Functions are from R×R to N,
where R denotes the set of real numbers and N denotes a normed complete ring. If G
has bounded variation on [a,b], then ∫
abG exists if and only if x ∏
y(1 + G) exists for
a ≦ x < y ≦ b. If each of limx→p + H(p,x), limx→p−H(x,p),limx,y→p+H(x,y) and
limx,y→p−H(x,y) exists, G has bounded variation on [a,b] and either ∫
abG exists
or x ∏
y(1 + G) exists for a ≦ x < y ≦ b, then ∫
abHG and ∫
abGH exist
and x ∏
y(1 + HG) and x ∏
y(1 + GH) exist for a ≦ x < y ≦ b. If G has
bounded variation on [a,b] and ν is a nonnegative number, then ∫
abG exists
and ∫
ab|G −∫
G| = ν if and only if x ∏
y(1 + G) exists for a ≦ x < y ≦ b
and
|