, T« and A.x, —0.

(4) The Riesz space L is said to have the diagonal property
(property (4)) if whenever f,,,f..f in L are such that f,, —.,f, for
n=1,2,---, and f, — f there exists a ‘“‘diagonal sequence” {f, ) such
that foxmy— f, where n,k =1,2,---,.

(5) The Riesz space L is said to have the Egoroff property
(property (5)) if for every f € L and double sequence {0=b,, :n, k =
1,2,---}in L with b, 1.|f| there exists a sequence 0=<b,, 1|f| such
that, for any m, n, there exists a j(m,n) such that b, = b, ).

These properties and several related properties are discussed in
[16]. For a really complete discussion of these properties, their
interrelationships, and their connections with other properties, the
reader should see [11, Ch. 10].

We have the following lemma.

LEMMA 6.1. Let L and E be Riesz spaces with E intermediate with
respect to L. Then the following implications hold:

(i)  E has property (1) & L has property (1).

(ii) E has property (2) > L has property (2).

(iii) If E is Archimedean and has property (3) then L has property
(3).

(iv) If Eis Archimedean and has property (4) then L has property
(4).

Proof. The proof of (i) is straightforward and is omitted. We
begin by proving (ii). Suppose that E has property (2) and let {x,} be a
sequence in L such that x, >0 (in L). Then x, — 0 (in E) and since E
has property (2) there exist a sequence {A,} CR* with A, | 0 and an
e € E* such that |x,| = A.e. Since E is intermediate with respect to L,
there exists an x=e in L. But then Ax =A\.e =|x,| for each
n. Hence, if x, >0 (in L) then x, > 0(r - u)(in L). To show that if
X, = 0(r-u)(in L) then x, — 0 it suffices to show that if x € L* and {A,}
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is a sequence in R with A, | 0 then A,x | 0 (in L). But, since E has
property (2), A,x {0 (in E) (i.e., A,x | and inf(A,x:n=1,2,---}=0)
and hence A.x [0 (in L).

The validity of (iii) follows from the fact that property (3) and
property (2) are equivalent in Archimedean Riesz spaces (c.f., [11, Th.
16.3, p. 80]) and L is Archimedean if E is.

The validity of (iv) follows from the fact that property (1) together
with property (3) is equivalent to property (4) in Archimedean Riesz
spaces (c.f., [11, Th. 70.2, p. 478]).

The lemma is proved.

REMARK 6.2. The reader should note that if a Riesz space has
property (2) then it must be Archimedean.

We will give some examples in §7, which show, first, that Archime-
dean is necessary for (iii) and (iv) of Lemma 6.1 to be valid; and, second,
that the implications in parts (iii) and (iv) do not reverse even when L is
Archimedean.

Right now we will concern ourselves with the main theorem of this
section.

THEOREM 6.3. Let L be a Riesz space and let E be a Riesz space
intermediate with respect to L. Then the following implications are
true:

(i) L has property (2) & L,z has property (2).

(ii) L has property (3) © L, has property (3).

(iii) L has property (4) & L, has property (4).

(iv) L has property (5) & L,.g has property (5).

Proof. We begin by establishing that (i) is valid. That L, g, has
property (2) = L has property (2) follows from Lemma 6.1 (ii). To see
that L has property (2) > L, g, has property (2), let {x, :n =1,2,---}
be a sequence in L,, g such that x, >x € L, . By Theorem 3.5,
there exists a sequence {y,} in L with y, | 0 such that |x —x,|=y, for
n=1,2,---,. Since L has property (2), there exist a sequence {A,} of
real numbers with A, | 0 and a y € L" such that y, = A,y for each
n. But then |x—x,/=y.=Ay for each n and hence
x, — x (r-u). The fact that if the sequence {x, :n =1,2,---.}in L,
is such that x, - x (r - u) where x € L, g implies x, — x (in L, ) Is
an easy consequence of the facts that L, g, is intermediate with respect
to L and L has this property. We have established (i).

We will now establish that (ii) is valid. First, assume that L, g,
has property (3) and let {x, : n = 1,2,-- -} be a sequence in L such that
x, 0 (in L and, hence, in L, ). Since L, g has property (3), there
exists a sequence of real numbers {A, :n =1,2,---} with A, 1 % such
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that A,x, >0 (in L, ). Butthen A,x, —0(in L) by virtue of Theorem
3.5. We have established that L, g, has property (3) > L has prop-
erty (3). - Now, assume that L has property (3). Let{x,:n=1,2,---}
be a sequence in L, g, such that x, | 0. By Theorem 3.5, there exists a
sequence {y,:n=1,2,---} in L such that y, |0 and x, =y, for
n=1,2,---,. Since L has property (3), there exists a sequence of real
numbers {0=A,:n=12,---} with A, 1o such that A,y,—0
(inL). But, 0=Ax,=A,y. for all n. Hence, Ax,—0 (in
L..r). We have shown that if L has property (3) then L, has
property (3). The validity of (ii) is now established.

We will now establish that (iv) is valid. By [11, Th. 67.7(ii) p. 467],
showing that a Riesz space K has the Egoroff property is equivalent to
showing that for every u € K* if {u,,:n k=1,2,---} is a double
sequence in K with u = u,, | .0 then there exist integers k(n) such that
Uiy — 0. Now suppose that L, g has property (5). Let u € L* and
let the double sequence {u,,:n,k =1,2,---} in L be such that u =
Ui 40 (in L). Then, u=u,, |0 (in L, ). Hence, there exist
integers k(n) such that u,,,,—0 (in L, ). By Theorem 3.5, we have
that u,,,,—0 (in L). We have established that L, has property
(5) = L has property (5). Now, suppose that L has property (5). Let
u € L.k, and let the double sequence{u,, : n,k =1,2,---}in L,k be
such that u = u,, | (0 for each n. Since L, is intermediate with
respect to L, there exists a u’' € L such that u'=u. By virtue of
Theorem 3.5, there exists, for each n, a sequence {u,; :k =1,2,---}in
L with u,, | (0 (in L) such that u,, = u,, forn,k =1,2,---,. Let the
double sequence {uj,:n,k=1,2,---} in L be defined by ul, =
u'nu'y. Then, w'Zzu”, 0 (nL) and u,, =u’”, for nk=
1,2,---,. Since L has property (5), there exist integers k(n) such that
Uhimy—0(@Gn L). Since 0 = Upin)= U, fOor each n, we now have that
Upy— 0 (in L, ). We have shown that L has property (5) > L,k
has property (5). The validity of (iv) is established. To see that (iii) is
valid, we first invoke [11, Th. 68.2 (ii), p. 470 and Th. 68.7 (i), p. 473] to
see that showing a Riesz space K has property (4) is equivalent to
showing that if {u,, :n,k =1,2,---} is a double sequence in K such
that, for each n,u,, |0 then there exist integers k(n) such that
L,..15,= L, remainder of the proof is almost exactly like the proof of
(iv) except simplified by not having to bound the sequences {u,,}.

The theorem is proved.

Since, in general, L,;;:,=L, and L,.,;-,= L, we have the
following corollary as an immediate consequence of Theorem 6.3 and
Lemma 6.1.

COROLLARY 6.4. Let L be a Riesz space. Then L has property
(r)ifandonlyif L, . (L7,) has property (r), wherer =1,2,3,4 or 5.
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CorOLLARY 6.5. If L is an order separable Riesz space and E is
any Riesz space intermediate with respect to L, then L has property (r) if
and only if E has property (r), where r = 1,2,3,4 or 5.

Proof. By virtue of Corollary 3.13, L., = E. The assertion
now follows from Lemma 6.1 and Theorem 6.3.
In particular we have the following:

COROLLARY 6.6. If L is an Archimedean, order separable Riesz
space, then L has property (r) if and only if L has property (r), where
r=1,2,3,4 or 5.

Corollary 6.6 above was proved by the author in [16, Prop. 1.1, p. 14
and Th. 1.3, p. 16]. The fact that if L is order separable and
Archimedean then L has property (4) if and only if L" has property (4)
was proved in [4, Prop. 2.3 p. 160}].

In §5, we indicated that we did not know whether it was always true
for Archimedean Riesz spaces that L,, = L= L7,. This next result
shows that if L. has certain of the properties we have been considering
then this is the case.

THEOREM 6.7. Let L be an Archimedean Riesz space. If L has
property (r), forr =1,2,3 or 4, then L,, = L;,. Even more, if L has
property (s), for s =2,3 or 4, then L,, = L, and hence L;, = L,..

Proof. We will first show that if L has property (1) (the
o-property) then L, = L. This follows in a straightforward manner
by first applying Lemma 6.1 (i) to L. and L", and then using [11, Th. 72.1
(iif), p. 487].

Since, when L is Archimedean, L, = L;,. and L. is relatively
uniform complete, the result will now follow if we can show that when
L has property (s) for s =2,3 or4then L, = L,. But,by[11, Th. 16.3,
p. 80 and Th. 70.2, p. 478], for Archimedean Riesz spaces property (2) is
equivalent to property (3) and property (4) implies property
(3). Hence, the result will follow if we can just show that L has
property (2) implies that L,, = L,. Since L,, C L,, we need only show
that L, C L. To thisend,let x Eg(L). Then, there exist sequences
{x:}and {x7}in L* suchthat x,| x (in L,)and x, 1 x (in L,). Butthen
x,—xn}0(@nL,). By Th. 6.3 (i), L, = L, .- has property (2) if L
does. Hence, x,—x,—0(r-u) (inL, and, hence, in L). Thus,
x,—>x (r-u). Wehaveshownthat L, C L,. Thetheoremis proved.

ReEMARK 6.8. It is easy to see that if a Riesz space L has a strong
order unit (i.e., an element 0 < x € L such that if y € L there exists an
a € R such that |y| = ax) then L has the o-property.
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ExaMpPLE 6.9. If L is taken to be the Archimedean Riesz space of
Example 5.1, then L is seen to have the o-property,but L,, = L;,# L,.

We will now obtain two results which tend to indicate how far
certain properties can be extended.

THEOREM 6.10. Let L be an Archimedean Riesz space and let E be
an intermediate space (with respect to L) such that E D L, (in particu-
lar, E=1L, or L,). Then, if E has property (r), for r =2,3 or 4,
L,=L" =1L, and both L and L' have property (r).

Proof. By Lemma 6.1, Theorem 6.3 and Theorem 6.7, we will be
done if we can show that if E has property (r), for r =2,5 or 4, then
L,=1L'. Again, since property (3) and property (2) are equivalent and
property (4) implies property (3) (as cited in the proof of Theorem 6.7),
we will be done if we show that E having property (2) implies that

- = L'. Suppose that E has property (2). Let x € u(L) and let {x,}
be a sequence in L* such that x, 1 x (in L" and, therefore, in E). Since
E has property (2) and is intermediate with respect to L, there exists a
sequence {A,}JCR* with A, J]0 and a y EL" such that |x —x,|=
A.y. But then x€ru(L)Co(L). Hence, u(L)Co(L)CI(L) and,
by Theorem 4.5 (vi), this implies that L, = L’. The theorem is proved.

ReEMARK 6.11. Let L be a Riesz space. Let x € L7 and let {x,}
be a sequence in L* such that x,—x (in L*). Then, x,—x
(in L,). To see this consider, for each n, {x;:i=n}=B, Let
{y.}CL*be such that y, | 0 and, foreachn, —y, =x,—x=y,. I Uis
the set of all upper bounds in L* for B, then inf{u —~x :u € U and
x €B,}=0. This is true since, for each i=n, x+y, €U and
inf{x+y,~x;:i=n,n+1,---}=0. But then sup B, = s, exists in L*
and is in L,. Similarly, one can show that, for each n, inf{x; :i Z n}=
s, exists in L* and is in L,. Since |x, —x|=s, — s,/ 0 we have that
x, —x (in L;).

THEOREM 6.12. Let L be a Riesz space and let E be intermediate
with respect to L. Furthermore, assume that E D L, = (L,),. Then, if
E has the Egoroff property (property (5)), L, = L'.

Proof. We will show that u(L,)C L, which clearly implies the
result. To this end, let x € u(L,) and let {x, } be a sequence in L, such
that x, 1 x (in L* and, hence, in E). Foreachn,let{x,,:m =1,2,---}
be a sequence in L* such that x,,, — .x, (in L*). By virtue of Remark
6.11, we have that x,, — .x, (in L, and, hence, in E). Let y €L be
such that y=x. For each n,m, let x,,, =x,. Ay. Then, for each
nmx,.€L*, 0=x',=y and x,,—.Xx, (in E). By [11, Th. 69.1
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(iii), p. 476], E has the Egoroff property implies that there exist integers
m(n) such that x,,,—x (in E and thus in L*). This says that
x € L,. The theorem is proved.

Since the Egroff property is implied by the diagonal property, the
following result is a direct consequence of Theorem 6.12.

COROLLARY 6.13. Let L be a Riesz space and let E be a Riesz
space which is intermediate with respect to L. Furthermore, assume
that E D L,,. Then, if E has the diagonal property, L, = L'.

7. Some examples. In this section, we give two examples
which better illustrate the limitations of Lemma 6.1 in the preceding
section.

This first example shows, in particular, that, even if L is assumed to
be Archimedean, the implications in parts (ii), (iii) and (iv) of Lemma 6.1
cannot be reversed.

ExampPLE 7.1. Let L be the Archimedean Riesz space of Example
5.2. It was shown in [4, Ex. 1 pp. 161-162] that L has the diagonal
property (and, hence, that L has property (r) for r =2,3 or 4). By
means of Theorem 6.7, we see that L,, = L,. We showed, in Example
5.2, that L,# L'. Thus, it follows from Theorem 6.10 that no inter-
mediate Riesz space containing L, = L’ (in this case) has property (r)
for r =2,3 or 4.

This next example shows that the Archimedean assumption in parts
(iii) and (iv) of Lemma 6.1 cannot be dropped.

ExampLE 7.2. For each countable ordinal 1=a <Q (Q = first
uncountable ordinal), let E, be the lexicographically ordered

plane. Let E'=1Il.,.qE, (with the wusual coordinate wise
1

ordering). Let E,bethesetofallx =(x,)= (;‘;) in E’ such that there

a

exists a real number m > 0 such that, forall 1 = a <Q, we have |x)|=m
and |xZ|=m. Let L be the Riesz subspace of E; consisting of those

1
elements (i;’) = (x,) such that (x,) is at most countably non-constant

and (x!) is at most finitely nonconstant. Finally, let E be the Riesz
1

subspace of E| consisting of those elements (x,) = (;;’) such that;

(@) (x,) is at most countably nonconstant, and

(b) there exists a real number r such that for every € >0
{a :|xi—r|= €} is finite.

We will show first that E; is intermediate with respectto L. From
this it will follow that E is also intermediate with respectto L. So, let
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1
(x.)= (i;‘) bein E;. Let the real number m =0 be such that [x}=m

and |[x)]=m for all @. For each a, define (u3) and (v§) in L by:
X m
u§=(x§> for B=a and u3=<m> for B#a,
X, . -m
v§=<xi> for B=a and vﬂ=<_m> for B#a.

Clearly, inf{(ug):1=a <Q}=sup{(vy):1=a<Q}=(x,). This is
enough to establish that E, (and, thus, E) is intermediate with respect
to L.

Next, we wish to show that E has the diagonal property. Before
we can accomplish this, we must first make a number of observations
concerning order convergence in E.

(1) If y =(y.) €EE, there exists an a(y) <} such that if a = a(y)
then y. =y, and y2=y2,. This is a trivial consequence of the fact
that (y,) is at most countably nonconstant.

(2) If{y,:n=1,2,---}isasequence in E* such that y, | 0, then,
for each a, there exists an n(a) such that, forall n = n(a), y.. =0. To
see this, suppose to the contrary that there exists an « such that, for all
n,y..>0. Let x =(x;) € E be defined by,

x3=((])>; for B=a,

Xg = (8) for B#a.
Then, 0 <x =y, for all n. Hence, y, #40.

(3) If{y,:n=1,2,---}is a sequence in E* such that y, | 0, then
there exist an integer N and a 8 < Q such that, if n = N and a = S, then
yro =0. To see this, let a(y,) be the ordinal associated with y, by (1)
above. Suppose that, for all n,y,.,,>0. Let 8 <Q be such that
B>al(y,) for n=1,2,---,. Then, y,; >0 for all n. This cannot
happen by virtue of (2) above.

4 If{y,:n=1,2,---}is a sequence in E* such that y, | 0, then
there exist a B < () and a sequence of real numbers {A,:n =1,2,--:}
with A, | 0 such that y2, =A, forn =1,2,---, and for all « = 8. The
proof of this is straightforward (from (1)) and is omitted.

We are now ready to show that E has the diagonal property. As
was cited in the proof of part (iv) of Theorem 6.3, it suffices to show that
if {yom :n,m =1,2,---}is a double sequence in E such that, for each
n,¥.. | »0 then there exists a sequence of integers m(n) such that
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Yomm—0. So, let {y,m:n,m =1,2,---} be a double sequence in E
such that, for each n, y,.. { 0. For each n, let 8(n) < and let m(n)
be such that, for all @ = 8(n) and m = m,(n), we have y, .. =0 (by (3)
above we can do this). Let 8'(n) and the real sequences {A,, :n,m =
1,2,---,} be such that, for a = B'(n), yime« = Anm | »0 (that we can do
such follows from (4) above). Let, now, B < be chosen so that
B>pB(n)and B=B'(n) foralln=1,2,---,. Then, for all @ =Z B, we
have

(i) Yime =0 for all n and m = m,(n), and

(1) yZma =A.. for all n,m.
For each n =1,2, -, there exists an m,(n) such that, for m = m.(n),

{a Y hma = %} is finite. It follows then from (2) above that, for each n,

there exists an m;(n) such tht y, .. <% for all m = m,(n). Now, let

f:{1,2,---}—>{l =a < B} be a one-to-one correspondence, and let a,
denote f(n). For each n, let m,(n) be chosen so that, if m = m,(n),
Yima=0 for i =1,2,---,n. Furthermore, for each n, let ms(n) be

chosen so that, if m =Z my(n), y2 .. éni, fori=1,2,---,n. Finally, for
each n =1,2,---, let m(n) be chosen so that m(n)= max{m;(n): j =
1,2,3,4,5} and A,.,m(,,,énl. We claim that y, ..., —0. To see this, let
the sequence {x,} in E be defined by

1
Xna =<n$k> ; for a =a, k=1,2,---,

Xno = (?) ; otherwise.

n

Clearly, x, | 0 and, for each n, y,,n.) = x,. We have established that E
has the diagonal property.

We will now show that order convergence is not stable in L. Let
the sequence {y,:n =1,2,---} in L be defined by

(*)

Voa = (?) ; for n<a<w,
Yia = (8) ; otherwise.

We note that y, J 0in L. Let {A,:n=1,2,---} be any sequence of
positive real numbers such that A, 1. We will show that
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Ay. 7 0. To see this, suppose first that y € L is an upper bound for
{A.y. :n = N} where N is some positive integer. Then, there must
exist an integer m(y) =1 such that, if m(y)=a < w, then y, =y, >
0. But then there must exist also a B(y)<Q such that, for all
a = B(y), we have y,=yn,,>0. Thus, if {z,:n=1,2,---} is any
sequence in L with z, | such that, for each n, A,y, = z,; we must have,
for each n, a B(n) < Q such that, if « = B(n), then z,, = 2,5, >0. If
B <Q is chosen so that B = B(n) for n =1,2,---, then, for all a = 8
and for all n, we have that z,, =z, >0. But then by (2) above
inf{z, :n=1,2,---}#0. This says that A,y, 0. We have shown
that order convergence is not stable in L.

Next, we will show that L does not have the Egoroff
property. Let {y,:n=1,2,---} be the sequence defined in

(*¥). Consider, foreachn =1,2,-- -, the sequence {ny, :k =1,2,---}in
L. Clearly, ny, | .0, for each n. Let y € L be defined by y, = ((])) ,
for all . Obviously, for eachn,k =1,2,---, we have that ny, =y. If

we could find for each n a k(n) such that ny,,,— 0 in L, then taking
A =n, for each k(n)=i <k(n + 1), we would have that \;y; —0 and
A T (which we have already shown is impossible). Hence, L does
not have the Egoroff property.

It is not difficult to show, by a proof similar to that used above, that
if a Riesz space has the diagonal property then order convergence is
stable in it. It is immediate from [11, Th. 67.7 (ii), p. 467] that the
diagonal property implies the Egoroff property. Thus, we have shown
the following:

(A) Order convergence is stable in E but not in L.

(B) E has the diagonal property, but L does not have the diagonal
property.

(C) E has the Egoroff property, but L. does not have the Egoroff
property.

Question: If E and L are Archimedean Riesz spaces with E
intermediate with respect to L, is it true that if E has the Egoroff
property then L has the Egoroff property?

This next example shows that the Archimedean assumption in
Theorem 6.10 cannot be released.

ExaMpLE 7.3. Let L and E be the Riesz spaces of Example 7.2

above. Let L, be the Riesz subspace of L consisting of those
1

(x,)= (i‘;) such that both (x}) and (x 2) are finitely non-constant. It can

a

be shown that L,, is the set of all (x,) in L for which there exists a real
number =r((x,)) such that, for every real number € >0,
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{a :|r—x2| =z €} is finite. It can also be seen that Li= L, = L. Thus
E D L, and E has the diagonal property but L, # L/.

8. Almost complete and almost o-complete spaces.
We will say the Riesz space L is almost complete (almost o-complete)
ifandonly if L, =L, =L*L,.=L,=1L").

In this section we begin by giving an intrinsic characterization of
the almost o-complete Riesz spaces. We will then give sufficient
conditions involving certain projection properties for an Archimedean
Riesz space to be almost complete or almost o-complete. We do not
know of a necessary and sufficient condition that a Riesz space be
almost complete.

ReMARK 8.1. Every order separable Riesz space is almost com-
plete (see Theorem 4.1).

DeriNiTION 8.2. The Riesz space L is said to be strongly order
cauchy (order cauchy) if whenever {x,} is a decreasing sequence in L~
(such that inf{x, —v:n=1,2,---, v € V}=0 where V is the set of
lower bounds in L of {x,}) {x.} is order cauchy.

Using Proposition 2.7 and Theorem 4.4 (v) it is not difficult to
establish the following result.

THEOREM 8.3. The Riesz space L is almost o-complete if and only
if L is order cauchy.

ReEMARK 8.4. It is not difficult to see that a strongly order cauchy
Riesz space must be Archimedean. Indeed, if L is a strongly order

cauchy Riesz space and y € L*, then {% y} is an order cauchy

1 _(1 1 ..
sequence. Hence, n(nE1) y= (n ) y)lO. This is enough

to establish that % y | 0. We have the following corollary.

CoROLLARY 8.5. The Riesz space L is Archimedean and almost
o-complete if and only if L is strongly order cauchy.

In what follows, a knowledge of Chapters 3 and 5 of [11] is
assumed. For the convenience of the reader, we will state a few
definitions here.

An ideal I in a Riesz space L is said to be a principal ideal if there
exists e € I'* such that for every x € I there exists an a« € R such that
x| = ae.
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A band (order closed ideal) in a Riesz space L is said to be a
projection band if it is a direct summand of L.

A band B in L is said to be the principal band generated by .
O0<e€e€L if B is the smallest band containing the principal ideal
generated by e (in this case we denote B by B,).

A Riesz space L is said to have the projection property (P.P.) if
every band in L is a projection band.

A Riesz space L is said to have the principal projection property
(P.P.P.) if every principal band in L is a projection band.

We will denote the boolean algebra of projection bands (the lattice
of principal projection bands) by P(L) (P,(L)).

We say that P,(L) is Dedekind-o-complete if whenever {B,, :i =
1,2,---,} is a sequence in P,(L) with B, 1 and such that there exists
B, € P,(L) with B,, C B,, for all i, then there exists B, € R, (L) such that
B, 1 B.

If B, € P,(L)and v € L, then we will denote the projection onto B,
of v by P,(v).

Let a < b be real numbers. By Il =Il{a,, - -, a,) where a = a,<
a, <---<a, =b, we denote a partition of the closed interval [a, b].

Let a < b bg real numbers, let L be a Riesz space with the P.P.P.,
and let e,f € L be such that, for some € >0, ae =f=(b —€)e. For
any partition Il(ay, a,, " - -, @,) of [a, b] we define s (I1; f) and ¢t (II; f) by

sqLf) = 2 tei(Pratey(€) = Pracrepy(€))

and

n

t(n;f) = 2 0 (P ape-py(€) — P(ak-le«f)‘(e))-

k=1

We have the following result:

THEOREM 8.6. Ifthe Riesz space L has the P.P.P. and the property
that P,(L) is Dedekind-o-complete, then L is Archimedean and L,, = L'.

Proof. Let L be a Riesz space with the P.P.P. and the property
that P,(L) is Dedekind-o-complete. Since L has the P.P.P., L is
Archimedean (c.f., [11, Th. 30.4, p. 174]). Let x €Il(L) and let
{u,:n=0,1,2,---} be a sequence in L such that u, | x (in L"). We
will show that, for any real number —®o<a <®, Pgu, . (Uo)=
sup{m(au,—x)" Aug:m =1,2,---}(takenin L") isan element of L. To
see this, consider, foreachn =1,2,---, (au,—u,)" € L. We have, for
n=12---, that (aug— u,)" = (aug—u,.;)". Also, (auy— u,)*
1 (auo—x)* (in L"). Thus, by virtue of [11, Cor. 31.2, p. 182], we have
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the Puou(U0) T Piawoxy(4o) (in L"). Now, for each n=1,2,---,
the principal projection hand B .., C B, (this in P,(L)), and
B auo-uwy 7. Since L has the property that P,(L) is Dedekind-o-
complete, there existsa v € L* such that B ,-.,+ 1 B. (in P,(L)). By
[11, Cor. 31.2, p. 182], we have that

P(am»—un)+ (u()) T Pl(u())

(in L and, hence in L"). But then, Py (Uy) =
P.(u,) € L, which is the desired result. Now, since u,=x =0 we
have that (3/2—1/2)u¢=x =0(u,). Let II,, for n=1,2,---, be a
sequence of partitions of the interval [0, 3/2] such that II,,, is a

refinement of I1,, for each n, and |I1, | é_rlz- (where, by |I1,| we mean the

length of the largest subinterval between consecutively indexed points
of the partition Il,). Let s(Il,;x) and t(Il, ; x) be defined as above. It
follows from what we have already shown that, for each n, s(Il,; x) € L
and t(Il,; x) € L. Furthermore, it follows from the Freudenthal spec-

tral theorem (see [11, th. 40.2, p. 257]) that lt(H";x)~xf§’—1—u“ and

|s(H,,;x)—xl§nlu0, for all n (this theorem is being applied in

L*). This says that x € ru(L). We have shown that [(L)Cru(L)C
u(L). It now follows from Theorem 4.4 that L, =L,=L'. The
theorem is proved.

CoRrOLLARY 8.7. If the Riesz space L has the P.P.P. and the
property that P,(L) is Dedekind-a-complete, then L is Archimedean and
almost o-complete.

This next result is the analogue of Theorem 8.6 for the case that L
has the projection property.

THEOREM 8.8. If the Riesz space L has the P.P., then L is
Archimedean and L,, = L".

Proof. Since L has the P.P., it has the P.P.P. and is Archimedean.
Let0<x € L"andlet x € L be such that x = x. It follows from 8, Th.
2.6 (iii), p. 309] that, for every real number —o<a <%, P, ., (x)
(taken in L") is in L. The remainder of the proof now follows exactly
as it did in the proof of Theorem 8.6. The theorem is proved.

CorOLLARY 8.9. If the Riesz space L has the P.P., then L is
Archimedean and almost complete.
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ExaMpLE 8.10. Let L = C([0, 1]) (the Archimedean Riesz space
of continuous real valued functions defined on [0, 1]). Itis known that
L is order separable (c.f., [11, Exercise 29.6, p. 170]) but fails to have
even the P.P.P.. Thus, L 1s an example of an almost complete Riesz
space without the P.P.P.

Question. If L,, = L" (L, = L') does L have to have the P.P. (the
P.P.P. and the property that P,(L) is Dedekind-o-complete)?

ReEMARK 8.11. A. 1. Veksler introduced in [17] the concept of an
r-completion for Archimedean Riesz spaces which agrees with our L,
when L is Archimedean. Furthermore, he obtained results which
directly imply Theorem 8.8 and Corollary 8.9 above.

ReEMARK 8.12. Independently, the authors of [2] have defined a
concept which, for Archimedean Riesz spaces, is equivalent to the
concept of almost o-complete Riesz spaces introduced in this section.

9. Some topological considerations. A certain theorem
due to Nakano has been of interest to a number of researchers (c.f., [9,
Note XVIg] and [15, Prop. 2.6, p. 164]). Nakano’s theorem states that if
(L,|-) is a Dedekind-o-complete normed vector lattice with the
property that a sequence {y, : n = 1,2,---,} in L norm converges to zero
whenever y, | 0, then L is order separable. The result in [15] men-
tioned above is a generalization of Nakano’s theorem to the setting of
topological vector lattices. There are examples of integrally normed
Riesz spaces (i.e., a normed vector lattice L, with norm p such that
p(u,)— 0 whenever u, | 0) which are not order separable (c.f., [4, Ex. 1,
p. 161]).

If E is a vector lattice, a subset W of E is said to be solid if x € W
whenever y € W and |x|=|y|. If E is a topological vector space with a
neighborhood base at zero consisting of solid sets, then F is said to be a
topological vector lattice. The notation (E, 1) will refer to a topologi-
cal vector space with topology .

This next theorem can be viewed as a completion to the result in
[15].

The reader should keep in mind that, since metrizable topological
vector lattices are Archimedean, the concepts of order cauchy and
strongly order cauchy are equivalent in this setting.

THEOREM 9.1. Let (E, 7) be a metrizable topological vector lattice
with the property that u, — 0 whenever u, | 0. Then, E is order separa-

ble if and only if E is strongly order cauchy.
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Proof. It follows from Remark 8.1 and Corollary 8.5 that if E is
order separable then E is strongly order cauchy. We wish now to
show that if E is strongly order cauchy then E is order separable. To
this end, let {W, :n =1,2,---} be a countable neighborhood base at
zero for t consisting of full, circled sets W, such that W, + W,,,CW,
foralln. Let{x,}beanetin E suchthatx, | 0. We wish to show that
there exists a sequence {x, } C {x.} such that x,, | 0. We note first that,
for each n = 1,2, - - -, there exists an a such that for all 8 = a« we have
x, —xs € W,. Suppose not, then there exists an n, and a sequence x,,
such that x,, —x..., % W,. But then x, —x..-0 (since

Xe —xam+,7z$0). Since E is strongly order cauchy, this is a

m

contradiction. Let the sequence {x,, } C{x.} be chosen so that x,, |
and, for all 8 = a,, x,, —x; € W,. Suppose that inf,{x, }#0. Then
there existsa 0<v =x, foralln=1,2,---,. Foreachm=1,2,:--,
and each B=a, we have x,, —(xzAD)=(x,, —Xg)V(X,, — V)=
(Xe, — Xg) +(x,, —v). Hence,

Xaw —Xg =0 —(Xg A D).
Since v >0 and x; | 0, there exists a B8’ such that, for all 3 =g’

v—(xgAv)=v—(xgA0)>0.

But then there exists an n’ such that for all B =B’ we have that
v—x, AVEW,. Let B,=ZB' be such that B,=a, Then,
X, — Xg & W, which contradicts the choice of «,. Hence, we must
have that inf{x,, :n =1,2,---}=0. The theorem is proved.

REMARK. A topological vector lattice (E, ) is said to have prop-
erty (A, i) if, whenever u, | 0 in L, it follows that u, 50. It is said to
have property (A, ii) if for any net u, | 0 it follows that u, 50. Itis

said to have property (A, iii) if, whenever 0 = u, 1 = u, it follows that u,
is a 7-Cauchy sequence. In [1], C. D. Aliprantis has shown that a
metrizable topological vector lattice having properties (A, i) and (A, iii)
must have property (A, ii). It is easy to see that a topological vector
lattic with property (A, ii) is order separable. Thus another proof of
Theorem 9.1 can be obtained by noting that (A, i) and strongly order
cauchy imply (A, i) and (A, iii) and then using the above comments.

It has been of interest to discover which combinations of topologi-
cal and order properties imply the diagonal property (c.f., [4, Prop. 3.3,
p. 164] and [15, Prop. 2.6, p. 164]).
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The result in [15] involved some completeness properties which
were relaxed in [4]. Unfortunately, the result in [4] required some
topological assumptions which were more stringent than those of the
result in [15]. In both cases, order separability was either implied by
the assumptions or actually assumed.

We will say that the topological vector lattice (E, 7) is o-monotone
bounded if every topologically bounded monotone increasing sequence
in E is order bounded.

Compare this next result with the above cited results in [4] and [15].

THEOREM 9.2. Let (E, 7) be a metrizable, o-monotone bounded
topological vector lattice with the property that x, 50 whenever
X, { 0. Then, E has the diagonal property.

Proof. We will show first that the conditions of the theorem imply
that E has the o-property (i.e., if {x,} C E* there exist a sequence {A, } of
positive real numbers and an x € E such that, for each n, x, =

A.x). Tothisend, let {x,} be asequencein E*. Let{W,:n=1,2,---}
be a neighborhood base at zero for r consisting of solid sets such that

W,a+ W,.,CW, for each n. Consider, for each n, the sequences + x,

k
where k =1,2,---,. Since %x.—ﬁo, there exists a k(1) such that

x, € W,. Since W, is open and x,— 0, there exists a k(2) such

k(l)

that —k—(—z—)x»E W, and sup{k(l) Xy ToAs k(2)

each n, there exists a k(n) such that

k
x,}E W,. By induction, for

1 .
mx,,EWnandléjén—lthen
sup{k() = gn}EW,—.

Let, for each n, z, be defined by

1A

)

Then, z, 1. We wish to show that {z,} is topologically bounded. To
this end, let m be a positive integer and consider W,. Then,

2y = Zn v(sup{ﬁx;:m+]§i§n})
forn=m +1. Now,

zn=sup{ﬁx,~:léi
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1 . .
sup{mx,-. m +1§t§n}E | 7

for all n=m +1 and 2z, € E. Hence, there exists a £ =1 such that
z, €tW,,,. Butthen z, €tW, for all n. This establishes that {z,} is
topologically bounded. Since (E,7) is o-monotone bounded, there
exists a y € E such that z, =y for all n. Thus, for each n,x, =
k(n)y. We have established that e has the o-property.

Now suppose that x, | 0. By hypothesis, this implies that

x, —0. Hence, there exists an n(1) such that X.n € W,. Since W, is

open and 2x, -0, there exists an n(2) > n(1) such that 2x,, € W, and

sup {x.a» 2x.0} € W,. By induction, there exists, for each integer k, an

integer n(k) > n(k — 1) such that x,,, € W, and, foreach | =j =k — 1,
sup{ix,;,:j =i =k}E W,

Letting, for each k, z, = sup{ix,,: 1 =i =k} we have that z, 1 and that
{z:} is topologically bounded. Hence, there exists a y € E such that

y =2z Zkx,«, for each k=1,2,---,. Thus, x,,(k,é-llc—y for k=
1,2,--+,. Fornk)=n<nk+1)—1, let )\,,=7(1—. Then, A, | 0 and
X, =Ay for n=1,2,---,. We have shown that x,—0(r-u)

whenever x, | 0. Since the hypothesis ((E, 7) is a metrizable topologi-
cal vector lattice) implies that E is Archimedean, this is enough to show
that relatively uniform convergence and order convergence for se-
quences are equivalent in E.

We have seen that E is Archimedean, has the o-property, and has
the property that relatively uniform convergence and order con-
vergence for sequences are equivalent. By virtue of [11, Th. 16.3, p. 80
and Th. 70.2, p. 478], this implies that E has the diagonal property. The
theorem is proved.

10. Some structure space considerations. In[6] several
characterizations of the projection property in Archimedean Riesz
spaces were given. The approach primarily explored the interrelation-
ships between such things as the band structure or the prime ideal
structure of an Archimedean Riesz space and corresponding structures
of its Dedekind completion. These structures were compared by
means of the following natural method (first introduced in [10]) of
associating ideals in the Dedekind completion of an Archimedean Riesz
space with ideals in the Riesz space.
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If L is an Archimedean Riesz space and L" is its Dedekind
completion then to each ideal I in L is corresponded the ideal I" in L"
where I ={% € L": there exists y € [ with |£|=y}.

It should be clear that this correspondence, suitably modfied, will
make perfectly good sense in the setting of intermediate Riesz
spaces. It is the purpose of this section to study the relationship
between prime ideal structure in a Riesz space L and prime ideal
structure in a Riesz space E which is intermediate with respect to
L. The results we obtain in this section not only generalize some of the
results in [8] but they also tend to clarify the relationships between
several of the properties underlying the results in [8].

We begin our investigation with some definitions and a notational
agreement. For the theory of prime ideals the reader is referred to [6]
or {11].

An ideal P in the Riesz space L is prime if x Ay in P implies x is in
Poryisin P. Equivalently, P is a prime ideal in L if x A y = 0 implies
either x isin P or y is in P.

A subset K of the positive cone of a Riesz space L is called a lower
sublattice if x Ay is in K whenever x and y are in K.

A prime ideal P is called a minimal prime ideal if P does not
properly contain any other prime ideal.

It was shown in [6] that, if one partially orders by inclusion the
lower sublattices in a Riesz space which do not intersect a given ideal,
then every lower sublattice which does not intersect this ideal is
contained in a maximal lower sublattice which does not intersect the
ideal. Furthermore, it was shown that the ideal P contained in the
Riesz space L is a minimal prime ideal if and only if L " — P is a maximal
lower sublattice not intersecting {0}.

If L and E are Riesz spaces with E intermediate with respect to L
and if I is an ideal in L then by I(E) we will denote the ideal in E
defined by I(E) ={e € E : there exists y €1 with |e| = y}.

DerFINITION 10.1. Let L and E be Riesz spaces with E inter-
mediate with respect to L. It will be said that L has the prime
extension property with respect to E if P(E) is prime in E whenever P
is a prime ideal in L.

THEOREM 10.2. Let L and E be Riesz spaces with E intermediate
with repsect to L. Then the following conditions are equivalent :

(1) L has the prime extension property with respect to E.

(i) If Pis a minimal prime ideal in L then P(E) is a minimal prime
ideal in E.

(i) If Pis a minimal prime ideal in L then P(E) is a prime ideal in
E.
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(iv) Ife,e,€ E* aresuchthat e, re,= 0, there exist y,, y, € L with
yiZ e, and y,= e, such that y,ny,=0.

Proof. We begin by showing that (i) = (ii). Let P be a minimal
prime ideal in L. By virtue of condition (i) we have that P(E) is a
prime ideal in E. If M is a prime ideal in E such that M C P(E) then
MNL is prime in L and MNL CP=P(E)NL. Since P is a
minimal prime ideal in L, it follows that M N L = P. But, then
P(EY=(MNL)YE)CM. Hence, M = P(E) and P(E) is seen to be a
minimal prime ideal in E. We have established that (i) = (ii).

That (ii) = (iii) is obvious. We show now that (iii)) =
(iv). Suppose that condition (iv) is not satisfied. Let e,e.€ E be
such that e, A e, = 0 and such that y, A y,>0 whenever y,,y.€ L, y, = ¢,
and y,=e,. Let K CL" be defined by

K={z€L":z=y,ny,for some y,y,€ L with y,Ze, and y,= e.}.

By construction, 0 K. We claim that K is a lower sublattice. To
see this, let, fori =1,2,z, =y, Ax; where{x,,y; : i = 1,2} CL, y, Z e, and
Xi=e,. Then, z,Az,=(y,Ay) A(Xx;AX,) Where y, Ay, = e, and x, A x. =
e,. Thus, z, A 2z, € K and this establishes that K is a lower sublattice in
L. Now, let K' be a lower sublattice of L. which is maximal with
respect to containing K and not containing {0}. Let P = P*— P* where
P*=L*"—K'. Then P is a minimal prime ideal in L. We note now
that if e, =y € L then y € K and, hence, y& P. Indeed,if e, =y €L
and e,=y,EL then y=ya(yvy,). Similarly, if e;.=x €L then
x& P. But,thene, & P(E)and e, P(E). Since e, A e, =0, this estab-
lishes that P(E) is not prime. We have established that (iii) = (iv).

All that remains to be shown is that (iv) = (i). To this end, let P
be a prime ideal in E and consider P(E). Let ¢,,e,E E* be such that
e, re;=0. By virtue of condition (iv) there exist y,, y.& L with y, = ¢,
and y, = e, such that y,Ay,=0. Since P is prime in L, we must have
that y, € P or y, € P. This implies that ¢, € P(E) or ¢, € P(E) and this
implies that P(E) is prime.

The theorem is proved.

Compare conditions (i) and (iii) of this next lemma with conditions
(i1i) and (iv) of Theorem 2.6 in [8].

LEMMA 10.3. Let L and E be Riesz spaces with E intermediate
with respect to L. Consider the following conditions:

(i) For any e € E* there exists an x € L with x = e such that
{x}**—=in—E ={e}**—in—E (where {x}} =in—E =
{y €E:|y|alx|=0} and {x}**—in —E ={{x}'—in —E} —in — E).
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(ii) For any e,,e;€E E* with e, A e, =0 there exist y,,y, € L with
y1A Y= 0 such that y,=Z e, and y,= e,.

(iii) Given any x € L* and X € E with X n(x —X) =0, it follows
that x € L.

Then, (1) > (ii) = (iii)). Furthermore, if E has the P.P.P. (principal
projection property), then (iii) = (i) and all the condition are equivalent.

Proof. Establishing that (i) > (ii) is routine. Showing that if E
has the P.P.P. then (iii) = (i) is also not difficult and we omit the
proof. We are left with showing that (ii) = (iii). To this end, let
x € L* and let ¥ € E be such that X A (x —x)=0. From condition (ii) it
follows that there exist y,, y,€ L with y,= % and y, = (x — X) such that
y:Ay,=0. Consider y,Ax. We have immediately that y aAx=
xAX=2Xx. Sincey, any,=0andy,=(x —x), we have that y,a(x —X) =
0 and, therefore, that (y,Ax)a(x—~%x)=0. Since y,Ax=x and
(x —X)=x, we have the (yAx)+(x—X)=(yAx)v(x—X)=x=
X+ (x—x). Therefore, yAx=X. Hence, =y, Aax€L. We have
established that (ii) = (iii). The lemma is proved.

LEMMA 10.4. Let L be an Archimedean Riesz space. Then the
following are equivalent :

(i) L has the P.P.P. and the property that P,(L) is Dedekind-o-
complete.

Gi) IfxeL"andx €L’ aresuchthatx n(x —xX)=0,thenx € L.

Proof. We will show first that (i) = (ii)). Let x € L* and suppose
that x € L’ is such that X A(x —X)=0. By virtue of Theorem 8.6, we
have that there exists a sequence {u,} C L* such that u, T X. Consider
now the sequence of principal projection bands {B, }CP,(L). We
have that B, 1 and B, CB, for n=1,2,---,. Since P,(L) is
Dedekind-o-complete, there exists » € L* such that B,, 1 B.. Since
u, T %, we have that P, (x) 1 P:(x)=x (where these projections are
taken in L') (see [11, Cor. 31.2, p. 183]). Since L has the P.P.P.,
P.(x)EL forn=1,2,---,. Since B,, 1 B,, we have P, (x) 1 P.(x) E
L (see [11, Cor. 31.2, p. 183]. Hence, x = P.(x)EL. We have
established that (i) = (ii).

We will now show that (ii)=> (i). To this end, let
u,x €L*. Since L' is Dedekind-o-complete, it follows that
sup,{nu Ax:n=1,2,---} exists in L’. Let

X=sup{nunx:n=12,---}

where this supremum is taken in L'. It follows from [11, Th. 24.7 (i), p.
135] that X A(x —X)=0. Hence, x € L. Thus, by virtue of {11, Th.
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24 9(iii), p. 137], we have established that L has the P.P.P.. Now, let
{B..}»-1 be a sequence in P,(L) such that B,, 1 and there exists v € L*
such that B, C B, for all n. For each n, let v, =P, (v). Then,
{v.}CL*, v, 1 and v, =v for n =1,2,---,. Since L' is Dedekind-o-
complete, there exists a v such that w, 1 0. By [11, Cor. 31.2, p. 182]
we have that P, (v) = v, 1 P;(v) (Where these projections are taken in
L'). But v,1?d and thus P;(v)=9. Hence, o A(v—7)=0 which
implies (by (ii)) that © € L. Applying [11, Cor. 31.2, p. 182] again, we
see that B, =B, 1 B, in P,(L). We have shown that P,(L) is
Dedekind-o-complete.

The assertion is proved.
The proof of this next result provides an alternate method of
proving one of the principle results in [8].

THEOREM 10.5. Let L be an Archimedean Riesz space. Then L
has the prime extension property with respect to L" (L’) if and only if L
has the projection property (L has the principal projection property and
the property that P,(L) is Dedekind-o-complete).

Proof. The assertion that L has the prime extension property with
respect to L" if and only if L has the P.P. follows from Theorem 10.2,
Lemma 10.3 and [8, Lemma 2.3, p. 308]. The assertion that L has the
prime extension property with respect to L’ if and only if L has the
P.P.P. and the property that P,(L) is Dedekind-o-complete follows
from Theorem 10.2, Lemma 10.3 and Lemma 10.4. The theorem is
proved.

THEOREM 10.6. Let L be an Archimedean Riesz space. Then, L
has the prime extension property with respect to L, if and only if L has
the P.P.P. and the property that P,(L) is Dedekind-o-complete.

Proof. The sufficiency follows from Theorem 8.6 and Theorem
10.5 We are left with proving the necessity. So, assume that L has
the prime extension property with respectto L,. Let0<x &€ /(L) and
let x<u€L. Let « be any real number and consider v, =
(au—x)". Sincexe€l(L)and u €L, v, is in u(L).

It is straightforward now to show that P, (u)=
sup{nv, nu:n=1,2,---,} is in u(L) (the projection being taken in
L". Since P, (u)an(u—P,(u))=0, it follows now, by virtue of
Theorem 10.2 and Lemma 10.3, that .P,_ (u)E€ L. It now follows in
exactly the same way as in the proof of Theorem 8.6 that x €
ru(L). We have shown that [(L)C ru(L)C u(L). This is enough to
imply that L, = L,, = L’. But, then, L has the prime extension prop-
erty with respect to L'. Thus, by Theorem 10.5, L has the P.P.P. and
the property that P,(L) is Dedekind-o-complete. The theorem is
proved.
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We give now an example which shows that the conditions in
Lemma 10.3 need not be equivalent if the assumption that e has the
P.P.P. is dropped.

ExaMpLE 10.5. Let L be the Archimedean Riesz space of finitely
nonconstant real sequences. Let E = c¢ be the Riesz space of con-
vergent real sequences. Clearly E is intermediate with respect to
L. Let e, =(1,0,1/3,0,1/5,--9) and let e, =
0,1/2,0,1/4,0,1/6,---). Then e,,e,€EE* and e, re,=0. Suppose
that (y;) =y € L is such that y =e,. Then there must exist an integer
n(y) such that, for all integers m = n(y), Yu = Yuy) > 0. Similarly, if
(x;) =x € L is such that x = e, then there exists an n(x) such that, for
jZn(x), x; = X,y >0. This is enough to show that if e, =y &€ L and
e;,=x €L then x Ay >0. Thus, for this L and E, condition (ii) (and,
hence, condition (i)) of Lemma 10.3 is not satisfied.” It is not difficult to
show, however, that condition (iii) of Lemma 10.3 is satisfied.

We do not know whether or not conditions (i) and (ii) of Lemma
10.3 are equivalent.

ReEMARK 10.6. The equivalence of the first three conditions in
Theorem 10.2 is established in Lemma 3.2 of [10]. The fact that if L
has the prime extension property with respect to L" then L has the P.P.
(Theorem 10.5) is implied by Theorem 3.9 of [10]. The proof given
there is quite different either from that given here or from that in
[8]. Theorem 3.9 in [10] also implies that if E and L are Archimedean
and E has the P.P.P. then so does L.

ReMARK 10.7. Suppose that in this section we had not demanded
that E be intermediate with respect to L but rather had only required
that L be a Riesz subspace of E such that, for every e € E, there exists
ay € L suchthat |e|=<y. Itisthenimplied by Theorem 3.9 of [10] that
if the Archimedean Riesz space L has the prime extension property
with respect to such an E and if E has the P.P.P. then E is intermediate
with respect to L. The reader who is interested in a development of
the prime extension property in the setting of distributive lattices should
refer himself to [10].
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