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Let f(z) be regular at the origin and let it be single-valued
and regular except for poles and s + 1 < + » essential singulari-

ties ao, a1, @2, - -, ..  The a’s may be limit-points of poles and
a, = o is permissible. Assume that o, is of finite order A, and
let A = E Ak.

The author obtains a convergence theorem for the Padé
table of =z’ = f(z). The simplest consequence of his result
may be stated as follows: if A <2, the diagonal appreximants of
the Padé table converge almost everywhere in the plane.

Introduction. Let
(D act+az+az’+---=f(z) (a0 #0),

have radius of convergence p,>0. It is well known that given two
integers m =0, n =0, it is always possible to find two polynomials

2 Qm(z2)=qotqiz+--+q.z",
(3) Pou(z) =potpiz+-+puz”,
such that

4 Qmi(z) #0,

and

) f@)Qu() = Pu) = > p

j=m+n+1

Although P and Q are not unique, the rational function

©) Ron(2) = —gﬂ%—)) ,

does not depend on the particular choice of the polynomials P and Q
which satisfy (4) and (5) [6; pp. 235-237]). We place R,..(z) in the nth
row and mth column of an infinite matrix. The resulting array is, by
definition, the Padé table of f(z).
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We propose to study the convergence of infinite sequences of
“approximants” defined as follows: with each k =1,2,3,---, we as-
sociate an ordered pair (m, n)

) m=m(k) (mz0), n=n(k) (n=0),
and examine the behavior of the “error”

® f(2) = Rpn(2) = Ann(2) = Au(2),

as k >, The functions m (k) and n(k) in (7) enable us to simplify our
notation and, from this point on, we write

) P,(z), Qu.(2),
instead of
P (2), Qui(2).

Our results concern the class of

Quasi-meromorphic functions of finite order. We say
that f(z) is quasi-meromorphic, of order A, if

(i) f(z) is single-valued; its only singularities are poles and
essential singularities

aO,ah”‘aas (s< +O°)9

which may be limit-points of poles;

(i)) one of the a’s may be o;

(iii) the order of ¢; is A; and

/\0+A|+/\2+"'+A:=A< + oo,

THEOREM 1. Let f(z) be quasi-meromorphic of order A.
Assume that m(k)>0 and n(k)>0 are integers such that

(10) xk?P <m+n k=1,23--5x>0)
for some fixed xy and
an 28 >A.

Assume also that, as k — o,
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(12) m=o(nlogn), n=o(mlogm).

Then, given p >0 and & >0, it is possible to find a measurable set
Q= (p, §) such that

(13) meas ) < §,

and such that

(14) Rm(z)—=f(z)  (k— +x),
uniformly for all z restricted by the conditions
(15) |z|=p, z&Q.

As an immediate consequence, we obtain

CoroLLARY 1. If A<2, then
(16) R..(z)—>f(z) (n—>x®),
for almost all z.

The connection between the uniform convergence in (14) and the
pointwise convergence in (16) is readily established by Egoroff’s
theorem. An appeal to the latter result does not simplify our proofs
and we shall therefore not concern ourselves with this aspect of the
question.

The introduction, in Theorem 1, of the exceptional set {) cannot be
avoided unless the class of functions under consideration is severely
restricted [1], [4].

We study this situation in the following Theorem 2. For simplicity

we confine our attention to sequences of diagonal elements of the table.

THEOREM 2. Let f(z) be quasi-meromorphic, of erder A < + .
I. Consider the Hankel determinants

a, A a, > T a,
Q1 a, a,-, T a,

(17) A":—_ PPN e N PPN PN (n:1’2,3,-..)’
Az -y Asn— arp—3 te a,
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and let A, # 0 for all n belonging to some infinite sequence N of positive,
strictly increasing integers.

Assume that, in some neighborhood of the origin, the approximants
R..(z)(n € X') have no poles.

Then

1/nlogn

n+l < e

A,

—1/A

(18) lim sup

neN

II. Assume that the disk
|z—z<n  (n>0)

contains no singularities of f(z) and no poles of R,.(z).
Then, given n' (0<n’'<n) and 8§ >0 we have

|f(2) = R (2)] éem(—%ﬂ%") ,

for all z and n satisfying the conditions
(19) ]Z_Zolén’, ngNo(T”,a), An#o.

The method which leads to Theorems 1 and 2 may be applied to
situations significantly more general than the one considered in this

paper.

Functieons with singularities of transfinite measure
zero. We say that the singularities of f(z) have transfinite measure
zero if f(z) satisfies the two following conditions.

I. The analytic function f(z) is single-valued and regular at the
origin and throughout the complement CE of a closed set E of the
extended z-plane. The origin lies in CE.

II. Consider, in the plane of the complex variable ¢, the image €
of E given by the inversion

L=z
Assume
T(€) =0,

where 7(%) is the transfinite diameter [5; pp. 268-273] of &.
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We state without proof the following analogue of assertion I of
Theorem 2.

THEOREM 3. Let the singularities of f(z) have transfinite measure

zero.
Let A, and N have the same meaning as in Theorem 2. Assume

that, in some neighborhood of the origin, the approximants R,,(z)
(n € X) have no poles.
Then

1
An+1 I — 0

(20) lim A

n—o

neN

An analogous extension of assertion II of Theorem 2 is also
possible. We do not state it here because, in its present form, our
proof introduces restrictions which are more complex than those given
by (19).

The analogue of Theorem 1, for functions with singularities of
transfinite measure zero, differs little from a recent result of Pom-
merenke [8]; it is consequently omitted from this note.

If f(z) has singularities of transfinite measure zero, a classical
result of Pdlya [7; pp. 688-689] asserts that

(21) lim [A, " =0.

n—w

For the class of quasi-meromorphic functions of order A, I have
shown [3; pp. 36-49] that

1/n2logn <= e—l/A
= ’

(22) limsup | A,

n—>o

and that this relation is ‘“‘best possible’.
From (21) and (22) we deduce, respectively,

liminf [A,./A,|" =0,
and
lirP inf IAn+l/An |1/2nlogn§ e—l/A.
The corresponding relations with lim inf replaced by lim sup require, in

addition, that the sequence {| A, |}, be decreasing with a regularity that
has little analytic significance.
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On the other hand (18) and (20) show that, unless the determinants
A, display this type of regularity, the sequence of diagonal approxim-
ants {R,.(z)}, will have poles accumulating at the origin. Following
Chisholm [2], we say that such poles are ‘‘spurious”; they are accidents
of the Padé method and do not reflect the presence of nearby sing-
ularities of f(z). To eliminate spurious poles, we would have to impose
severe and unnatural conditions: within the class of quasi-meromorphic
functions of order A,

limsup |A,../A, |/" e = e
P

represents as serious a restriction as would be the requirement that,
within the class of entire functions of finite order (for which
lim sup,_..|a, |""*¢" < 1), we only consider those for which

lim sup | a,../a, |"*" < 1.

n—wo

Focusing our attention on the class of quasi-meromorphic func-
tions of order A <2, we see that the perturbations introduced by
spurious poles are to some extent compensated by the fact that the
convergence of the approximants is unaffected by the radius of con-
vergence of (1) (or the radius of meromorphy of f(z)): in an obvious
sense, the sequence

{Ru(2)}a

of diagonal approximants “overconverges’ almost everywhere in the
plane.

We conclude this introduction by some remarks about the notations
K,K,, N,, which we use systematically. We always assume that
K >1; the value of K may depend on several parameters and is not
necessarily the same one each time it occurs. The quantities K,, N,
denote positive integers with the same indeterminate character as
K. They always appear as conditions such as k = K,, n = N,, and
restrict the validity of some relation to sufficiently large values of k and
n. Whenever they qualify expressions such as (19), involving the
complex variable z, it is understood that the bounds K, or N, which they
indicate hold uniformly for all z under consideration.

2. Integral representation of the error term
A,.(z). Using the notation (9), we rewrite (5) as
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L

(2.1) f@OQ(2)—-P.(z2)= 2 pz'  (p;=p, k).

j=m+n+l

Set
2.2) a=0" (I=-1,-2,-3,--9;

consider the Hankel matrix

Am+y am Am - e An—n+1
(2'3) () [ an e Ay —n+2 ’
Am+n Amn-1 A +n—2 e an,

and assume that its rank is n. We may then obtain a “‘solution” of (2.1)
by defining

1 z z? z"
A+ an Ay -y e am—n+)
(2'4) Qn (Z) = am+2 am+l am Tt am—n+2 )
Am+n A +n-1 am+n—2 Ut an
a; a;- a;-» a;-,
am+l am am-—l Tt am—n-H
(25) pi = A 12 A+ [ *tt Am-ne2 (] = 0’ 172’ 37 o ')7
Apm+n Qnvn-1 Amin-2 Tt a,
and
m .
(2.6) P.(z)= . pz'
j=0

Whenever the rank of (2.3) is n, the polynomials P, and Q, will be
defined by (2.6) and (2.4). Then

2.7 f(2)Q.(2) = P (z) = (= D"AGIP 2™ + 2" 2 F(2),
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where #(z) is a series of nonnegative powers of z and A§I} is the
Hankel determinant of the matrix obtained by adding to (2.3), as last
row

am+n+1, am+m ot am+l-

If the rank of (2.3) is <n, (2.4) becomes Q,(z) =0; it violates our
condition (4) and hence cannot be used. For sake of definiteness we
shall then select, for P, and Q,, some specific solution of (2.1) with
2.8) degree P, =m, degree Q,=n, Q.(z)#0.

A closer characterization of these polynomials is unnecessary.
Denote by

Vi(z) = V. (2)
a polynomial such that
2.9 degree V, =n, V.(z) # 0,

otherwise arbitrary.
From (2.1) we deduce that

(210) f(Z)Qn(Z)Vn(Z)_Pm(Z)Vn(Z)_F"(Z)

Zm+n+l -

is holomorphic for |z | < p, and hence by Cauchy’s theorem

_ 1 DDV ., 1 [ P.()V.i(D)
(211) F"(Z)_Z‘m §m+n+l(§_2) dg 27” § §m+n+l({_2) d(?

where |z | < p, and the contour of integration is a circumference
(2.12) L =re™ 0= <27, |z]|<ry<po).

Since P, (z)V,(z) is of degree =m + n, the second integral in (2.11) is
zero and hence we obtain the fundamental relation

Q.13)  f(z) ~%—%= A (2)

_zmt b OOV
Q.(2)V.(z) 2mi (MmN - z)

dg.
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We note that (2.1) and (2.11) also imply

Q1) Fi0)= pann Va(0) = 50 § LSOO 4.

We shall use the above relation in the special case
(2.15) m=n, A,70, V,(0)#0.
Since

A, = AT =Q.(0),

we may rewrite (2.14) in the equivalent form

2.16) (-~ 1y ",,“ 2mV(O) f(!)V({)g{g“(é)/Q L0}

We also note that (2.7) (with m = n) leads at once to

Qn (2)P, (Z)—‘Q (2)P,_(z)=(— D" TA2

437

Hence, if A,# 0, P,(z) and Q,(z) have no common zeros and the poles

of R,,(z) coincide exactly with the zeros of Q,(z).

3. Factors of a quasi-meromorphic function.

From

our definitions it follows that f(z), in Theorem 1, may be represented in

the form

G £ = ho@ o (2= o () -+

AR 2

Z~ a
where

(3.2) h,(t) (r=0,1,2,---,5)

hs< I ) (s < + ),

is a meromorphic function of ¢, of order A, < +». Meromorphic

functions correspond to the special case s =0.

The possibility of a decomposition such as (3.1) and the uniqueness
of the orders A, (v =0, 1, - - -, 5) are readily deducible from the definition

of order of an essential singularity.

This aspect of the question need not concern us here and we shall
be content with the naive view that Theorem 1 is applicable to all

functions representable in the form (3.1).
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It is obvious that a finite number of zeros and poles can always be
transferred from one factor h to another. This remark leads us to a
preliminary clarification of what we mean by zeros and poles of h,(t).

Select vy, so as to satisfy the conditions

3.3) O<2'y0<min(|a,|,|a2|,-'-,Iasl,l),

and

(3.4) 2vo<min (|a, — a,|) (Isv=s, 1=p =5).
vEAR

The poles of f(z) which lie in the region

(3.5) 0<|z—a,

<o
will be denoted by

(3.6) b¥, b, by, -
and arranged so that

> ...

3.7 Yo> b —a,

= by~ a,

= by —a,

The ““poles of h,(t)” are, by definition, the quantities
(3.8) AR S0 + LA
deduced from (3.6) by the transformation

(3.9) Top— G=1,2,3).

b —a,

These operations are performed for all v =1,2,---,s. The poles of
f(z) which do not belong to one of the sequences {b{"}; (v =1,2,---,5),
have no finite point of accumulation. We shall denote them by b; and
arrange them in a sequence

(3'10) b17b27b3a.”
so that

0<po=|b/|=|b,|=|bs|="--.
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We also include, in (3.10), elements such as «, (repeated a suitable
number of times). They enable us to take into account factors
(z=a,)*(B>0) which may be present in the decomposition
(3.1). The sequence (3.10) is by definition the sequence of poles of
he(z).

In view of the conditions (3.4), (3.5), and of the regularity of f(z) at
the origin, every pole of f(z) belongs to one and only one of the factors
h, in (3.1).

The zeros of f(z) (which do not explicitly appear in our proofs) are
to be distributed in exactly the same way among the s + 1 functions
h,(t). The assumption a,# 0 implies the regularity of 1/f(z) at the
origin. Hence there is complete symmetry between the functions f(z)
and 1/f(z). Both have the same essential singularities «, with the same
orders A, (v =0,1,2,---,5).

4. Estimates from the theory of meromorphic
function.

LeEmMMA 1. Let h(z)(h(0) #x) be meromorphic, of finite order A
and let

b],bz,"',bj,"' (0<|b||§|b2|§lbgl§"‘)
be the sequence of its poles.
Take o > A. Then, if nis large enough, the function h(z) has fewer
than n poles in the disk

4.1 lz|=n'".

The function

“2) a@=h@ 1 (1-7).

|=n
which is regular in the disk (4.1), satisfies the inequality
(43) ‘gn(z)léen ('Z|§%nl/o-).

Proof. Denote as usual by n(x, ) [9; p. 284b] the number of poles
of h(z) in |z|=x. By the elements of the theory

4.4 n(x,o)<x° A <o'<o; x> x(0").

Hence there are, in the disk (4.1), fewer than
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4.3) n°’ <n (n = Ny
poles of h(z).

From the Poisson-Jensen-Nevanlinna identity [9; p. 129] we deduce
the well-known inequality

(4.6) log|h(z)|= ——J% mx,h)+ D, log< =5, |>

|| lbiT=x
where |z | < x and m(x, h) is Nevanlinna’s mean. Applying (4.6) with
x=n', |z|=in'"
we find

@47  log

2.(2)|=3mn"",h)+n(n',o)log2+ N(n'", ),

where N(x,») has the meaning assigned to it in Nevanlinna’s theory.
The inequality (4.3) follows immediately from (4.7) and the well-

known behavior of m(x, h), n(x,®), N(x,») associated with functions

of finite order.

5. Construction of the polynomials V,(z) and of the
contours €,. Choose n >0 such that

(5.1 g, =\, +1 (r=0,1,2,---,5)

satisfy the condition
5.2) =3 <28.

This is possible by (11).

Put
(5.3) ny=["2””] (v=0,1,2,---,5),
which imply

(5.4) n~2%  (1b=0,1,2,---,5; n >

and
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(5.5) S on, =n.
y=0

The contour €, (n = Ny) is formed by s + 1 circumferences:

5.6)6V={L: ¢ =%e“ny™ 0=w <2m)},
GBNEY={:¢{=2en""+a, O=w<2m)} rv=12,:---5).

We introduce, for later use, the compact set

< 2":”0"},

(5.8 D, ={z:|z|=ing"}- CJ {z:]z—a,
v=1
which is bounded by
% = U €.
v=0

Consider now the points b{” which appear in (3.6) and (3.7); let
there be [ of them which satisfy the condition

(5.9 b —a,|Zn;
In view of Lemma 1
(5.10) 1Y < n,.

Let

[(v)
(5.11) V(@)= —a)"" [] (z - by)
j=1
1)

—p»
=@-a)]l Sl =z a) Wa(2).

v

We thus define V,.(z) (v = 1,2,---,5) and finally

5.12) V@)= [1 (“b%)’

|bi|=ndfe0

where the b; are members of (3.10). By Lemma 1, the degree [ of
V.o(z) satisfies the condition

(5.13) 19 < n,.
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Our polynomial V,(z) is now defined as
(5.14) V@) =1 V(2
r=0

its degree is
(5.15) 1°+n,+n,+---+n, <n.

In view of (3.1), (5.11), (5.12) and (5.14)

(51612 Va(@) = h2) Vao®) {TT 1 (25) W) T @ =~ )

6. Estimates for f(z)V,(z) and V,(z). If n=N,,
Lemma 1 shows that h(z)V,.(z) is regular at all points of the disk
|z|=ny>. Moreover

Yo
6.1) |ho(2) Vao(2) | = e™ (|Z|< n% )

Similarly, the substitution

t= I
zZ—a,
transforms
6.2) h ( I ) W, (2)
v z — aV ny
into

h(t)ﬁ( t")

1
Again, by Lemma 1, the product (6.2) is regular for

|Z —a,|=n;v

and satisfies the inequality

(6.3)

h (=) W) 220",

z

=e (




THE PADE TABLE OF FUNCTIONS 443

LEMMA 2. If n is large enough
(6.4) fZ)V.(z)

is regular at all points of %.,.
Moreover

65 [fOVa@)| = e (Ry exp( -"121) e ey vr0,

with
K =|a/|+|a|+ +]a, | +2
and
(6.6) [FOV(D]=2e) [g ] (L€ €.

Proof. The regularity of the product (6.4) in &, is an immediate
consequence of the decomposition (5.16) and of the regularity of each
factor (6.2) and of hy(z) V,«(2).

The estimates (6.5) and (6.6) are obvious consequences of (5.16), of
the estimates (6.1) and (6.3), and of the definitions of the contours €%’.

This proves Lemma 2. We also need the lower bound for V,(z)
contained in

LemmA 3. Consider the point sets

6.7) D(p.y)={z:]z[=p}~ U {z:]z —a[<v}
and

(6.8) D(2p,%>={z:]z]§2p}— Li)l {z:lz—a, <%},
where

6.9 p=1+max|a,l, 0<y <,

ISvs=s

and v, is the constant in (3.3) and (3.4).
Let there be ¥ = $(2p, v[2) poles of f(z) in D(2p, y/[2); rename
them
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Ci,Cpy "7y Cy

and let

&*
H .=y {z:]z—¢|<e™}

=

Then, the condition

(6.10) z€D(p,y)-H,
implies
(6.11) |V.(2)|=(y2p) e "

Proof. An inspection of (5.14), (5.11) and (5.12), shows that each
one of the linear factors (z — ¢;) or (1 — z/c;) which may appear in V,(z)
has a modulus = e™"/2p, provided z& H,. For z € D(p, v), all other
factors have a modulus = y/2p. The Lemma is now obvious.

7. Proof of assertion I of Theorem 2. Consider

where q = q(n)=n is the exact degree of Q.(z).
If n €N, we have

7.1 A, =Q.(0)#0

and hence, if Q,(z) has zeros z,,

88 (-2 (-3 (-2)

In view of the remark at the end of §2, the poles of R,.(z) coincide
exactly with the zeros of Q,(z) so that by one of the assumptions of
Theorem 2, we have

Q.(2)

(7.2) 0.(0)

§(1+%i>" (5>0,n€N)

where & is suitably small and fixed.
By (7.1), (2.16), Lemma 2, and the elements of contour integration,
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(73) (-1 =5 S I
with

_1 [ fOVa@AQ.IQ.0)
(7.4 Lo=gs] . ot az.

By (7.2) and (6.5)

(7.5) =K" exp < _ﬂz_l(;)g_n"> (1 +_IS)" ,y(;Zn—l

Inv

o
(n'éNO; V:1’29“.5S)’

where v, satisfies (3.3).
Similarly, using (6.6) instead of (6.5), we find

6 |LJ=K"exp( —%ﬂg"") {n&2,00+%} (n 2 Ny).

By Lemma 3,

1
| V. (0)]

A

(7.7) K".

We now use (7.5), (7.6) and (7.7) in (7.3) and obtain

s
A,

éK"iexp(—ﬁ”—%gi”) (nEWN, n=N,).
v=0 v

In view of (5.4), this leads to

I/nlogn

n+1 < e'—]/E

(7.8) lim sup }AA_

n-—w

nexN
Since
S=A+(s+ Dy (n >0),

and 7 is arbitrary, (18) follows from (7.8) and assertion I of Theorem 2 is
proved.
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8. A consequence of the Boutroux-Cartan lemma.
LemMA 4. Let

(8.1) Q@) =Kz =2)(z =202 (2= Zag) (K #0)

be a polynomial of degree q = n.
Then, given e >0 and p Z ¢, it is possible to find a set G,, depending

only on €, p, and on the zeros of Q,(z), formed by the union of no more
than n disks with sum of radii =2ee and such that

(8.2) lz|=p, z€G,
imply

Q)| _ (LL1+2pY"
(8.3) s :< : )

Each one of the disks of G, contains one or more zeros of Q,(z).
Proof. Let
Zny v=12,---1)

be all those zeros of Q,(z) which lie in |z |=2p.
In view of (8.2)

q

eIzl [T

!

[11z-2z.

v=1

Zny
2

b

and by the Boutroux-Cartan lemma [10; p. 60]

q

k. €279 1 | 2, (z& G,).
v=1+1

(8.4) Q)] 2

A classical proof of the Boutroux-Cartan lemma [10] shows that
each exceptional disk of G, must contain zeros of Q,(z).
The upper bound

65 Q@I =lkldelr20r 1 (1+5E]) |2

=i+

is obvious so that (8.3) follows immediately from (8.4) and (8.5).
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9. Analytic continuation of the error term. We start
from (2.13) with | z | < r, < p, and with the contour of integration (2.12).
By Lemma 2 and the elements of contour integration

m+n+]

©.1 f(z2) = Ro(z2) = 0.V ( TAGE Z J.  (n=N,)
where

__ 1 fQV.(0)Q.(L)
©2) 5= [ Q0 4

An inspection of (6.7) and (5.8) shows that, if n is large enough, the
identity (9.1) is valid for all points of D(p, y) other than the zeros of

Vi(2)Q.(2).

10. Proof of assertion II of Theorem 2. Wetakem =n
in (9.1) and (9.2).
By assumption
To={z:|z —zo| <7}
contains no poles of R,,(z) and, since A, # 0, it also contains no zeros of
Q. (2).
We use Lemma 4 with
dee <m—n'.
Then, the exceptional disks do not intersect
={z:|z—z|=7n"}

and consequently

Q.()

= (|§|+2p>" (z €T)).

€

(10.1)

Take in Lemma 3

,Y<7l"77

p large enough to imply
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IoC{z: |z|=p},
and n large enough to imply

I'CD(p,y)— H..
Then

1

(10.2) V.

=K" (K>1,z€el),

for some suitable value of K.
From (9.2), (10.1) and (10.2) we deduce

] = @)nm‘l—?";m?x K”i«%y

0. V.2

f(é“)g\:n@)t}’

where
LEEY, v=0,1,2,---,5, n=N,.

Using these estimates, (6.5) and (6.6) in (9.1), we find
(103) |f(2) — Rm(z)| = K" S, exp(—i‘—”—la‘lgﬁ> (z€T,, n=N,).
v=0 v

In view of (5.4), assertion II of Theorem 2 is an elementary consequence
of (10.3).

11. Proof of Theorem 1. We first restrict our arguments to
the approximants on the side of the diagonal characterized by
(11.1) m(k) = n(k),
and assume that there are infinitely many approximants satisfying the
above condition.

By (10), (12) and (11.1) we obtain
(11.2) Blogk <logn +o(logn) (k — x),

and therefore n —© as k — .
We now use (5.2) to select £ >0, small enough to imply
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(11.3) (E+36)< 175 -

and deduce from (11.2)
(11.4) G +3&)log (k™ ¢Py <logn + o (logn) (k — ).

Let p and & be the given quantities in the statement of Theorem
1. We increase, if necessary, the value of p so that the first inequality
in (6.9) be satisfied; this does not affect the generality of Theorem
1. With p thus restricted, we select y such that

0 <y <min(yo, 8"2(127s)™"?),

and consider Lemma 3. The number & which appears in this lemma is
now determined and enables us to choose N, large enough to imply

(11.5) meas H, < Pre~ < 1% (n=N,).
Clearly
Hn+l CHna

(11.6) meas(D(p, y)— H,) = meas (D(p, y) — Hy) > . 2~-§.

Lemma 4 with € = k“"?7¢? and p as above, yields

1.7 —Q"(g) = ([Z[+200 k"9 (n = n(k)),
for

(11.8) |z|=p, z& G,

with

(11.9 meas G, =4me’ k"%

From (11.7) and (11.4) we deduce

Q((
z

= (1) e (558) n-n
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Increasing if necessary the value of K,, we assume

4mer S k<2
k=Ko 6
so that
r=0J G, (n=nek)
k=Ko
implies
é
(11.11) meas <=,

6

From this point on, all our inequalities will be subject to the
conditions

(11.12) z€D(p,y), z&€Hx, z£T.

By (11.6) and (11.11) this means that we are excluding from the disk
|z| < p, a measurable set Q, = Q,(p, §) with

(11.13) meas Q,<§.

Lemma 3 implies

1L _ g (z €{D(p,v)— Hx}),

(1 |[V.(2)| =

where K > 1is a bound which depends on several parameters but not on
n.

The relations (9.1) and (9.2) are valid for kK = K, and there only
remains to estimate the integrals J,,, using Lemma 2, (11.10), (11.14) and
the inequality

(=212 €D(py), (€%, k=K.

We find

11.15 _zmmt - 2p"" K" 2p\" nlogn
(L1 o T = e 1 (”m) e"p(2+2§)
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with

1o
e o~ (n=nk), k—®);

mzn, |{|=

and hence, we deduce from (11.15),

m+n+1

___—Vn(zz)Qn(z) =K" exp(n logn{z_:zg—%+o(l)}>

- prn —énlogn _ -
=K exp(———z(2+2§)> (n=nk), k=K,).

(11.16) Jon

Similarly, using (6.5) instead of (6.6), and taking (12) into account, we
find that (11.16) holds with J,, replaced by J,, (v =1,2,---,s). Hence
(9.1) yields the final estimate

(11.17)|f(z)—Rmn(z)| = IAk(z)Ié(s + K" exp (: én log n> =

3(2+2¢)
for
(11.18) [z|=p, z&Q,, n=nk)=m(k), k=K,
Clearly
(11.19) m—>0 (k—>x),

and hence we have proved a “‘restricted Theorem 1 which requires the
additional condition (11.1).

To obtain the general form of the result we consider all the
remaining approximants, characterized by

(11.20) m=m(k)<n(k)=n,

and with m and n thus defined, we associate suitable approximants of
1/f.

We observe that:

(i) 1/f is regular at the origin and 1/f(0) # 0;

(i) the function 1/f has s+ 1 essential singularities at a,=
©, a, a,, a;,, With respective orders Ag, A;, -+, A,;

(iii) the integers m and n appear symmetrically in the conditions
(10) and (12).

Consider the Padé approximant
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_Q3(z)
K@= P

of 1/f, where Q%*(z) is of degree =n, P¥(z) is of degree =m and
P*(z) £ 0.

In view of (11.20), the “restricted Theorem 1" is applicable and
yields

1 _ Qi)

(11.21) @)~ P2

=A@ =1t

provided
(11.22)  |z|=p, z€Q%, m=mk)<nk)=n, k>K,.

Again, we have
(11.23) meas QT<§, nE—0  (k— ).
We now construct an open set ¢ with

(11.24) meas <g<§.

and such that ¢ contains the s essential singularities o, (v = 1,2,---,5)
as well as all the poles of f which lie in |z |=p.
If

(11.25) lz|=p, ZE& 4,
we have, for some suitable bound w,
(11.26) |f(2)]| = w,.

Hence (11.21), (11.22), and (11.25) imply

Q7(2)

(11.27) 5

=

QHz)#0.

1
2w,
We now set

0,=0ftU ¥
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so that

25

(11.28) meas (), < 3

By (11.21), (11.26) and (11.27), we see that

(1129 |z]=p, €0 m=mk)<n(k), k=Ko,
now yield
(11.30) If(z) ::((z)) =2wint.

By the uniqueness of the Padé table

P,(z) _ Pi(z)
Q.(z) Qiz)’

An inspection of (11.17), (11.18), (11.29) and (11.30) shows that we have
proved the general form of Theorem 1. The exceptional set (Q is

R (2) =

Q={Q,UQ,)
with meas Q < & (by (11.13) and (11.28)).
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