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The extreme rays of several cones of complex and real
diagonally dominant matrices, and their duals, are identified.
Several results on lattices of faces of cones are given. It
is then shown that the dual (in the real space of hermitian
matrices) of the cone of hermitian diagonally dominant ma-
trices cannot be the image of the cone of positive semidefinite
matrices under any nonsingular linear transformation; in
particular, it cannot be the image of the cone of positive
semidefinite matrices under the Ljapunov transformation

Έ H AH+ HA* determined by a positive stable matrix A.

1Φ Preliminaries* Let X denote a finite-dimensional real vector
space. A cone K in X is a nonempty subset of X satisfying

a, β ;> 0, x, y e K ==> ax + βy e K .

A cone K is closed if it is closed in the usual topology of X. If K
has interior with respect to this topology, equivalently, if X = K —
K, then K is full. If K satisfies

xeK, — xeK=>x = 0 ,

then is K pointed. Associated with a closed cone K is a reflexive
and transitive order relation defined by

x < : y <==> y - x e K ,

which is a partial order iff K is pointed.
The element y e K is extremal if x, y — x e K (i.e., 0 <£ x ̂  y) =>

x = ay for some a ^ 0. For each yeX, Γ(y) = {α^/|α :> 0} is the
ray generated by y; if 2/ is extremal in K, then 7Ίr(̂ /) is an extreme
ray of K. A closed pointed cone K is the convex hull of its extremals
(cf. [9], p. 167). (If K is not pointed it has no extremals.)

Given a closed, pointed cone K, let £?(ϋΓ) denote any minimal
generating set of extremals of K: i.e., every element of &{K) is
extremal, and all extremals of K are positive multiples of elements
of gf(UL); and &(K) is minimal with respect to these properties.

If we have given an inner product on X, then we may define
another cone,

K* = {xeX\(x,y)^0 for all yeK},

* Dedicated to Alfred Brauer on his eightieth birthday, April 9, 1974.
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16 GEORGE PHILLIP BARKER AND DAVID CARLSON

the cone dual in X to K, or, briefly, the dual cone of K. It is well-
known that in determining the elements of ϋΓ*, we need only consider
inner products with extremals of K, in fact, given any &(K),

iΓ* - {xeX\(x,y)^0 for all ye&(K)}.

We shall often consider cones K which lie in a subspace V oί a space
X; in this case, Kv will denote the cone dual in V to K.

2. A particular top heavy cone in (7Λ* Let C% be the space
of complex w-tuple row vectors, with standard basis 23ί, , En. We
shall think of Cn as a real inner product space, with inner product

Let

clearly T is a closed,

(x, y) = re

pointed cone

Σ ?/»/

> Σ \χ
~~j=2

full in

U= {xeCn\imx1 = 0} .

As a cone in U, T is top heavy (cf. [3]).
The proof of the first lemma depends on the following simple

fact: if a, be C, and either |α + 6| = | α | + | 6 | o r | α — δ| = |α| — |6 | ,
then for some ε e C , | e | = 1, a = \a\e and b = |b\ε.

LEMMA 1. For T, U as defined above, we have

i f ( Γ ) = {Et + εEj\J = 2,...,n;\ε\ = l},

Then Tσ is pointed, and full in U;

ί?(Tu) = {E, + ± e3-Es\ |e,| = 1, j = 2, , n] .

Proof. Consider y = Ex + eEd, j > 1, | ε | = 1. Suppose xe T, for
which y — xe T. Then

i ^ Σ I % I
£=2

- Bi ̂  Σ I B* I + I 6 -
k2
Σ I
k=2
k

Adding,
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Σ
k=2

so t h a t xk = 0, k - 2, , n, k Φ j . I t follows t h a t

1 — x, ;> I ε — xό I ̂  1 — I xj I ,

so t h a t xJ :g \Xj\; b u t ^ >̂ | x 5 | , so x1 = ] ^ |. We now have

α?! = |av|, 1 — #i = |ε — ^ |, and 1 — | ε | .

By our previous observation, xά = εx19 hence x — (xjy. It follows
that y is extremal in T.

Conversely, suppose x is extremal in T. If x — %xEly then

x - - ί a j ^ + E2) + 1 ^ ( ^ ~ £?2) ,
Δ A

which is impossible. Also, clearly,

Now we may write

Σ
i=2

where the summation Σ ^s taken over indices j for which x} Φ 0.
Since a; is extremal, there must be exactly one nonzero Xj, j > 1, and

x =

We have proved our statement about

For xeU, y = £Ί + ε ^ , j" > 1, and |ε | = 1, we have

{x, y) = re (#3 + ε^ ) = xλ + re (έ̂ ^ ) .

Clearly, now x e Tσ iff

(This characterization of Γ^ is essentially contained in Theorem 2 of

[3].)
Consider y = Ϊ573 + Σ ? = 2 ε. ̂  , where | ε, | = 1, j = 1, •••,%. Suppose

a e f such that y - xeTu. For i > 1,

|x, | + |ε, - xj\ ^ «! + (1 - ^ ) = I€,( ^ 1^1 + |e i - xό\ ,

i.e., |a?5 | + \s3 — xά\ — \εs \. It follows that x, = ε ^ . Since this holds
for all j > 1, cc = (cθ2/, and 1/ is extremal in Tu.
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Conversely, suppose x is extremal in Tu. We may assume that
xλ = 1. If, for some j > 1, \x3-\ < 1, then let δ = 1 — \xs\ > 0. Define

We have as = ?/ + z, y, z e Tu, and 2/ and 2; are linearly independent,
a contradiction. Thus we must have

x =

We have proved our statement ^(Tu).
We note that for the analogous cone in real w-tuple space Rn,

with the standard inner product,

TR = \xeR

we have corresponding characterizations of <E?(TΛ), T*f and £?(T*),
with formally identical proofs.

3* Cones of real and complex diagonally dominant matrices*

Let CntU denote the set of n x n matrices with complex entries; we
shall regard CntU as a real inner product space with inner product
(A, B) — re tr J3*A. Similarly, Rn,n will denote the set of n x n matrices
with real entries; Rn>n is a real inner product space with inner product
(A, B) = tτB*A.

A matrix A = [α^] e Cn,n is said to be diagonally dominant if

^ Σ
hΦ5

j = 1, . . . , w, .

Neither the set of all diagonally dominant matrices, nor the set of
all real diagonally dominant matrices, is a cone. However, in the
real case, if we restrict ourselves to diagonally dominant matrices
with nonnegative diagonal entries, we obtain a closed, pointed, full
cone:

DR = \A 6 Λ.,. ait ^ Σ Iαί41, j = 1, , .

In the complex case, there are three closed cones analogous to DR:

D, = {A 6 C Majj^ Σi\aik\, j = 1, •••,

reα^ ^ Σ 1^*1, imα^ ^ 0, j — 1, , n\ ,

reα^ ^Σki fc l , 3 = 1, ---,n\ .
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Clearly

ASAiA.

and

DΛ = DtΠ Rn,n , i = 1, 2, 3 .

To discuss further the structure of these cones, observe first
that Cn,n = F 0 W, where

V= {Ae Cn,n I im a^ = 0, j" = 1, , ri) ,

TF = {A e CftlΛ I re aSi = α, * = 0, i, λ; = 1, , w, k Φ j} ,

and that (with our real inner product), W= V1.
Let Kt be a cone in V, and let K2 be a cone in W. Then (iξ +

K2γ = i ^ + ίΓf. Also, let

J = {Ae W\imaj3 ^ 0, j = 1, , w}

J is a closed, pointed cone. As a cone in W, J is full and self-dual,
i.e., Jw = J.

Now D1 S V, and is full in V; A = A + J, and A = A + TF.
Clearly A is pointed but not full, A is both pointed and full, and
A is full but not pointed. Moreover, A* = B\ + TF is full but not
pointed, A* = Dl + ^ is both full and pointed, and A* = AT is pointed
but not full.

We next determine g'(A), DI, and iT(DΓ). We can then easily
determine the extremals, the duals, and the extremals of the duals,
of all our diagonally dominant cones.

Let Ejk denote the n x n matrix with (j, k)th entry one, and all
other entries zero. Define

J = 1, ••-,%} ,

= 1, i, k = 1, , w, & ̂  i} ,

Σ \εk\ = 1, i , fc = 1,

Clearly gf(/) = 8Ό

LEMMA 2. For A defined above, i?(A) = i?i

DΓ = [A e V\ a,Ί ^ | aSk\ for all j , k = 1, , w, fc Φ

Also, Ό\ is a closed, pointed cone, full in V, and ^(Dζ)

Proof. Observe that A = T, + + Tn, where
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T* = \AeV ^ Σ
k

= 0, p, q = 1, -~9n9pφ j\

)
is contained in U3 = {AeV\ im a3Ί = 0; apg = 0, p9 q = 1, , w, p =£ i},
i = 1, •••, n; each 2^ is essentially the cone T of Lemma 1. Since
V = t7i0 0Ϊ7Λ (in fact, Uk S Ϊ7j- for all j,k = l, ...fn,kΦ j)9 the
extremals of A are precisely those matrices which are extremals of
some T3; this proves that g^ = if(A) Also,

7""^ — ΠPU-i i _ι_ fT^ΌM

JJi — l i 1 T " ••• - Γ i » >

and the extremals of A^ are precisely those matrices which are ex-
tremals of some Tfsf proving that g*2 = ^(DΓ).

It is now clear that the extremals of A are precisely those
matrices which are extremals of A or J (and similarly for D*)
Although A is n o t pointed, and has no extremals, every matrix of
A is a nonnegative linear combination of extremals of Dlf J, and —J
(and similarly for A*)

The result for TR analogous to Lemma 1 can be used to establish
the corresponding results for DR. Note that DR and DR are polyhedral
cones. We summarize these results in Theorem 1.

THEOREM 1. Let DR, Du A, A be defined as above. Then

Also

A* = {Ae Cn,n I re a3Ί ^ | ajk | for all j , k = 1, - n, k Φ j} ,

A* — {A e Cw,n I re aΰΊ ^ | α i f c |, im aΰΊ ^ 0 /or all j, k — 1, ,

A T = { A e C n > n \ a j 3 ' ^ | α i f c | / o r a l l j , k = I, ---, n , k Φ j } ,

Dt = A* n Rnt% = A* n «.,» = A* n Λ Λ I . ,

^(A*) - ĝ o U g7,, g7(A*) - ^ 2 , α^d gf(Di) - ^ Π Λ,,* .

The characterization of DR given above appeared previously in
[5]. Also, the full set D of complex diagonally dominant matrices
is the object of study in [4]. In that paper, the authors introduce
a set of weakly diagonally dominant matrices which is in some sense
dual to A and which contains our A* (cf. their Theorem 3.5).
However, their work is an altogether different spirit from ours, and
there is almost no overlap.

4* Cones of hermitian diagonally dominant matrices* One of
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the outstanding problems of matrix theory is to determine conditions
under which a cone K in the real space J%f of hermitian matrices in
Cn,n is the image under a Ljapunov transformation LA{H) = AH +
HA* of the cone PSD of positive semidefinite hermitian matrices,
where AeCn>n is a (positive) stable matrix (i.e., all eigenvalues of A
have positive real parts). One of the necessary conditions is that
K 2 PSD (cf. Loewy [7]).

We wish to study the possibility of cones of diagonally dominant
matrices being images of PSD under Ljapunov transformations. Since
the cones Dt and D*, i = 1, 2, 3, are not contained in 3(f, we shall
consider instead

= \Ae l, 3 =

a,Ί ^ |a jk\,

and their duals in £έf. Note that Ό^ — Dt Π Sίf and ^Ό = D* Π
i = 1, 2, 3, and that they are both pointed, and full as cones in

It is clear that D^ is properly contained in PSD, so that D^
cannot be the image of PSD under a Ljapunov mapping. It follows,
however, that Ό% 3 PSD, so that Ώ% satisfies the necessary condition
given above. We will later show that Ό% cannot be the image of
PSD under any nonsingular linear transformation. We have that
PSD g^jD:

1 2

2 4

is in PSD, not ^D. Finally, since

is in &D, but not PSD, ̂ D g PSD, hence PSD g ^ D^. Thus neither
j^D nor ^Ώ^ could be the image of PSD under a Ljapunov trans-
formation.

We next determine inequalities defining the matrices of D%, and,
for the sake of completeness, those defining the matrices of ^D^y

and minimal generating sets of extremals for all four cones.

THEOREM 2. Given D^ and ^Ό as defined above. Then
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D*) - {EjS\j = 1, , n} U {Ess + εEjk + eEkj + Ekk\

| ε | = 1, j , ft = 1, ••, w, & ^ i } ,

= {A e£έf\aj3- ^ 0, α y i - 2\aίk\ + akk ^ 0 ,

j , ft = 1, •••, n, j < ft} ,

= 1, j , k = 1,

D) - J Σ JSTϋ + Σ (ejkESk +
3<k

\eύk\ = 1, i , kea, j <k, for all ff£{l, ••-,

- \AzSίf Σ
jea

«ϋ - 2 Σ |α i J f e | S 0 for all a
jkΣ |
j,kea

j<k

εkEjk + ekEkj \ \sk\ = 1, j , k = 1,

j} .

The analogous results hold for cones of diagonally dominant
matrices in the real space £f of symmetric matrices in ΛΛ,W.

Proof of Theorem 2. We first determine ^(D^). Clearly each
Ejj is extremal in D ^ ; consider a matrix of the form A = £ ^ + ε£7ifc +
εEkj + f̂cfc, i =̂  ft, IeI = 1. If there exists Be Ό^ for which A — Be D^,
clearly bpp = 0 for pg {i, ft}, so that bpq = 0 unless {p, g} £ {i, ft}.
Suppose B = δϋJpii + δi^ifc + 6/*^- + bkkEkk; by Lemma 1, δiA; = 6ίVs,
bjk = ί>/cfĉ^ implying 6 j7 = 6fcfc, and 5 = bh A. Thus A is extremal
in JDJT.

Conversely, for any BeD^, we may write

\Ess + bjkEjk + ^ ^ + \bjk\Ekk)Σ
ifc

For B to be extremal in D^, exactly one term (between the two
summations) must be nonzero, and B has the desired form.

For arbitrary B e

ϊE
k5

k, B) - re (bjke
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Clearly BeD% iff

ha ^ 0 , bu + b k k - 2 \ b i k \ ^ O , j f k = l,-- , n , k ¥ : j .

We next determine &(D%). Consider a matrix of the form

A = 2# y y + Σ (e*Sf* + εkEkJ), \ek\ = 1, & = 1, , n, k Φ j .

Suppose Be Ό% for which A — Be D%. For p = 1, , n, p Φ j ,
bpp — 0; and from this, we have bpq — 0 if p Φ j , and q Φ j . Suppose
j Φ q; then by the argument of Lemma 1, applied to (2, 2|e f f |) and
(bjjf 2bjq), we have bjq = εg6 i5 . Thus B = b^A, and A is extremal in
τ\§e>

Conversely, suppose A is extremal in D%, with at least two
positive diagonal entries; withous loss of generality, suppose an > 0.
Now define BeSίf by

bn — an, blk = < a ,

o l .aίk, if α31 < 21 alk \

6λl = &it, fc = 2, , w, and 6^ = 0, p, g = 2, , n .

Clearly bdj ^0,j = 1, 2, . , n, b3j + bkk - 2 |δ i f c | = 0, j , k = 2,
k Φ j , and, by calculation,

i.e., BeΏ%. Also, if C = A - S e ^ c ί S ^ 0, i = 1, , w, cy y + ckk -
2 | c i t | = an + αfcA; — 2 | α y 4 | ^0, j , k = 2, ---,n,kφ j , and, by an easy
calculation, cn + ckk — 2\cίk| = αAJfe — 21a l k — blk\}> akk — 2\alk\ ^ 0, k =
2, •••,%, i.e., CeΏ%>. The assumption that A had more than one
positive diagonal entry would imply that A = B + C, with B, Ce D%>
and linearly independent, a contradiction. It follows that our extremal
A has exactly one positive diagonal entry.

Suppose that aj3- > 0, akk = 0, & = 1, , n, k Φ j . We have α^ =
0 unless p = j or q = j , i.e.,

A = αyyj0yy + Σ (αy*Eyfc + ajkEkj) .
J<fe

Using Lemma 1 again, 2|αyjfe| = αyy, Λ = 1, , n, k Φ j , and A is a
positive multiple of some matrix of our given set of extremals. We
have proved that if(Dj?) has the specified form.

We next determine g ^ D ) . Consider

A = Σ En + Σ (eJkEJk + ϊjkEkj) ,
jea j,kea

j<k
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where \είk\ = 1, j , he a, j < k, and a £ {1, 2, , %}. We have A e
^Zλ Let | α | denote the number of elements of a. If \a\ = 1, A is
obviously extremal. Suppose 1 < | α | ^ w, without loss of generality,
we may assume \a\ = n, and a = {1, 2, , %}. If Be ^D and A —
2? G ̂ Z), then, using Lemma 1,

bjk = S^i* , j , k = l, >-,n,kΦ j .

Also, δ# = 6yt/eiJb — bjklεjk = fe^i/e^j- = 6̂ ,̂ & ̂  i , so that B = 6^ A. Thus
A is extremal in ^Zλ

Conversely, suppose A is extremal in ^D. We first show that
all nonzero diagonal entries of A are equal. If not, without loss of
generality,

an = a22 = = αy-if/-i > <% ̂  ^ α n w ,

where α^ > 0. We define Z? by

djj 1 Ŝ P = q < i

ajSapg/an l^P,q<j,pΦqbpq = "

.α ĝ otherwise .

Then Z? is hermitian, and Z? G ̂ Z), for

u I αPg IMn ^ an = bpp , 1 ^ P, q < j f

ιpq I ^ α p p = bpp , p ^ j .

Let C = 5 — A; first, cpq = 0 iί p ^ j or q ^ j . Also, if 1 ^ p, g <

i , p "£ q>

so that C^, G Zλ In this case, B and C are linearly independent, and
A is not extremal.

Suppose now that all nonzero diagonal entries of A are equal.
Without loss of generality, we may assume all diagonal entries are
one. If \ajk\ < 1 for some j , k,kΦ j , then, as in Lemma 1, we could
write

A = —(A + δEJk + SEki) + —(A - δEjk - δEkj) ,

where the summands are in %?D and are linearly independent. Thus
\a,jk\ — 1 for all j, k. This completes the proof that &(^D) has the
desired form.

To determine the inequalities that characterize matrices in &D*',
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we consider the inner product of an arbitrary B e Si? with an element
A of gfUD):

(A, B) = Σ bSi + Σ (Sikh* + eihbit) ,
jea j,kea

3<k

where \εjk\ = 1, i, kea, j < k, and α S {1, 2, , %}. Clearly now
Be ^ZP* iff, for all a: £ {1, 2, , n)

Finally, we must determine £f(^I>**). Let A = 21?^ + εi?^ +
ε.£7fci for some j Φ k, and some |e | = 1. Without loss of generality,
we can assume j = 1. If Be^D^, such that A — Be^D^, then
clearly 6^ = 0 unless p — 1 or g = 1. This implies that for vector
a = 2ί73 + 2e£;fc e Γ, we have 6 = (6Π, 2612, , 2δ1Λ) e Γ and α - 6 6 T.
By Lemma 1, 6 = (bJ2)a, and B — (bnj2)A; i.e., A is extremal in &-D*'.

Before we prove that all extremals of β?-D^ have the desired
form, we give some additional definitions, and a lemma. For a £
{1, --,n} and A e ^ let

Λ(α) = Σ ^ -2Σ |αi*| ,
i ε α j,ke a

j<k

i.e., A G ^ I K iff / 4(α) ^ 0 for all α: £ {1, , w}. When the choice
of A is obvious, we will write f(a) for fA(μ).

LEMMA A. Given a, β, subsets of {1, , n), and A e ^Ό'yrf, then
f(μ U β) = f(a Π β) = 0 whenever f(a) = f(β) = 0, i.e., {α £ {1, . . . ,
n}\f(a) = 0} is a sublattίce of {1, , n).

Proof of Lemma A. By hypothesis,

Adding, and observing that, whenenver j , kea Π β, j < k, then ajk

appears in the right hand side of each equation, we have

Σ α;; + Σ a,, ^ 2 Σ i ajk | + 2 Σ i «;*
jeαfΊ/5 jeαU/S j,keaf)β j>kea{Jβ

But now, because A € ^Z>^, we must also have the opposite inequality,
so that we have equality, and more; f(a Π β) — f(cc U β) — 0.

Proof of Theorem 2 (continued). Suppose A is extremal in ^D^.
First, we must show that A cannot have more than one nonzero
diagonal entry. Suppose A has more than one nonzero diagonal
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entry; without loss of generality, an > 0. Clearly, in the terminology
of Lemma A, if f(a) > 0 for all a, lea, for sufficiently small δ > 0,
A = δEn + (A — δEn), where δEu and A — δEn are in ^Όw and are
linearly independent, a contradiction. If f(a) = 0 for at least one a,leaf

let μ be the intersection of all a, lea for which f(a) — 0. Since
an > 0, μ contains at least one index besides 1. For δ > 0, let

Bδ = δf2(Σ |α,y|W + Σ iβιSEιS + 5 ^
L \jeμ / jeμ

Clearly £δ e ^J9^ for all δ > 0. We shall show that A- Bδe ^D^
for sufficiently small δ > 0; it will follow that A, extremal in ̂ JD*%
cannot have more than one nonzero diagonal entry.

For a s {1, . . . , π}, 1 g α, Λ_βδ(α) - Λ(α) ^ 0. For a S {1, ,
^}, l e a , for which fA(a) > 0, clearly fA-Bδ(

a) > 0 for sufficiently
small δ > 0. Suppose l e a and / 4 (α) = 0. Then, since μ S a,

Σ ly*I Σ
j,kea jea

We have shown that A — jBδ e ^ D ^ for sufficiently small δ > 0.
We have now shown that A, extremal in ^D^, has one nonzero

diagonal entry, say απ. Suppose there were more than one nonzero
off-diagonal entry in the first row, one being a13 , j > 1. Then for

B = ±-{A - al5Eι5 - a^ESι), C= A - B,
Δ

B, C e jriy, and linearly independent, which is impossible. By Lemma
1, then, A is a positive multiple of En — eEtί — εE3 19 where |ε | = l
This completes the proof of Theorem 2.

5* Faces of cones* In what follows all cones K will be closed
and pointed. A face of a cone if in a real space X is a subcone F
of K satisfying

x e K , y — x e K ( i . e . , 0 ^ x ^ y), y e F ==> x e F .

The set of all faces of K will be denoted by ^(K). If S is a non-
empty subset of K, let Φ(S) denote the smallest face of K containing
S. Observe that S S Φ(S), Φ(Φ(S)) = Φ(S), and Φ(S) £ Φ(T) whenever
S S T. We define

FV G = Φ(F U G)
FAG = FOG .
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With these definitions of sup and inf, ̂ ~(K) is a complete lattice [1].
The results of this section extend some of [1], and will be useful

in later sections. If S is a nonempty subset of K, let Γ(S) be the
smallest subcone of K containing S. Obviously Γ(S) £ Φ(S).

LEMMA 3. Let S be a nonempty subset of K. Then Φ(S) = {x e
K\y - xeK for some yeΓ(S)}.

REMARK. This is proved in [1] for S = {x}.

Proof. Let G = {x e K\ y - x e K for some y e Γ(S)}. We obvi-
ously have Γ(S) £ G. Also, G is a face of K. To see this, we
have first that G is a subcone of K: if xu x2eG and al9 a2 > 0,
then there exist yu y2e Γ(S) such that y1 — xι eiΓ, y2 — x2e iΓ. Now
«!«! + <̂ 2̂ 2 e if, αji/j + α2?/2 e Γ(S), and

(α^, + α2τ/2) - {axx, + α:2̂ 2) = ax{yλ - x,) + α2(?/2 - x2)eK,

so that α ^ + CL2X2 eG. To see that G is actually a face of K, con-
sider ίce G, z e JBΓ, such that a? — 2e K. There exist y e Γ(S), y — xe
K. Now

(y - x) + (x - z) = 2/ - z e K,

so that zeG. Thus G is a face of K, and G 3 S, so that G a Φ(S).
To prove the opposite inclusion, let F be any face of K containing

S (and also Γ(S)). Pick x e G S K; there exists y e Γ(S) S i77 for
which y — xe K. As F is a face, a?e ί7. Thus G S F, and

G S Φ(S) = Π {^1^ a face of ζ F S S } .

We remark, as a converse to Lemma 2.9 of [1], that given F, a
face of K, then F = Φ(x) for any a? in the relative interior of F (i.e.,
the interior of F as a subset of the linear span of F).

THEOREM 2. Let S, T be the nonempty subsets of K. Then

Φ(S + T) = Φ(S UΓ) = Φ(Φ(S) + Φ(T)) = Φ(S) V Φ{T) .

REMARK. This extends Proposition 3.2(b) of [1].

Proof. The last equality follows from Proposition 3.2(a) of [1].
We shall complete the proof by showing Φ(S + T) S Φ(Φ(S) + Φ(T)) S
Φ(SU T)SΦ(S + T). As S £ Φ(S) and Γ£Φ(Γ), S + TQΦ(S) + Φ(Γ);
hence Φ(S + ϊ7) S Φ(Φ(S) + Φ(Γ)). Also, Φ(S) S Φ(S U T) and Φ(Γ) £

since Φ(SuT) is a cone, Φ(S) + Φ(Γ) £ Φ(S U Γ), hence
U T).
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Before showing the last inclusion, we first show that S £ Φ(S +
T). P i c k x e S ; t h e n f o r y e T, x + y e S + T a n d (x + y ) - xeK,
implying xeΦ(S + T). Now, S £ Φ(S + Γ), and also Γ £ Φ(S + Γ);
thus S u 17 £ Φ(S + Γ) and Φ(S u Γ ) g Φ(S + T).

COROLLARY 1. Let xl9 x2, , xr e K. Then

Φ(x, + x2 + + xr) = #({ffi, a?2,

V Φ(a )̂ V V Φ(xr) .

Note that for nonempty subsets S, Γ of K, Φ(S) V Φ(T) = Φ(S)
iff ΓSΦ(S) iff Φ(Γ)£Φ(S)

COROLLARY 2. Suppose xJf x2, , α5r satisfy

Xj^Φ(x, + • + a?^), j = 2, ., r .

(x2), Φ(xx) V Φ(αa) = ΦOi + α;2), , Φfo) V Φ(a?a) V V Φ(xr) =
Φ(Xi + x2 + + %r) is & strictly increasing sequence of faces of K.

6. The faces of PSD* A characterization of the faces of PSD
has been part of the oral tradition of the subject. Since we shall
need this result later, we will state and prove it here. An early
version of the proof we shall present was developed informally by
Hans Schneider. For brevity, we will denote the lattice ^ ( P S D ) of
faces of PSD simply by ^ T the elements of J^ are ordered by
inclusion.

We will deal with several subsets of Sίf. In each case, we will
assume the order induced throughout έ%f by PSD:

A ^ B <==> B- Ae PSD .

Also, for A e Cn>n, &(A) and ^V(A) denote, respectively, the range
and nullspace of A in Cn.

Let & denote the set of projections in Sίf, i.e., i e ^ i f f i e
and A2 = A. It is well-known (cf. [6], p. 55) that the order on
induced by PSD is equivalent to

A ^ B <=

and, since A, Be 3(f, also to

A ^ B —=

This last formula also provides information on the faces of PSD.

LEMMA 4. Let A, Be PSD. Then BeΦ(A) iff ^V{B) 3 ^V(A).

Proof. The result is trivial if A — 0 or B = 0; we shall assume



CONES OF DIAGONALLY DOMINANT MATRICES 29

A Φ 0 and B Φ 0.
First assume BeΦ(A) and choose tc > 0 such that tcB <^ A. If

xe^ί^(A), then

0 g #*(A - £#)£ = - £#*#£ ^ 0 ,

so that xe^i^(B).
Conversely, suppose ^f^(B) S ^V{A). Let

^ = {v e C# I v e ^T(A) = p r ( A ) ) 1 and ^ = 1} .

On the compact set Σ, v*Av > 0, and hence

0 ^ λ = sup{v*Bv/v*Av\veΣ} < oo .

For flceC,, we may write x — u + v, ue^K(A), ve&(A). Now
x*Ax = v*Av, and x*Bx = v*Bv, since u e ^V(A) S Λr(B). As B Φ
0, for some xeCnwe have #*#x = v*2ft; > 0, so that λ > 0. Further-
more, for all xeCn,

x*Ax = v*Av ^ X^v^Bv = λ" 1^*^ ,

so that λA ^ JB, i.e., J5e Φ(A).

COROLLARY 3. Let A, Be PSD. Then Φ(A) = Φ(B) iff ^Γ(A) =

We shall also need the easily-proved fact that for A, B e PSD,
Π ̂ ΓB = ^Γ(A + B). Recall that, for A,Be^*,AvB and

A A B are defined to be the hermitian projections onto, respectively,
+ &(B) and &(A) Π &(B). We have that

V B) = (&(A V B))1 = (^P(A) + ^ ( £ ) ) x - ^ ( A ) 1 n

- ^r(A) n
A B)y = (&(A)n

In fact, & is a complete lattice, isomorphic to the lattice of subspaces
of Cn.

THEOREM 4. 27&e map on & given by A—»Φ(A) is an order-pre-
serving lattice isomorphism of & onto ά?".

Proof. That Φ is 1 — 1 follows from the corollary to Lemma
4, since for A, Be &, A = B iff ^Γ(A) = ^Γ(B).

To show that Φ is onto, pick FejK Then 2^= Φ(E) for some
Be PSD. Let A be the hermitian projection with ^/Γ(A) = <yK(B)', now
Φ(A) = Φ{B) = F. Finally, that Φ and its inverse are order-preserving
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follows from Lemma 4, since for A,

Φ(B) £ Φ(A) - = * BeΦ(A) <—

It follows (cf. [2], p. 24) that Φ(A V B) = Φ(A) V Φ(£), Φ(A ΛJ5) =
Λ 0(J3) for all A, Be &.

COROLLARY 4. Let ^ δe the set of hermitian projections of
rank 1. Then g*(PSD) = ^*.

NOTE. This corollary has appeared recently in [8].

REMARK. We are indebted to the referee for pointing out that
Corollary 4 has been discovered several times and that a suitable
early reference is R. V. Kadison, Isometries of operator algebras, Ann.
of Math., 54 (1951), 325-338. In addition, Lemma 4 has appeared in
an equivalent form (but with no proof) in 0. Taussky, Positive-definite
matrices and their role in the study of the characteristic roots of
general matrices, Advances in Math., 2 (1968), 175-186.

7* Linear mappings of cones* Let K be a cone in real space
X, and τ a linear transformation from X into real space Y. Then τK
is a cone in Y, and x <; y (i.e., y — xe K) in X implies that τx ^
τy (i.e., τy — τxeτK) in τX. If K is closed, so is τK; if K is full,
then τK is full in τX.

If τ is one-to-one, then also τx ^ τy implies x ^ y. For this case,
we give a general result on the lattices of faces of K and τK.

THEOREM 5. Let K be a cone in X, and τ:X—>F a one-to-one
linear transformation. Then if F is a face of K, τF is a face of τK.

If we define τφ: ^(K) - » ^ ( τ K ) by τφ(F) = τF, then τφ is an
order preserving lattice isomorphism of ^{K) onto

Proof. Suppose Fe^(K). Clearly τF is a subcone of τK.
Suppose 0 ^ u ^ v, v eτF; then u = τx for some xe K, v = τy for
some y e F, and 0 ^ x <; y. It follows that xe F, and ueτF.

Now τφ is clearly one-to-one and onto; also, both τφ and (τφ)~ι

are order preserving.
We apply our results now to prove that the cone Ό% in £$f is

not the image of PSD under any nonsingular linear transformation
of £ίf. By Theorem 4, we have that PSD satisfies the Jordan-Dedekind
chain condition (cf. [2], p. 5): all maximal chains between {0} and K
in ^{K) have the same length. In PSD this common length is n.
By Theorem 5, any nonsingular linear transformation of Sίf induces
a lattice isomorphism of &~ = _^(PSD), and must preserve this chain
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length. We are done if we exhibit in ^{D%) a chain of length
greater than n.

Define, for j — 1, 2, , n,

Σ (jk kd)t 2j jj — Σ (E3-k + Ekj) .

k^j kΦό

We have seen that these matrices are extremal in D%. It is easily
computed that, for j = 1, 2, , n — 1,

4 - 4 Σ Ekk) = {Ce D5: cp, = 0, p, q = j + 1, . ., n) ,

and that

Thus the faces

,\ Φ{Aλ + A2) - Φ(A0 V

V Φ(A2) V . . . V

form a properly ascending chain of length 2n — 1.
Our arguments can be seen to apply to the real case: the cone

D£ = {AeSS\a3Ί ^ 0, αyj + akk ^ 2|α i fc |, i, A; = 1, , n, k Φ j}

is not the image, under a nonsingular linear transformation of the
cone PSDΛ of real symmetric positive definite matrices.
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