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Let G be a finite group, V and W be finite representations
of G, S(V) and S(W) be the unit spheres in V and
W. Suppose dim VH ^dim WH for every subgroup H of
G. We seek to classify the G- equivariant homotopy classes of
6-equivariant maps from S(V) to S(W).

Introduction. We wish to consider the following problem: Let
G be a finite group, and V and W be finite dimensional orthogonal
representations of G. Let 5(V) and S(W) denote the unit spheres of
V and W respectively. Then S(V) and S(W) inherit G-actions.
Classify the equivariant homotopy classes of G-maps from S(V) to
S(W).

The case where G = Zp and S(V) and S(W) have free Zp actions
was done by Olum [6] and was used to give a classification of lens
spaces up to homotopy equivalence. In this paper we generalize
Olum's result.

Our approach is to consider the behavior of an equivariant map
restricted to the various fixed point sets. Explicity, if X is a space with
a left action of the group G, and H is a subgroup of G, we denote by XH

the set of points in X left fixed by each element of H. If
/: S(V)-*S(W) is a G- equivariant map (i.e., f(gυ) = gf(v) for all g G G
and veS(V)), then / induces maps /" : S(VH->S(W)H for each
subgroup H. Since V and W are linear representations, these fixed
point sets S(V)H and S(W)H are again spheres, and we may choose an
orientation for each S(V)H and S(W)H. If X is a manifold, denote by
dimX the (real) dimension of X. When dimS( V)H = dimS(HOH, fH

has a well-determined degree, denoted by deg/H.
Our major theorem asserts that, under suitable hypotheses, the

homotopy classes of the maps fH for all H determine the equivariant
homotopy class of /:

DEFINITION. Let G be a finite group. If H is a subgroup of G,
denote by N(H) the normalizer of H in G. An orthogonal representa-
tion V of G is completely orientable if for every subgroup H of G, the
induced action of N(H) on S(V)H is orientation-preserving.

EXAMPLE. Any unitary representation of G is clearly completely
orientable.
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THEOREM A. Let G be a finite group, and let V and W be
orthogonal representations of G. Assume VφW is completely orient-
able and that for each subgroup H of G we have dim VH S
dim WH. Suppose h and k are G-equivariant maps from S(V) to S(W)
and deghH = degfc" whenever dim V" = dim W". Then h and k are
G-equivariantly homotopic.

We note that G. Segal [7] has obtained Theorem A for the case
V - W. It is clear that if V and W are each completely orientable,
then so is V 0 W.

Theorem A may be restated as follows: Denote by [S(V),S(W)]G

the class of G-equivariant homotopy classes of G-equivariant maps
from S(V) to S(W). For each subgroup H of G denote by
[S(V)H,S(W)H] the set of (not necessarily equivariant) homotopy
classes of (not necessarily equivariant) maps from S(V)H to
S(W)H. There is a natural map

v: [S(V),S(W)]c-+U [S(V)H,S(W)H]
H

where the product runs over all subgroups H of G the map v is defined
by setting the H component of v(f) equal to the class of f" when
/: S(V)-+ S(W) is a G-equivariant map. Theorem A then has the
following formulation:

THEOREM A (restated). Let G be a finite group, and let V and W
be orthogonal representations of G so V 0 W is completely
orientable. Suppose dim S(V)H S dim S(W)H for each subgroup H of
G. Then v is one-to-one.

Given this formulation, the classification problem reduces to the
computation of the image of v. It is not a difficult exercise, although
somewhat cumbersome, to compute this image in the case where G is a
finite abelian group.

The hypothesis that dimS(V)H ^dimS(W)H for all H cannot be
eliminated. An easy counterexample is provided as follows: Let
G = Z2. Let V be the antipodal representation on R* (i.e., if r
generates G, let τv = -v where vGRs.) Let W be the constant
representation on RΊ (i.e., r leaves every point of W fixed). Define
/: S(V)^>S(W) by the composition
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where p is the projection map, k is the map of degree one which
collapses all but a single 7-cell to a point, and h is the appropriate
suspension of the Hopf map. Clearly / is G-equivariant. Since p has
degree 2 and h has order 2, / is (nonequivariantly) homotopically
trivial. If / were equivariantly trivial, then the induced map hk on the
orbit spaces would be trivial. Using the notation of Steenrod [9], we
observe that hk is trivial on the 6-skeleton of RP7; the difference
cocycle d(hk,t) is then defined using the trivial homotopy, where t is
the constant map, and we find directly that it corresponds to h E
H7(RP7; τr7(S6)) = Z2 where h/0. By Steenrod [9] it follows that hk is
homotopically trivial only if h lies in Sq\H\RPη\ Z2)). But
Sq\H\RP7\ Z2)) = 0 (see, for example, Steenrod [8, page 5].). Hence
hk is essential.

Nor can we eliminate the hypothesis of complete orientability. A
simple example follows: Let G = Z2 with generator r. Take V = R3

with Z2 action τv = - u, and take W = R3 with the trivial action. Let

h:S(V)^S(W) be defined by S(V)-^S(V)/Z2 = RP2^ S2= S(W)

where P is the projection map and y is not homotopically trivial. Then
/•Pis trivial since deg P = 0, but h is not equivariantly trivial since its
orbit map y is nontrivial.

Details. Let G be a finite group acting on a space X. If JC E X, the
isotropy subgroup of G at JC, denoted Gx, is the set of g E G such that
gx = x. A principal isotropy subgroup H is a subgroup H so H = Gx

for some x and whenever Gy C H, then Gy = H. It is well-known that if
X is a connected smooth manifold and the action of G on X is smooth,
then any two principal isotropy subgroups are conjugate. We shall use
o(G) to denote the order of the group G.

We are going to utilize equivariant obstruction theory and such
notions as "equivariant triangulation", "obstruction cocycle", and
"equivariant coboundary". A good background source for such mater-
ial is Bredon [1]. Note that for us, an equivariant triangulation of a
space X with an action of G consists of a way of expressing X as a
simplicial complex in such a manner that (1) for each g EG, the map
g: X—>X is a simplicial map; and (2) if ΔΓ is an r-simplex of X and s
lies in the interior of Δr (denoted Int ΔΓ), then all points in IntΔΓ have
isotropy subgroup Gs, and the natural equivariant map from GIGS x ΔΓ

into X (where Δr is here regarded as having no G-action) is a
homeomorphism of GjGs x IntΔΓ onto its image. The r-skeleton of X
will be denoted XΓ.

The basic tool for our analysis will be the following proposition:
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PROPOSITION 1. Let G be a finite group. Let S, and S2 be spheres
with smooth actions of G such that each element of G preserves
orientation on Si if and only if it preserves orientation on S2.

1 Suppose
the principal isotropy group of G on Si is e. Let L = U H^eS". Let h
and k be G-equivariant maps from S, to S2 satisfying that h\L =
k\L. Then

(1) if dim 5] <dimS 2 , h and k are G-homotopic rel L;
(2) if dimS, = dimS2, then degfi =deg/c modo(G) and degft =

deg k if and only if h and k are G-homotopic rel L.

Proof. By Illman [4] or Matumoto [5] we may obtain an
equivariant triangulation of S,. We observe that L is a
subcomplex. We try to construct an equivariant homotopy F : 5, x
/ —»S2 by equivariant obstruction theory. We set F|SjXθ = Λ,
F|S, x 1 = ϋc, F\L x / = h projection. Assume that F has been ex-
tended equivariantly over (5, x 7)r, the r- skeleton of S, x /. If G/e x
ΔΓ x 7 is an (r + 1) cell of S , x / - ( S , x 3 / U L x / ) then F induces a

map from Sr to S2 by Sr = <9(ΔΓ x/)-»e x Δr x7-^S 2 . If r <dimS 2 ,

then clearly the map extends over ΔΓ x 7, and we can easily extend
equivariantly over G/exA f x/. This proves (1) by induction; and in
case (2), it shows there is an equivariant extension of F over (5! x I)n

where n ^ dim Si = dimS2. Continue to call the extension F.
In this latter case, we try to extend over (S,x/)n + 1. Define a

function c (the obstruction cochain) which assigns to each cell g x A " x
/ CG/e x Δπ x / the integer which is the degree of the map F\d(g x Δπ x
/)—> S2. (Here, each cell g x Δ" x / has been assigned an orientation
consistent with the orientation of S, x /.) It follows that c(g} x Δ" x
/) = c(g2gi x Δ" x/) for any gλ and g2 since F is equivariant and g2

reverses orientation on S2 if and only if it reverses orientation as a map
from d(g] x Δ" x /) to d(g2gi xA"x /). Hence it is clear that F extends
equivariantly over (S, x J)n + 1 if and only if each such integer is 0,

From the proof that the degree map is a homomorphism from
πn(Sn) to Z, we see

ΣdegF|<9(g xΔn x/) = deg/c -deg/z

where the summation runs over all cells of form g x Δπ x /. Since
degF|d(g xΔn x/) = degF|d(e xΔ" x /), we obtain
o(G)ΣΔ- degF\d(e xΔ" x 7) = degk -deg/i. This proves deg/c =
deg/i modo(G).

1 In fact 5, need not be a sphere, but only a smooth closed orientable manifold; the same
proof then applies.
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If deg k = deg Λ, we shall see that c is an equivariant coboundary
δ/, where / is a cochain containing no terms involving cells of L x
/. Hence we may modify F equivariantly on (Si x I)n -
((S, x I)n~ι U S, x dl U L x /) so that the new map extends equivariantly
over (5, x /)"+ 1. Note that the new map agrees with F on L x /. For
further details, see Bredon [1].

To see that c is an equivariant coboundary, we choose a fixed cell
σ0 = G/e x ΔS x /. For each cell σ, = G/e x Δ" x /, obtain a path from
one of the simplices of σx to e x ΔJ x /, which passes only through the
interiors of cells of form G/e x Δ" x / and G/e x Δ""1 x /. Such a path
exists since the image in the orbit space SJG of the set of points with
isotropy group e is connected. (See Bredon [2, p. 179].) For any cell
T" = G\e x Δ π l x /, we may let dτ» be the cochain which assigns 1 to
each cell g x Δπ~' x / C r " and 0 to all other cells. Then ddT» assigns 1 to
each g x Δn x / on one side of τn and - 1 to each on the other
side. Following the path from each or, to σ0 and adding appropriate
multiples of δdτ» for the various G/e x Δ n l x / which are crossed by
those paths, we obtain a cochain which assigns (deg k - deg h)lo(G) to
each cell g x Δ o

n x / C σ 0 and 0 to all others. Hence, if deg h = deg fc, we
may express c = Σ afid-, where α, G Z, δd( is the cochain obtained from
some Gle xΔ"" !x/.

COROLLARY 2. Lei G be a finite group. Let V and W be or-
thogonal representations of G, where V 0 W is completely
orientable. Suppose the principal isotropy group of G on S(V) is
e. Suppose dimS(V)" =SdimS(WT for all H CG. Let
h,k: S(V)-+S(W) be G-maps. Suppose that whenever dimS(V)H =
dim S(W)H (Hέ e) then deg hH = deg kH. Then

(1) if dim5(Vr)<dim5(W^), h and k are G-homotopic\
(2) if dimS(V) = dimS(WO, then deg/ι=degfc modo(G) and

deg h = deg k iff h and k are G-homotopίc.

Proof. We merely apply the Equivariant Homotopy Extension
Property (see Illman [4] or Willson [10]) and Proposition 1. Explicitly,
let Hx be a maximal isotropy group. By Proposition 1, h \S(V)Hλ and
k\S(V)Hλ are N(H^)IH^ homotopic. Extend the homotopy over
GS(V)Hχ to a G-homotopy by equivariance; there is no difficulty since it
is defined on cells of form N(HX)IHX x Δ1 x / C G/H, x Δ1 x /. Now by
the Homotopy Extension Property, we may equivariantly homotope h
to Λ, so that Λ,|GS(V)H' = )t|GS(V)H'.

Let H2 be an isotropy group maximal among those remaining. By
Proposition 1, h,|S(V)H2 and k\S(V)H> are N(H2)IH2
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homotopic. Continue as above to G-homotope hx rel S(V)Ht to a
G-map h2 so h2\GS(V)H> = k \GS(V)H\

Continue inductively.

REMARK. Observe that in this corollary we use the assumption
that the actions are orthogonal to ensure that S(V)Hi and S(W)Hi are
spheres; and we use the assumption that V φ W is completely orienta-
ble to ensure that any element of N(Ht) either preserves orientation on
both S(V)H< and S(W)Hi or preserves orientation on neither.

Proof of Theorem A. Let K denote the set of g G G such that
gx - x for all xES(V). Then K is a normal subgroup of
G. Replacing G by GIK if necessary, we may assume the action of G
on S(V) is effective. Now Newman's Theorem [3, p. 204] implies that
the principal isotropy group on S( V) is e. Then Corollary 2 yields the
Theorem.

COROLLARY 3. Let G be a finite group. Let V and W be unitary
representations ofG. Suppose dim VH < dim WH for all H. Then any
two G-equivariant maps h andk from S(V) to S(W) are G-equivariantly
homotopic.
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