A NOTE ON DIFFERENTIAL EQUATIONS WITH ALL SOLUTIONS OF INTEGRABLE-SQUARE

PHILIP WILLIAM WALKER
A NOTE ON DIFFERENTIAL EQUATIONS WITH ALL SOLUTIONS OF INTEGRABLE-SQUARE

PHILIP W. WALKER

It is shown that if all solutions to \(l(y) = \lambda wy \) and \(l^*(y) = \lambda wy \) satisfy \(\int_{a}^{b} |y|^2w < \infty \) for some complex number \(\lambda \) then so do all solutions for every complex number \(\lambda \). The result is derived from a corresponding one for first order vector-matrix systems.

We shall be concerned with solutions to

\[
\begin{align*}
(1) & \quad l(y) = 0 \quad \text{on} \quad (a, b), \\
(2) & \quad l^*(y) = 0 \quad \text{on} \quad (a, b) \\
(3) & \quad l(y) = \lambda wy \quad \text{on} \quad (a, b), \quad \text{and} \\
(4) & \quad l^*(y) = \lambda wy \quad \text{on} \quad (a, b)
\end{align*}
\]

which satisfy

\[
\int_{a}^{b} |y|^2w < \infty.
\]

In these expressions \((a, b) \) is an interval of the real line (\(a = -\infty \) and/or \(b = \infty \) is allowed), \(w \) is a weight, i.e., a positive valued continuous function on \((a, b) \), \(\lambda \) is a complex number, \(l \) is an \(m \)th order linear differential operator given by

\[
l(y) = \sum_{k=0}^{m} a_k y^{(m-k)}
\]

where each \(a_k \) is an \(m - k \) times continuously differentiable complex valued function defined on \((a, b) \), \(a_0(t) \neq 0 \) for all \(t \in (a, b) \), and \(l^* \) is the formal adjoint of \(l \) so that

\[
l^*(y) = \sum_{k=1}^{m} (-1)^{m-k} (\bar{a}_k y)^{(m-k)}.
\]

In an earlier paper, [11], we defined \(w \) to be a compactifying weight.
for \(l \) provided that every function which is a solution either of (1) or of (2) satisfies (5). If follows from Theorem 2–1 of [11] that if \(w \) is a compactifying weight for \(l \) then every function which is a solution either of (3) or of (4) satisfies (5) for every complex number \(\lambda \).

The deficiency index problem (see for example [2] and [8]) for formally self-adjoint equations (where \(l = l' \)) is concerned with finding the dimension of the linear manifold of solutions to (3) which satisfy (5). One of the results of this theory ([3], [4], [5], [6], [7], [10], and [12]) is that if this dimension is \(m \) (the order of \(l \)) for some complex number \(\lambda \) and \(m > 1 \) then it is \(m \) for every complex number \(\lambda \).

While much of the theory for the self-adjoint case breaks down when \(l \neq l' \) we wish to show that this result carries over.

Theorem 1. Let each of \(\lambda_1 \) and \(\lambda_2 \) be a complex number (\(\lambda_1 \) real, even \(\lambda_1 = 0 \) is allowed). Let \(m > 1 \). If every function which is a solution of either (3) or (4) satisfies (5) when \(\lambda = \lambda_1 \) then every function which is a solution of either (3) or (4) satisfies (5) when \(\lambda = \lambda_2 \).

This follows as a corollary to an analogous theorem (Theorem 2 below) for first order vector-matrix equations.

We consider the equations,

\[
Jy' = [\lambda A + B]y \quad \text{a.e. on } (a, b), \quad \text{and} \\
Jy' = [\lambda A + B^*]y \quad \text{a.e. on } (a, b)
\]

where \(J \) is a skew-symmetric \((J^* = -J, * \text{ denoting conjugate transpose})\) \(m \times m \) matrix, each of \(A \) and \(B \) is a complex \(m \times m \) matrix valued function which is Lebesque integrable over each compact subinterval of \((a, b)\), \(\lambda \) is a complex number, and \(A(t) \) is nonnegative definite a.e. on \((a, b)\).

It was shown in [13] that, given \(l; J, A, \) and \(B \) may be chosen so that every solution of (3) satisfies (5) if and only if every solution of (8) satisfies

\[
\int_a^b y^* A y < \infty,
\]

and every solution of (4) satisfies (5) if and only if every solution of (9) satisfies (10). For the choice of \(J \) and \(A \) used in [13] it is also the case that trace \(J^{-1} A = 0 \) when \(m > 1 \).

Thus Theorem 1 above follows from Theorem 2 below.

Theorem 2. Let each of \(J, A, \) and \(B \) satisfy the conditions imposed above. Let \(m > 1 \). Let each of \(\lambda_1 \) and \(\lambda_2 \) be a complex number (\(\lambda_1 \) real, even \(\lambda_1 = 0 \) is allowed). Let \(\int_a^b |\text{tr} J^{-1} A| < \infty \).
If every vector function which is a solution of either (8) or (9) satisfies (10) when \(\lambda = \lambda_1 \) then every vector function which is a solution of either (8) or (9) satisfies (10) when \(\lambda = \lambda_2 \).

Proof. Let \(Y(\lambda) \) and \(Z(\lambda) \) be fundamental matrices for (8) and (9) respectively. (We will write \(Y(t, \lambda) \) and \(Z(t, \lambda) \) to denote the value of these functions at \(t \in (a, b) \).) Let \(U \) be defined by

\[
Y(\lambda_2) = Y(\lambda_1)U \quad \text{on} \quad (a, b).
\]

Multiplying on the left by \(I \), differentiating, and using (8) we have,

\[
(\lambda_2A + B)Y(\lambda_2) = (\lambda_1A + B)Y(\lambda_1)U + JY(\lambda_1)U' \quad \text{a.e. on} \quad (a, b).
\]

From (11) we have,

\[
JY(\lambda_1)U' = (\lambda_2 - \lambda_1)AY(\lambda_1)U \quad \text{a.e. on} \quad (a, b).
\]

Multiplying on the left by \(Z^*(\lambda_1) \) we have

\[
Z^*(\lambda_1)Y(\lambda_1)U' = (\lambda_2 - \lambda_1)Z^*(\lambda_1)AY(\lambda_1)U \quad \text{a.e. on} \quad (a, b).
\]

We first note that

\[
\int_a^b \|Z^*(t, \lambda_1)Y(t, \lambda_1)\|dt < \infty
\]

where \(\| \cdot \| \) is any matrix norm. In order that (13) hold it is sufficient that

\[
\int_a^b |z^*(t, \lambda_1)A(t)y_j(t, \lambda_1)|dt < \infty
\]

whenever \(z_i \) a column of \(Z \) and \(y_j \) is a column of \(Y \). By the Cauchy-Schwartz inequality we have a.e. on \((a, b) \) (writing \(z \) for \(z_i(t, \lambda_1) \) and \(y \) for \(y_j(t, \lambda_1) \)) that

\[
|z^*Ay| \leq (z^*Az)^{1/2}(yAy)^{1/2}.
\]

From

\[
0 \leq ((z^*Az)^{1/2} - (y^*Ay)^{1/2})^2
\]

we have that
From (15), (16) and the hypothesis that every solution of (8) or (9) satisfies (10) when $\lambda = \lambda_1$, we see that 14 holds.

Next we establish that

$$\begin{align*}
(Z^*(\lambda_1)JY(\lambda_1))^{-1}
\end{align*}$$

is bounded on (a,b). Let $\alpha \in (a,b)$ then by Theorem 4 of [13] it follows that

$$\begin{align*}
Z^*(t, \lambda_1)JY(t, \lambda_1)
&= Z^*(\alpha, \lambda_1)JY(\alpha, \lambda_1) + (\lambda_1 - \lambda_1) \int_{\alpha}^{t} Z^*(s, \lambda_1)A(s)Y(s, \lambda_1)ds
\end{align*}$$

for all $t \in (a,b)$. Thus from (13) we see that

$$(18) \quad Z^*(t, \lambda_1)JY(t, \lambda_1)$$

has a limit as $t \to a$ and as $t \to b$. In order to show that (17) (which is continuous) is bounded it is then sufficient to show that the limits of (18) at a and at b are nonsingular. From Abel's formula for (8) and (9) (recall that $J^* = -J$, $A^* = A$, and $\text{tr} PQ = \text{tr} QP$ for matrices P and Q) we have that

$$\begin{align*}
\det(Z^*(t, \lambda_1)JY(t, \lambda_1))
&= \det(Z^*(\alpha, \lambda_1)JY(\alpha, \lambda_1)) \\
&\cdot \exp \int_{\alpha}^{t} \text{tr}(J^{-1}\lambda_1A + J^{-1}B^*) + J^{-1}\lambda_1A + J^{-1}B) \\
&= \det((Z^*(\alpha, \lambda_1)JY(\alpha, \lambda_1)) \exp \int_{\alpha}^{t} (\lambda_1 - \lambda_1) \text{tr} J^{-1}A.
\end{align*}$$

Since by hypothesis $\int_{a}^{b} |\text{tr} J^{-1}A| < \infty$ the limits of (18) must be nonsingular.

It now follows that (12) is equivalent to an equation of the form

$$(19) \quad U' = MU \quad \text{a.e. on} \quad (a,b)$$

where $\int_{a}^{b} \|M(t)\| dt < \infty$. It is well known (see, e.g. Theorem 5.4.2 of [9]) that all solutions of (19) are bounded.
Returning to (11) we see that every solution of (8) when \(\lambda = \lambda_2 \) is a bounded multiple of a solution of (8) when \(\lambda = \lambda_1 \).

The argument to show that every solution of (9) satisfies (10) when \(\lambda = \lambda_2 \) is similar.

Theorem 2 is a generalization of a result of Atkinson (Theorem 9.11.2 of [1]) for the case where \(B^* = B \).

Theorem 1 is also valid for the quasidifferential expressions considered in [13] where no smoothness conditions on the coefficients of \(I \) are required.

REFERENCES

Received August 10, 1973. Research for this paper was partially supported by National Science Foundation Grant GP-38212.

Virginia Polytechnic Institute and State University

University of Houston
Shimshon A. Amitsur, *Central embeddings in semi-simple rings* 1
David Marion Arnold and Charles Estep Murley, *Abelian groups, A, such that Hom(A, — — —) preserves direct sums of copies of A* 7
Martin Bartelt, *An integral representation for strictly continuous linear operators* ... 21
Richard G. Burton, *Fractional elements in multiplicative lattices* 35
James Alan Cochran, *Growth estimates for the singular values of square-integrable kernels* ... 51
C. Martin Edwards and Peter John Stacey, *On group algebras of central group extensions* .. 59
Peter Fletcher and Pei Liu, *Topologies compatible with homeomorphism groups* ... 77
George Gasper, Jr., *Products of terminating 3F2(1) series* 87
Leon Gerber, *The orthocentric simplex as an extreme simplex* 97
Burrell Washington Helton, *A product integral solution of a Riccati equation* ... 113
Melvyn W. Jeter, *On the extremal elements of the convex cone of superadditive n-homogeneous functions* 131
R. H. Johnson, *Simple separable graphs* 143
Margaret Humm Kleinfeld, *More on a generalization of commutative and alternative rings* .. 159
A. Y. W. Lau, *The boundary of a semilattice on an n-cell.* 171
Robert F. Lax, *The local rigidity of the moduli scheme for curves* 175
Glenn Richard Luecke, *A note on quasidiagonal and quasitriangular operators* ... 179
Paul Milnes, *On the extension of continuous and almost periodic functions* ... 187
Hidegoro Nakano and Kazumi Nakano, *Connector theory* 195
James Michael Osterburg, *Completely outer Galois theory of perfect rings* ... 215
Lavon Barry Page, *Compact Hankel operators and the F. and M. Riesz theorem* .. 221
Joseph E. Quinn, *Intermediate Riesz spaces* 225
Shlomo Vinner, *Model-completeness in a first order language with a generalized quantifier* ... 265
Jorge Viola-Prioli, *On absolutely torsion-free rings* 275
Stephen Jeffrey Willson, *Equivariant maps between representation spheres* ... 291