COEFFICIENT BOUNDS FOR SOME CLASSES OF STARLIKE FUNCTIONS

Roger W. Barnard and John Lawson Lewis
Let t be given, $1/4 \leq t \leq \infty$, and let $S(t)$ denote the class of normalized starlike univalent functions f in $|z| < 1$ satisfying

(i) $|f(z)/z| \geq t$, $|z| < 1$, if $1/4 \leq t \leq 1$,
(ii) $|f(z)/z| \leq t$, $|z| < 1$, if $1 < t \leq \infty$.

If $f(z) = z + \sum_{k=2}^{\infty} a_n z^k \in S(t)$ and n is a fixed positive integer, then the authors obtain sharp coefficient bounds for $|a_n|$ when t is sufficiently large or sufficiently near $1/4$. In particular a sharp bound is found for $|a_4|$ when $1/4 \leq t \leq 1$ and $5 \leq t \leq \infty$. Also a sharp bound for $|a_4|$ is found when $1/4 \leq t \leq 1$ or $12.259 \leq t \leq \infty$.

1. Introduction. Let S denote the class of starlike univalent functions f in $K = \{z : |z| < 1\}$ with the normalization, $f(0) = 0, f'(0) = 1$. Given t, $1/4 \leq t \leq \infty$, let $S(t)$ denote the subclass of functions $f \in S$ satisfying

\begin{align*}
(1.1) & \quad |f(z)/z| \geq t, \ z \in K, \text{ if } 1/4 \leq t \leq 1, \\
(1.2) & \quad |f(z)/z| \leq t, \ z \in K, \text{ if } 1 < t \leq \infty.
\end{align*}

If $1/4 < t \leq 1$, we let $F = F(\cdot, t)$ be defined by

\begin{equation}
\frac{zF'(z)}{F(z)} = \frac{[1 + 2(2b^2 - 1)z + z^2]^{1/2}}{(1 - z)}, \ z \in K,
\end{equation}

where $0 \leq b < 1$ and $t = [(1 + b)^{1-b} (1 - b)^{1-b}]^{-1}$. The function $F = F(\cdot, t)$ defined by (1.3) is in $S(t)$ for $1/4 < t \leq 1$, as can be shown by a long but straightforward calculation (see Suffridge [9]). For fixed t, $1/4 < t \leq 1$, this function maps K onto the complex plane minus a set

$$\{w : |w| \geq t, \ \pi b \leq \arg w \leq 2\pi - \pi b\}.$$

If $1 < t < \infty$, we let $F = F(\cdot, t) \in S(t)$ be defined by

\begin{equation}
\frac{F(z)}{[1 - t^{-1}F(z)]^2} = \frac{z}{(1 - z)^2}, \ z \in K.
\end{equation}

It is well known (see Nehari [4, p. 224, ex. 4]) that the function F maps K onto a domain whose boundary consists of $\{w : |w| = t\}$, and a slit along the negative real axis from $-t$ to $-\lambda$ where $4\lambda^2 = (t + \lambda)^2$. If $t = 1/4$ or $t = \infty$, we let
\[F(z, 1/4) = F(z) = z/(1 - z), z \in K. \]

In [2] the authors proved a subordination theorem for some classes of univalent functions. For \(S(t)\) this theorem may be stated as follows:

Theorem A. Let \(t \) be given, \(1/4 \leq t \leq \infty \). Let \(F = F(\cdot, t) \) be as in (1.3) and (1.4). If \(f \in S(t) \), then \(\log f(z)/z, z \in K \), is subordinate to \(\log F(z)/z, z \in K \).

Theorem A implies for a given \(t, 1/4 \leq t \leq \infty \), that \(F = F(\cdot, t) \) solves a number of extremal problems in \(S(t)\). Some of these problems were pointed out in [2]. There, however, only general properties of subordination were used. In this note, for certain values of \(t \), we use our specific knowledge of \(F \), together with Theorem A, to obtain coefficient bounds for functions \(f \in S(t) \). More specifically, we prove

Theorem 1. Let \(t \) be given, \(1/4 \leq t \leq \infty \). Let \(F(z) = F(z, t) = z + \sum_{k=2}^{\infty} A_k(t)z^k, z \in K \), be as in (1.3) and (1.4). Let \(f(z) = z + \sum_{k=2}^{\infty} a_kz^k, z \in K \), be in \(S(t)\). If \(n \) a positive integer is given (\(n > 2 \)), then there exist \(\alpha_n, \beta_n \) satisfying \(1/4 < \alpha_n \leq 1, 1 \leq \beta_n < \infty \), with the property that

\[(1.5) \quad |a_n| \leq A_n(t), \]

whenever \(1/4 \leq t < \alpha_n \) or \(\beta_n < t \leq \infty \). \(\alpha_n \) and \(\beta_n \) may be chosen in such a way that equality holds in (1.5) only if \(f(z) = \eta^{-1}F(\eta z), z \in K \), for some \(\eta, |\eta| = 1 \). In particular

\[(1.6) \quad |a_3| \leq A_3(t) \text{ if } 1/4 \leq t \leq 1 \text{ or } 5 < t \leq \infty, \]
\[(1.7) \quad |a_4| \leq A_4(t) \text{ if } 1/4 \leq t \leq 1 \text{ or } 12.259 \leq t \leq \infty. \]

Equality holds in (1.6) and (1.7) only if \(f(z) = \eta^{-1}F(\eta z), z \in K \), for some \(\eta, |\eta| = 1 \).

Let \(f \) and \(t \) be as in Theorem 1. We note that the inequality \(|a_2| \leq A_2(t), 1/4 \leq t \leq \infty \), is an easy consequence of Theorem A (see [2]). We also note for \(1 \leq t \leq e \) that \(|a_3| \leq 1 - t^2 \), where equality holds for the function \(f \in S(t) \) defined by \(f(z) = F(z^2, t^2) \), \(z \in K \). This inequality is due to Tammi [10]. The problem of finding a sharp upper bound for \(|a_3| \) when \(f \in S(t), e < t < 5 \), is still open. However, Barnard [1] has shown that the function which maximizes \(|a_3| \) in \(S(t)\) is either \(F \) or a function which maps \(K \) onto a domain whose boundary consists \(\{w : |w| = t\} \) and two radial slits of equal length.

We remark that several authors have considered similar problems in the class \(U(t) \) of normalized univalent functions \(f \) (i.e., \(f(0) = 0, \)

\(f'(0) = 1 \) bounded above by \(t \), \(1 < t < \infty \). If \(f(z) = z + \sum_{n=2}^\infty a_n z^n \), \(z \in K \), is in \(U(t) \), then Schiffer and Tammi [6] showed that \(|a_4| \leq A_4(t) \), for \(t \geq 33 \frac{1}{3} \). If in addition \(f \) has real coefficients, then Singh [8] proved that \(|a_4| \leq A_4(t) \) for \(t \geq 11 \). Moreover, Schiffer and Tammi [7] have proved for each positive integer \(n \geq 2 \), that there exists \(\delta_n, 1 < \delta_n < \infty \), with the following property: If \(f \in U(t) \) and \(1 < t \leq \delta_n \), then

\[
|a_n| \leq \frac{2}{n-1} (1 - t^{1-n}).
\]

Here equality holds for \(f(z) = F(z^{n-1}, t^{n-1})^{1/(n-1)}, z \in K \), which in fact is in \(S(t) \). Hence the above inequality is also sharp for functions in \(S(t) \) when \(1 < t \leq \delta_n \). Finally we remark that Schiffer and Tammi [6] have shown that if suffices to take \(\delta_4 \leq 34/19 \).

2. Proof of Theorem 1. Let \(G, \omega \), be analytic in \(K \) and suppose that

\[
\omega(0) = 0,
\]

\[
|\omega(z)| \leq 1, z \in K.
\]

Put \(g(z) = G[\omega(z)], z \in K \). Suppose that \(G(z) = \sum_{k=1}^\infty c_k z^k \), and \(g(z) = \sum_{k=1}^\infty b_k z^k \). Then Rogosinski [5, Thm. VI] proved

Theorem B. Let \(n \) be a fixed positive integer. If \(c_n > 0 \) and if there exists an analytic function \(P \) in \(K \) with positive real part satisfying

\[
P(z) = \frac{c_n}{2} + c_{n-1} z + c_{n-2} z^2 + \cdots + c_1 z^{n-1} + \sum_{k=n}^\infty d_k z^k
\]

for \(z \in K \), then \(|b_n| \leq |c_n| \). Equality can occur only if \(g(z) = G(\eta z) \) for some \(\eta, |\eta| = 1 \), or if \(n > 1 \) and \(P \) has the form,

\[
P(z) = \sum_{i=1}^J \lambda_i \left(\frac{1 + \varepsilon_i z}{1 - \varepsilon_i z} \right), \quad z \in K,
\]

where \(\lambda_i > 0, |\varepsilon_i| = 1, 1 \leq i \leq J \), and \(J \leq n - 1 \).

Furthermore, Carathéodory (see Tsuji [11, Ch. 4 §7]) proved

Theorem C. The function \(P \) in Theorem B exists if and only if the \(n \) by \(n \) matrix
is positive semi definite. If \(P \) exists, then \(P \) has the form (2.3) only if the above matrix has determinant zero.

We now use Theorems A, B, and C to prove Theorem 1. Let \(t \) be fixed, \(1/4 \leq t \leq \infty \), and \(f \in S(t) \). Then Theorem A implies there exists a function \(\omega \) satisfying (2.1) and (2.2) for which

\[
\frac{f(z)}{z} = \frac{F[\omega(z)]}{\omega(z)}, \quad z \in K.
\]

Hence we may use Theorems B and C with \(g(z) = \frac{f(z)}{z} - 1 \), \(G(z) = (F(z)/z) - 1 \), \(z \in K \), and \(c_i = A_{i-1}(t) \), \(1 \leq i \leq n - 1 \), to prove Theorem 1. To do so we shall want some notation.

Let \(n \) and \(k \) be fixed positive integers satisfying \(2 \leq k \leq n \). Let \(\delta(k, n, t) \) be the \(k \times k - 1 \) by \(k - 1 \) matrix

\[
\delta(k, n, t) = \begin{pmatrix}
A_n(t) & A_{n-1}(t) & \cdots & A_{n-k+3}(t) \\
A_{n-1}(t) & A_n(t) & \cdots & A_{n-k+2}(t) \\
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots \\
& & & A_{n-k+2}(t) & A_{n-k+3}(t) & \cdots & A_n(t)
\end{pmatrix}
\]

Let \(|\delta(k, n, t)| \) denote the determinant of \(\delta(k, n, t) \). Then it is well known (see Hohn [3, Thm. 9.17.3]) that \(\delta(n, n, t) \) is positive definite if and only if \(|\delta(k, n, t)| > 0 \) for \(2 \leq k \leq n \).

We note that \(A_n(\infty) = A_n(1/4) = n \) for \(n \geq 2 \). Using this fact we obtain that \(|\delta(k, n, \infty)| = |\delta(k, n, 1/4)| = (2n + 2 - k) 2^{k-3} \) for \(2 \leq k \leq n \) and \(n > 2 \). Since (1.3) and (1.4) imply \(A_n \) is continuous as a function of \(t \), \(1/4 \leq t \leq \infty \), it follows that

\[
\lim_{t \to \infty} |\delta(k, n, t)| = |\delta(k, n, \infty)| = \lim_{t \to 1/4} |\delta(k, n, t)| > 0
\]

for each positive integer \(n > 2 \) and \(2 \leq k \leq n \). From this inequality and our previous remark we see that \(\delta(n, n, t) \) is positive definite for
sufficiently large t and t near $1/4$, say $1/4 \leq t < \alpha_n, \beta_n < t \leq \infty$. Using Theorems A, B, and C, it follows that (1.5) is true.

To prove (1.6) and (1.7) we make some explicit calculations. The case $t = 1$ is trivial since then $S(t)$ consists only of the identity function. First from (1.4) we find for $x = t^{-1}$, and $1 < t \leq \infty$, that

\begin{align*}
A_2(t) &= 2(1 - x), \\
A_3(t) &= (3 - 5x)(1 - x), \\
A_4(t) &= (4 + 14x^2 - 16x)(1 - x).
\end{align*}

Second if $1/4 \leq t < 1$ and $a = 2b^2 - 1$ [as in (1.3)], then from (1.3) we get

\begin{align*}
A_2(t) &= 1 + a, \\
A_3(t) &= (1 + a)(5 + a)/4, \\
A_4(t) &= (1 + a)(17 + 6a + a^2)/12.
\end{align*}

Here $-1 < a \leq 1$.

To prove (1.6) it suffices, by the previous argument, to show that $A_2(t) > 0$ and

\[|\delta(3,3,t)| = A_3(t)^2 - A_2(t)^2 > 0 \]

for $5 < t < \infty$ or $1/4 \leq t < 1$. From (2.5) and (2.6) we see that these inequalities are valid for the above values of t. To prove (1.7), we need to show that $\delta(3,4,t) > 0, \delta(4,4,t) > 0$, for the stipulated values of t in Theorem 1. To do this we consider two cases. If $1 < t \leq \infty$, and $x = 1/t$, then from (2.4) and (2.5) we have

\[|\delta(4,4,t)| = (1 - x)^3 \begin{vmatrix}
4 + 14x^2 - 16x & 3 - 5x & 2 \\
3 - 5x & 4 + 14x^2 - 16x & 3 - 5x \\
2 & 3 - 5x & 4 + 14x^2 - 16x
\end{vmatrix} \]

Adding the second row to the first and third rows we get

\[|\delta(4,4,t)| = (1 - x)^3 \begin{vmatrix}
7(1 - 2x) & 1(1 \times 2x) & 5 \\
3 - 5x & 4 + 14x^2 - 16x & 3 - 5x \\
5 & 7(1 - 2x) & 7(1 - 2x)
\end{vmatrix} \]
Evaluating this determinant we obtain

$$|\delta(4,4,t)| = 4(1-x)^5 (1-7x) [3 - 47x + 126x^2 - 98x^3] > 0$$

for $12.259 \leq t \leq \infty$. It is easily checked that $|\delta(3,4,t)| = A_3^2(t) - A_3^2(t) > 0$ for $12.259 \leq t \leq \infty$. Hence (1.7) is true for $12.259 \leq t \leq \infty$.

If $1/4 \leq t < 1$, then from (2.4), (2.6), we obtain

$$\begin{vmatrix}
17 + 6a + a^2 & 3(5 + a) & 12 \\
3(5 + a) & 17 + 6a + a^2 & 3(5 + a) \\
12 & 3(5 + a) & 17 + 6a + a^2
\end{vmatrix}$$

Subtracting the second row from the first and third rows, we get

$$\begin{vmatrix}
a + 2 & -a - 2 & -3 \\
3(5 + a) & 17 + 6a + a^2 & 3(5 + a) \\
-3 & -a - 2 & a + 2
\end{vmatrix}$$

Adding six times the first and third rows to the second of this determinant, we find that

$$\begin{vmatrix}
a + 2 & -a - 2 & -3 \\
9 & a - 7 & 9 \\
-3 & -a - 2 & a + 2
\end{vmatrix}$$

Evaluating this determinant we obtain

$$(12)^3|\delta(4,4,t)| = (1 + a)^3 (15a^2 + 93a + 215) > 0$$

for $-1 < a \leq 1$. Hence $|\delta(4,4,t)| > 0$ for $1/4 \leq t < 1$. It is easily checked that $|\delta(3,4,t)| > 0$ for $1/4 \leq t < 1$. We conclude that (1.7) is true for $1/4 \leq t < 1$. The proof of Theorem 1 is now complete.

Finally we remark for $1/4 \leq t < 1$ that

$$48A_3(t) = (1 + a) (74 + 38a + 10a^2 - 2a^3) < 48A_3(t)$$

for t near 1, $t < 1$. It follows that $|\delta(3,5,t)| < 0$ for t near 1, $t < 1$. Hence our method does not imply for all t, $1/4 \leq t \leq 1$, that
\[|a_5| \leq A_3(t). \] However, it is still possible our method implies that \(\alpha_n \) in Theorem 1 can be chosen independent of \(n \).

REFERENCES

Received December 4, 1973.

UNIVERSITY OF KENTUCKY
Pacific Journal of Mathematics
Vol. 56, No. 2 December, 1975

Ralph Alexander, Generalized sums of distances 297
Zvi Arad and George Isaac Glauberman, A characteristic subgroup of a
group of odd order ... 305
B. Aupetit, Continuité du spectre dans les algèbres de Banach avec
involution ... 321
Roger W. Barnard and John Lawson Lewis, Coefficient bounds for some
classes of starlike functions .. 325
Roger W. Barnard and John Lawson Lewis, Subordination theorems for
some classes of starlike functions .. 333
Ladislav Bican, Preradicals and injectivity ... 367
James Donnell Buckholtz and Ken Shaw, Series expansions of analytic
functions. II ... 373
Richard D. Carmichael and E. O. Milton, Distributional boundary values in
the dual spaces of spaces of type \(H_5 \) .. 385
Edwin Duda, Weak-unicoherence .. 423
Albert Edrei, The Padé table of functions having a finite number of essential
singularities ... 429
Joel N. Franklin and Solomon Wolf Golomb, A function-theoretic approach
to the study of nonlinear recurring sequences 455
George Isaac Glauberman, On Burnside’s other \(p^a q^b \) theorem 469
Arthur D. Grainger, Invariant subspaces of compact operators on
topological vector spaces .. 477
Jon Craig Helton, Mutual existence of sum and product integrals 495
Franklin Takashi Iha, On boundary functionals and operators with
finite-dimensional null spaces ... 517
Gerald J. Janusz, Generators for the Schur group of local and global
number fields ... 525
A. Katsaras and Dar-Biau Liu, Integral representations of weakly compact
operators ... 547
W. J. Kim, On the first and the second conjugate points 557
Charles Philip Lanski, Regularity and quotients in rings with involution 565
Ewing L. Lusk, An obstruction to extending isotopies of piecewise linear
manifolds ... 575
Saburou Saitoh, On some completenesses of the Bergman kernel and the
Rudin kernel ... 581
Stephen Jeffrey Willson, The converse to the Smith theorem for
\(Z_p \)-homology spheres .. 597