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MAPS WITH 0-DIMENSIONAL CRITICAL SET

P. T. CHURCH AND J. G. TIMOURIAN

Let f:M*—> N? be C* with n — p=0 or 1, let p = 2, and
let B, ,(f) be the critical set of f. If dim (R, ,(f)) =0, then
(1.1) at each x € M", f is locally topologically equivalent to one
of the following maps:

(a) the projection map p: R* - R?,

(b) ¢:C—C defined by o(z) =2%d = 2,8, ---), where C is
the complex plane, or

(¢) 7:C X C—CxR defined by (2, w) = (2z-w, |w|? — |2/?),
where 1w is the complex conjugate of w.

Under the additional hypothesis that dim (f(R,-.(/)) =
p—2 this result was proved in an earlier paper of the authors.
They show here that dim (®,_,(f)) < 0 implies something like
dim (AAR,- (M =p —2.

For general background material, the reader is referred to that
earlier paper [5]. The branch set B; [5, p. 616, (1.5)] is the set of
points at which f fails to be locally topologically equivalent to p.
A map ¢g:J" ™ X R— L™ X R™ is called a layer map if for each
te R™ g(J~ ™ x {t) < L>~™ x {t}.

1.2. Outline of the proof. We suppose that f is not an open
map, and from some technical differential lemmas of §3 obtain in
(3.4) by restriction and change of coordinates a layer map satisfying
the hypotheses of (2.1). By that lemma dim(B;) = p — 1, so that
dim (R,_(f)) = p — 1, contradicting the hypothesis of (1.1). Thus f
is open, and from the local structure for open maps given in [7] we
conclude in (4.1) that dim (f(By)) = p — 2. This is (essentially) the
additional hypothesis assumed in [5], and our conclusion results. A
global structure theorem is also given (4.5).

2. A topological lemma. In order to read the proof of (2.1)
the reader will need to have at hand the definition and certain pro-
perties of spoke sets [7, (2.1), (2.2), (2.3)].

LEmMMA 2.1, Let f:D* X R'— R X R*™! be a layer map with
Br = @, f(OD* x {t}) a single point not in f(By), and dim(B; N (D* X
{t})) = dim (f(B; N (D* X {t}))) = 0 for each tc R*™'. Then dim B; =
p— 1.

Proof. The last hypothesis implies that dim f(B;) < p —1[9, p.
59
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44, Theorem IV 3], so that dim B; < p — 1 [9, p. 91, Theorem VI 7].
If p=1 and B;= @&, then f is open and a contradiction results
from [7, (8.1)(b) or (d)]. Thus, for p =1 dim B; = 0, i.e.,, p — 1.
Hence we may suppose that p = 2, and will prove that dim B; =
»— 1.

Let I=1[0,1], let I**C I” be {(z, %, +--, &,): @, = 0}, let »r = 0, 1,
cee,p—1,and, forael’, let I",, = {xel*x, =a, fori=r + 1}.
For

Xcr,, and a>0,

let X(r,a) ={xe P (X, )y Xpy Qryyy***» Apy) € X and |z, — a;| < a for
t=r+1}. Thus I, (r,@) = {xel*|x, —a;] < a for 1 = r + 1}

Congider statement S,: (1) for every € > 0 and a € I?™, there are
a triangulation ¥ of the 7-cell I",,, and a > 0, and (2) for every
closed r-simplex o of ¥, there are spoke sets L;.(j=0,1, ---, q(0))
satisfying conclusions (i)-(vi) of [7, (2.1) and (2.2)] with W replaced
by Cl[o(r, @)] and E = B; N (D* x I*'). Moreover, (3) let ¢ and 7
be closed r-simplices of &, and let D* x Cl[(g N 7)(r, &)] be denoted
by T. Then, for any L,, and L;., one of the following statements
istrue: L, , NT=L; . NT,L,,NnTc(L;.— 2;,.)NT, L; . N T<(Lj, —
2;0NT, or Ly N (L. — 2;,)NT = @.

Since I',, = {a} and {a} is the only O-simplex of T, statement S,
follows immediately from [7, (2.2)]. We will suppose that S, is true
(r < p—1) and deduce S,,,.

Let ¢ >0 and acI** be given. For [u,v]C R and 7 > 0, let

U(u, v,)) ={zelPu<e,,<v and |z, — e, <7 for 2 > » + 1} .

If cely s then I, C,,,py and I, (7, ) = U(Crpy — 7, Copy + 7, 7).
For cerl, .y, let a(c) > 0, T(c), and {L, ;,} be as given by S, for ¢ (and
o replaced by c¢). There are c¢(i)(7 =1, 2, ---, m) such that {I",, (7,
a(c,))} covers I',,,,. We may suppose that {c,..(?)} are in increasing
order and the cover is minimal. If the open interval (c,,.(7) — a(c(%)),
¢.,(2) + a(c(?)) is denoted by A,,then 0c A, — U,»4;, 1€ 4,, — Uizndss
and A, NA;= @ if and only if j=141—1,7, or ©+ 1. Choose
b()erl, ,+1,0< b, () <1, and ¥ >0 so that the intervals F, =
[6,4:(8) — 7, b, (%) + 7] are mutually disjoint and F,C A, NA,.N
O,DE=1,2 ---, m— 1).

Let 2 =U. ;.20 Since BN 2= @ (by S, (2) (iii) and (iv)),
there is a 0 with 0 < § < min (¢, d(By, 2)) (d is distance). Let a(b(i)) >
0, T(b(%)), and {L, ;.} be as given by S, for ¢ replaced by § and a
replaced by b(i)(t =1,2, ---, m — 1); let B = min {a(b(z)), a(c(?)), 7}.
By S, (2) (vi) each dim L, ; < 0 < d(By, 2) and by S, (2) (iv) B; N
Lyw,; = @; thus (*) if
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(D* X Iarii(ry B)) N Lyir,ie N Ley,n,e D s

then (D* x I', (7, 8)) N Ly, 5.0 C(D* X Ty (1, B)) N Loty e — Lotar,b,e)s

Let d(t}t=1,2, ---,2m) be the numbers 0,1, b,,,(?) — 8, and
b,.(2) + B¢t =1, .-+, m — 1) in increasing order. Then ¥(d(2¢ — 1),
d(27), B) (resp., ¥(d(27), d(2i + 1), B)) is contained in I, (7, a(c()))
(resp., Iy, (r, a(b(3)))).

For each closed r-simplex ¢ of ¥(c(?)) (resp., T(b(¥))), let T I, ,.,
be the closed (r + 1)-cell defined by ¢ 2 if and only if (z, ---, z,,
Qrigy * 00y afp—x) €o, d(2'& - 1) =% = d(27,) (resp., d(21) S By S d(27f +
1)), and z, = a, for ¢ > r + 1. There is a triangulation & of I, ,.,
such that each such Y is a subpolyhedron {13, Chapter 1, p. 5]. For
each closed (r + 1)-simplex o of &, there is an r-simplex o of T(c¢(7))
or ¥(b(#)) with poc . Define L;,=L;, N(D* X p(r+1,8)(G =1,
2, «++, q(0) = q(0)). It follows that S,,, is satisfied for ¢ and a, with
B >0,%, and {L;,} (conclusion (3) follows from (*) and S, (3)).

Thus S,., is true for(say) 0 and any ¢ > 0; note that I, ,_, = I*™*
itself, and a does not arise in this case.

Let e=1,2,-.-.-. Let %, be the triangulation of I*™* and let
{Lj..} be as given in S,_, for ¢ = 1/e, let L, = U;.Lj.., and let 2, =
U;.2,... Bach %, is rectilinear in I*™, so we may suppose that each
Z,.. is a subdivision of F,.

Define an equivalence relation ~ on L, by: for every ae I o,
and j, and for every u,veL;,,N(D* X {a}), u ~v. Let Y, be the
resulting identification space, and let w,: L, — Y, be the identification
map. Let L, N (D? x 0I*™') be denoted by G,, and w,(G,) by 07Y..
Then w,: (L,, G,) — (Y., 0Y,) is a homotopy equivalence, Y, is a (p — 1)-
dimensional finite polyhedron, viewed as a cell complex [13, Chapter
1, p. 5], its closed (p — 1)-cells are w,(L;,,.), their interiors ,(L;,,, N
(D? X int 0)) = 7;,,. are mutually disjoint for distinct pairs (7, o).

With the index & of [7, (2.1)] 3550 &(Lj0.0)*Vis,. 18 @ (p — 1)-chain
B. of (Y, 0Y,). From the index formula [7, (2.3)] and from (2) (v)
and (3) in S,_; (note that Cl[(g N t){a)] is merely o N7 in this case),
it follows that B, is a cycle of (Y,,0Y,). Since &(D* x {s}) =1, it
follows again from the index formula that 3;&(L;,) = 1 for each o,
so that B8, # 0. Since dimY, = p — 1, B, defines a nonzero element
of H, (Y, 0Y,;Z)~ H,_(L,, G,, Z) (Z the ring of integers). Let
7. = 0x({B.}) € H,-(L., G.; Z).

Since 2, N B; = @ (by S,_, (2) (iv)), there exists d(e) with 0 <
o(e) < d(2,, Bf)(e=1,2, ---), and there is a subsequence {e(k)} such
that e¢(1) =1 and 1/e(k + 1) < min {0(e(¢)): e <k} (k=1,2, ---). For
every L;,.usn, there are a unique 7€ T, with 67 and weB;N
L; etken Y Sp_; (2) (iv). For a unique ¢, x € L, ..y by S,-. (2) (iv) and
(V), and from the size of l/e(k + 1) and S,_, (2) (vi), (f) Ljs.ewsnC
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L;..w- Let Nt (Loerns Getrrny) = (Lers Gory) be inclusion. From ()
and the index formula [7, (2.8)] it follows that h,tﬂ(m(kt,,) = Dmw(#0).
Thus the inverse limit of {7,.,} is nonzero, so that the Cech homology
group H,_.(N. L., N.G.; Z) # 0 by the Continuity Theorem. Hence

dlm(nLa)zp_l

[9, p. 152, Theorem VIII 4], and since ). L. C B#(S,_, (2) (iv) and (vi)),
dimB; = v — 1.

3. Differential lemmas. The following two lemmas are gene-
ralizations of lemmas that have been used repeatedly, and these
generalizations will also be used elsewhere.

LEMMA 3.1. Let f: M"— N* be C™, let K* be a C™ gq-manifold
m=1,2,++; 0r m=oc; 0r m=w;¢g=0,1,---,p—1), let p be a
C™ diffeomorphism of a region in NP onto K* X R*™‘, and let 2 be
a nonempty compact subset of f~ (0~ (K* x {0})). If f|2 is transverse
regular on p~(K? x {0}), then there are € > 0, aC™(n — p + q)-manifold
L, and a C™ diffeomorphism ¢ of L x S(0,¢) onto a meighborhood
of 2 in M™ such that oo foo is a layer map.

This is proved in [6, (4.1)] and is a generalization of [8, p. 80,
(3.5)] and [3, p. 376, (2.7)]. The condition that “f|2 is transverse
regular” means that f is transverse regular at « for each xz¢€ Q.

LEMMA 3.2. Let ¢q=1,2, ---,let f: M*— N? be a C" map with
max(n —q+1,1) < r £ oo, let QCM" be compact, and let Y N*
be closed, with dimY = q. Then for some m (m =0,1, ..., p — q)
there is a C” embedding N of S™ X R*™™ in NP such that f|2 is
transverse regular on MS™ x {t}) and MS™ X {HNY = @ for each
te R* ™.

If Q is omitted, “f|Q2 is transverse regular” is replaced by “f is
transverse regular”, and f is assumed proper, this is [8, p. 80, (3.7)].
The proof is an immediate generalization of that proof. (Although
we do not need it in this paper, the same comments apply to [8, p. 82,
(3.8)], except that J need not be compact.)

DEFINITION 3.3. Let K" and L* be C-manifolds with nonempty
boundary, and let f: K*— L* be a C"(r = 1) proper map with f(0L?) =
0K? and f(R,_.,(f))Cint L*. Let D(K") and D(L") be the doubles K"
and L?, respectively [10, p. 52, (5.10) and p. 62, (6.3)]. We now
define a C" map g¢: D(K") — D(L?), called a double of f, such that
the restriction of g to each half is C" equivalent to f [5, p. 616,
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(1.3)].
Let K,= K x4, let L,=L x4, and let f,: K,— L, be defined

by fiz, i) = (f(x), ©)(@ = 0,1). Let J,=1[0,1) and J, = (—1, 0]. There
is an open neighborhood U of 4L in L disjoint from f(R,_(f)) and C"
diffeomorphisms +,;: U, = U X 1 — 3L, x J; [10, p. 51, (5.9)]. Let
a;: f7Y(U,)— U, and B,;: 0K, — 0L, be the restrictions of f,.

There exist manifolds V, =V} with 0V, =@ and f(U)CV,
and W, = W? with oW, = @ and U,C W,, and a C" extension 7,: V,—
W, of a,. By restricting 7, we may suppose that it is proper. Now 7,
is the projection map of a C” bundle (e.g. from (3.1) with K a single
point), so that «, and @, are also. Thus there are diffeomorphisms
é:: f7(U)— 0K, x J; such that o, = (8, X ¢)o¢, (where ¢ is the
identity map on J;) [11, p. 53, (11.4)].

We may define the (C” structures on the) doubles D(K") and
D(L*) using the maps ¢, and +,; (identify (x, 0) in 0K, with (y, 1) in
0K, if ¢y(x, 0) and ¢,(y, 1) have the same first coordinate), and let »,;:
K, — D(K™) and y,: L,— D(L") be the natural (C") embeddings. Define
g by g(x) = fi(x) for xe K,. Clearly g is C” except possibly on oK.
U =UUU and ¥v: U’ —doL x (—1,1) and ¢: g7(U) —» 0K x (—1.1)
are defined by the +, and 4,, respectively, then og|g~(U’) = (B X ¢)o¢
(where ¢ is the identity map on (—1,1) and 8 = B, = B.), so that ¢
is C" everywhere.

LEMMA 3.4. Let f: M"— N? be a C* map with n — p =0 or 1,
dim By < p — 2, and dim (B; N f'(y)) =0 for each ye N°. Then f
18 0pen.

Proof. In case n = p, f is light and the conclusion is given by
[2, p. 94, (2.3)], so we may suppose that » = p + 1. Suppose that
f is not open. Let E; be the set of points at which f fails to be
open, and let e E;. According to [5, p. 622, (2.6)] there is a con-
nected (not necessarily compact) manifold K**'C M**' with boundary
such that xcint K**(=K?*" — 0K?*') and the closure K*** of K**'in
Mr*t ig compact; there is an open p-cell D C N? with f(K**)c Dr;
and the restriction map ¢g: K*™ — D? is proper with B, N 0K**' = ¢,
Let + = glint K**, and let 2 Cint K*** be the compact set Ey. Since
f is not open, dim(Ey) = » — 1 [5, p. 623, (3.4)], and by (3.2) there
is a C*** embedding \: S™ x R ™— D? guch that «|Q is transverse
regular on A(S™ x {t}) and MS™ x {t}) N ¥ (Ey) = @ for each e R* ™™
and m = 0or 1. From (3.1) m +# 0 and, for some ¢ > 0, the restriction
of ¥ to some neighborhood of Ey, is C?™ equivalent to the C?+!
layer map a:Q* x R*'— S' x R*™* with E,N(Q* x {t}) # @ for every
te R*71,

Since B, C R,_,(«) (the Rank Theorem [5, p. 617, (1.6)], dim (a(B,) N
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(St x {t})) = 0 for each te R*™* (by Sard’s theorem); and since
dim (B, N a*(u, t)) <0

for each (u,t)eS' x R*™' by hypothesis, dim (B, N (@ x {t})) =0 [9,
p. 91, Theorem VI 7].

Let (g, s)e B, c B, (we may suppose that s = 0), and let TC @* X
R*~* be a closed (p + 1)-cell neighborhood of (g, 0). Since {(g, 0)} is
the component of a~*(a(q, 0)) containing (g, 0) [5, p. 622, (3.2)], there
is an interval I < S* with a(q) €int I and é > 0 such that the component
F of a (I x S(s, §)) is contained in int T. We may suppose that the
endpoints of I are regular values of a,, and thus, for ¢ sufficiently
small, of a, for every ¢e€S(0,0). Thus F is an =-manifold with
boundary, and each F, = FN(Q* x {t}) is compact. Let G be the
double of F, and let g: G — S* x S(0, 6) be the double of the proper
map «|F: F— I x 80, 3) (3.3).

Choose an open 2-cell U with ge U and U x {0} c int F, C G,, and
choose 7, 0 <7 < 09, with U x S(0, ) cint Fc G. There exists §, 0 <
& <7, and an interval JC int I< S* such that B,(g)cint.J, the com-
ponent X of 87%(J x S(0, £)) containing (g, 0) is contained in U x S(0, &),
and the end points of J are regular values of 5, for each te S(0, &).
Thus X N (U x {0}), call it A? is a 2-disk with holes, and a,(0A%) CdJ.

We now apply {1, p. 196, (3.4)] to B, K, = §" x {0}, I", = J x {0},
K, = orI',, and p the identity map. There exists {, 0 <{ < &, and a
C** (layer) diffeomorphism @ of g7*(S* x {0}) x S(0, ) onto B7*(S*' x
S0, Q) with w(A4? x S(0,0)) = X. Let D be the closed 2-cell with
A*c Dc U and 0D C 0A?% and let 7: Dx S(0, {) —int I x S(0, {) be the
restriction of Bow. Now (0,9)€ E,c B, and by (2.1)dim B, = p — 1,
so that dim By = p — 1, and a contradiction results.

4. Conclusions.

PRrROPOSITION 4.1. Let f: M?*'— N? be C*** with By + @, dim B, <
p—2, and dim(f(y)N B;) <0 for each ye N*. Then dimB; =
» — 3 and there is a closed set Y By such that dim ¥ < » — 3 and,
for every x€ By — Y, f at x is locally topologically equivalent to

7 X id: R* X R*™*—— R* X R*3,

According to the Rank Theorem [5, p. 617, (1.6)] B;C R,_.(f)
and the following corollary results.

COROLLARY 4.2. Let f: MP* — N? be C*** with critical set R,_.(f),
let dimR, () =<p—2, and let dim(F () N B, () £0 for each
y € N*. Then there is a closed set Y < M*** such that dimY < p — 3



MAPS WITH 0-DIMENSIONAL CRITICAL SET 65

and, for each x€ M** — Y, f at x is locally topologically equivalent
to either the projection map o: R*™ — R” or to

T X id: R* x R —— R* x RP ¢ .

Proof of (4.1). By (3.4) f is open, and p = 2 since B, @ and
dim B; < p — 2. According to [7, (4.1) and (1.1)], if f: M**" — N* is
a C° open map with dim (B, N fY(y)) = 0 for each y € N?, then there
is a closed set X < M**' such that dim f(X) < p — 2 and, for every
re M** — X, there is a natural number d(x) with f at « locally
topologically equivalent to the map

Pams C X R —— R X R*™!

defined by ¢4, (2, t) = (Z(*), t)(F (2™) is the real part of the
complex number).

Since dim B; < p — 2 by hypothesis, B; € X, so that dim f(B;) =
p — 2. Thus f satisfies the hypothesis of [5, p. 626, (4.7)]. (For
n = p -~ 1 that proposition is identical with the present one except
that the hypothesis dim B; < p — 2 is replaced by dim f(B;) < p — 2.)

COROLLARY 4.3. If f: M*"'— N* is a C*™ map with dim B, =
0 and p = 2, then p = 3 and at each x € By, f s locally topologically
equivalent to t.

4.4. Proof of (1.1). From the Rank Theorem [5, p. 617, (1.6)]
B;c R,_(f), and the conclusion for » — »p =1 results from (4.3). For
n=p=3 dim(R,_(f)) £0 implies B, = @ [2, p. 94, (2.2)]; for n =
p =2, f is light open [2, p. 94, (2.3)], and so has the desired structure
(e.g. by [2, p. 90, (1.10)]).

Let G be a compact, connected Lie group, and let M be a closed,
connected, oriented G-manifold with orbit space a manifold. The action
is called almost free if it is free except for the fixed point set F, and
F is discrete nonempty set. In [4] Church and Lamotke classified such
actions globally, up to equivariant homeomorphism (they also treated
the smooth case): invariants are the oriented homeomorphism type of
the orbit space and the number (which is even) of fixed points. This
classification gives significance to the following corollary of (1.1), a
global classification of maps with 0-dimensional critical set.

COROLLARY 4.5. Let M*™ and N? be closed, connected, oritented
manifolds, and let f:MP™ — N* be a C*™ map with critical set
R, (f) of dimenston at most 0. Then there is a wuwique factoriza-
tion f = hog, where g: M*™ — K? is the orbit map of a topological
S' free or almost free action on M?* (and thus ts classified by [4]),
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and h: K? — N? 43 an r-to-1 covering map (r =1,2, ---).

Proof. By (1.1) either the branch set B, = @&, or »p = 3 and at
each point of By f is locally topologically equivalent to 7,i.e., to
the cone map of the Hopf fibration +:S*— S* [5, p. 618, (1.10)].
According to [12, p. 64, (2.5)] there is a natural number % such that
S '(y) has exactly k components for each y € N* — f(By), and at most
k components for each ye f(B;). From the local structure, f'(y)
has exactly k& components for every ye N?, and thus according to
[12, p. 63, (2.1)] there is a (unique) factorization f = hog, where
g: Mt — K* is a C**' monotone map and h: K* — N” is an r-to-1
covering map.

In case B = @, B, = @ also, so that g is a bundle map [5, p.
618, (1.9)] with fiber S'. The structure group can be reduced to S' =
SO(2) [12, pp. 64-65], and thus g is the orbit map of a free S* action.
In case By # @, the map a: M?** — B, — K* — ¢(B,) defined by restric-
tion of g is also a free S* action; since B, is discrete, g itself is the
orbit map of an almost free action.
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