Vol. 56, No. 2, 1975

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On boundary functionals and operators with finite-dimensional null spaces

Franklin Takashi Iha

Vol. 56 (1975), No. 2, 517–524
Abstract

Let L be a closed operator on a Hilbert space defined on a linear manifold 𝒟 of t with the property that L has a continuous right inverse T and that the dimension of the null space of L is finite. A boundary functional η for L is defined to be a linear functional η on 𝒟 such that ηT is continuous. The boundary-value problems for ordinary differential equations are generalized to the operator L with the boundary conditions defined by a set of boundary functionals. It is shown, in particular, that if K is a continuous right inverse of L, then there exist n linearly independent boundary functionals, η1,n, where n is the dimension of the null space of L, such that the range of K is precisely the linear manifold {u𝜖𝒟|ηI(u) = 0,j = 1,2,,n}.

Mathematical Subject Classification 2000
Primary: 47A05
Secondary: 34B25
Milestones
Received: 28 November 1973
Published: 1 February 1975
Authors
Franklin Takashi Iha