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The theory of spectral operators, when applied to eigen-
function expansions, covers the unconditionally convergent
case. However, by perturbing certain spectral differential
operators, J. Schwartz has obtained differential operators
which are not spectral but whose eigenfunctions span the
whole space. In this paper we show how new norms can be
constructed so as to make these perturbed differential opera-
tors spectral. This we achieve by showing that such opera-
tors have an underlying generalized spectral measure (as
defined by V. E. Ljance) and that every generalized spectral
measure is essentially a C-spectral measure.

It may be shown that the topology defined by the new norm is
finer than the outer spectral topology introduced by Ljance. Thus
the theory of C-spectral measures both generalizes the concept as well
as sharpens some of the results of the theory of generalized spectral
measures. In this connection, it will be noted that the norm constructed
by Smart is the inner spectral norm of the theory of C-spectral
measures.

We denote by X a Banach space over the field C of all complex
numbers; the norm of X is denoted by || ||. The set of all bounded
linear operators on X into itself is denoted B{X). For any vector
space X, we denote by L(X) the set of all linear transformations
on X into itself. The adjoint space of X is denoted X*. If Te
B(X), we denote by N(T) the kernel of T and by T* the adjoint of
T. Bo will denote the σ-algebra of all Borel subsets of the complex
plane Λ.

1* Spectral measures and their generalizations*

DEFINITION 1 (Ljance). A subring A of Bo is said to be admis-
sible if and only if it contains along with each of its members every
Borel subset of that member.

If an admissible subring is also an algebra then it equals the
whole of BOf which is obviously an admissible subring of itself.

DEFINITION 2. Let X be a dense linear subspace of X and A an
admissible subring of Bo. Let E: A —> L(X) be a mapping such that

D( i ) E(δ)E(σ) = E(δ n σ) (δ, σeA);
D(ii) For each xeX, the mapping E(-)x: A—>X is countably
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additive in the norm-topology of X.
We define p:X —> [0, + 00) as follows:

Σ ll^ίll x — Σ E(σt)xt9 where
i=i *=i

σ, G £ 0 ; α, e -X" (i = 1, , %)} (xel).

It is immediate that p is a semi-norm on X. Also it is easily
seen that if A = J?o and i?(/ί) — J, the identity operator on X, then

DEFINITION 3. Suppose that E is as above. We say that E is a
generalized spectral measure if and only if

L( i ) X = X;
L(ii) Range EaB(X);
L(iii) Π {#[#(4)]: J G 4 } = { 0 } C X\_ and
L(iv) Π { i W ( J ) ] : AeA}= {0}aX*.

E is said to be a .Γ-spectral measure based on X if and only if
J( i ) A = Bo;
J(ii) E(Λ) — I, the identity operator on X; and
J(iii) p is a norm on X, compatible with || ||, that is: If {xn}

is a Cauchy-sequence in || || and converges to zero in p, then it also
converges to zero in 11 11.

REMARKS. The definition of generalized spectral measures is due
to Ljance [3]; however, it will be noted that he confines himself to
the Hubert space case and that we have taken the natural generaliza-
tion of his concept to Banach spaces. The concept of Γ'-spectral
measures was introduced in [1]; and C-spectral measures are particular
kind of Γ-spectral measures obtained either by restricting or by
extending suitably the base space of the latter.

LEMMA 1. Suppose that E is a generalized spectral measure in
X and having for its domain the admissible ring A, and let X —
sp{\J[E(J)X]: 4 e A}( = X, in the notations of Ljance). For each σe
Bo, we define the mapping E(σ):X~>X as follows: If xeE {A)X,
for some A eA, then E(σ)x — E{Δ Π σ)x.

The mapping E: Bo — L(X) is well-defined, E{A) = E(Δ) \X{AeA)
and E satisfies the conditions of Definition 2. Moreover, if the
semi-norm p is defined as there we have

( i ) p{E(A)x] £ p(x) (xeX Ae A);
(ii) For each AeA, there exists a finite positive K{A) such that

P(x) ^ I \x 11 ̂  K(A)p(x) (x e E(A)X) .
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Proof. Let σ e BQ and xeX. If Δlf A2eA such that x e E(A,)X
and xeE(A2)X9 then xeE(A)X, where A = 4 Π A2. Thus .E(σ)α; =

Π σ)x. But J Π σ = (J, Π σ) Π 42, so that

Π σ)x = E(A1 Π σ)E(A2)x = E(A, Π 0>

and similarly 2?(J Π σ)x = ^(^2 Π o)x. This proves that E(σ): X-+X
is well-defined. Clearly it is linear and, for each A eA, we have
E(A) = 2£(J) IX. Further it follows from condition L(iv) of Definition
3 that X is a dense linear subspace of X. Thus E satisfies the con-
ditions of Definition 2.

Inequality (i) follows immediately from the definition of p. To
prove inequality (ii), assume that A eA. Then E(A) is a bounded
projector on X, so that E(A)X is a Banach subspace of X; further,
E(A)X(Z X, so that the function E{ )z is countably additive in the
norm-topology for each z e E(A)X. Hence it follows by Corollaries
IV.10.2 and II.3.21 of [2] that

\\E(σ)z\\^K,(A)\\z\\ (zeE(A)X),

for some finite positive Kλ(Δ). Now let x e E(A)X and x = Σ*=i E{στ)xi9

where σ< e 2?0 and α̂  e X (ί = 1, , n). Then

x = E{Δ)x = Σ E(σί)E(A)xi ,

so that

Hence

\\x\\ £ K(Δ)p(x) ,

where JBΓ(J) = î XA) \ \ E(A) \ \. Finally it will be observed that ΛeB0

and x = E{Λ)x, so that p(x) ^ \\x\\. This completes the proof of the
lemma.

THEOREM 1. Every generalized spectral measure induces (as in
the above lemma) a Γ'-spectral measure.

Proof. Suppose that E is a generalized spectral measure in X,
having A for its domain. Let X and E be defined as in the previous
lemma. It has already been noted that E satisfies the conditions of
Definition 2. So it only remains to verify condition J(iii). To this
end assume that {xn} is a Cauchy-sequence in X and that p(xn)—>0.
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Let x be the limit of the sequence {xn} and let A eA. Then, since
E{A) is a bounded linear operator on X, it follows that E{A)xn—+
E(A)x; also p{E(A)xn} g p{xn). Thus \\E(A)xn\\ g K(A)p(xn), where ίΓ(J)
is as in the previous lemma, so that E{A)x — 0. Since A € A is arbi-
trary, it follows from L(iii) that x = 0. This completes the proof of
the theorem. Now E may be made into a C-spectral measure [1,
Theorem 2.12 (iv)].

It will be noted that the domain A of a generalized spectral
measure is not universally fixed; neither is the base X oί a /'-spectral
measure. Thus the injectivity of the relation between generalized
spectral measures and the induced Γ'-spectral measure may be destroyed
by trivial extensions. The next proposition asserts that this is the
worst that could happen.

PROPOSITION 1. If the Γspectral measures induced by two gen-
eralized spectral measures have a common extension, then so do the
generalized spectral measures themselves.

Proof. Let Ex: A, -* B{X) and E2: A2 -> B(X) be two generalized
spectral measures and let the .Γ-spectral measures induced by them
be E.iBo^LiX,) and E2: B0-+L(X2). Suppose that E:B0-*L(X)
is a .Γ-spectral measure extending both Eι and E2, that is ί c l
and E(A) | X, = Et(Δ) (A G £ 0 ; i = 1, 2). Let A be the set of all
Borel sets Δ such that (i) \\E{Δ)\\ < +oo and (ii) E(A)XaX. Since
E is a /-spectral measure, it follows that E(σ) is closable for each
σ e Bo. This proves that if A e A, d e Bo and δaA, then 3 e A. Now
it is easily seen that A is an admissible subring of Bo and that if,
for each A eA, E(A) denotes the continuous extension of E(A) to X,
then E: A—>B(X) is a generalized spectral measure. Further Aid A
and Ei(A) = E(A) (AeA^i^ 1, 2). Hence E extends both Ex and E2,
and this completes the proof of proposition.

2* Examples* In this section we shall give some examples of
generalized spectral measures. In particular, a class of differential
operators studied by Jack Schwartz [4] (see also [2, §XIX.5]) do in fact
have, associated with them, eigenfunction expansions which are uncon-
ditionally convergent in a suitable norm.

THEOREM 2. Suppose that T is a discrete operator in X and
that {λΛ: n = 1,2, •••} is an enumeration of o(T). For each n = 1,
2, , let E(Xn) denote the spectral projector associated with λΛ.
Further suppose that

( i ) ip (Γ) - ip OJ [E(Xn)X: * = 1, 2, ...]} = X; and
(ii) CUT) ={xeX: E(Xn)x = 0 (n - 1, 2, ...)} = {0}.
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Then E induces a C-spectral measure in the following manner:
For each A e Bo, we define E(A): X-+ X as E(A)x = Σiλe* E(X)x (x e X),
where X = sp {U [E(Xn)X: n = 1, 2, . •]}.

Moreover, if all but finite number of spectral points are simple
poles of the resolvent function R(-) T), then T is C-spectral.

All we need to observe in proving this theorem is that A, the
set of all bounded Borel subsets of Λ, is an admissible subring of Bo

and that E: A—+ B(X) is a generalized spectral measure.

COROLLARY 1. Let the situation be as in the previous theorem.
Then there exists a norm \ \ on X such that each element x e X has
spectral expansion of the form

x = Σ E(\n)x ,

where the series converges unconditionally in the \ \-norm topology.

We have only to take | | to be the outer spectral norm associated
with E; and observe that, for each xeX, the mapping E(')x: Bo—>
X is countably additive in the | |-norm topology [1, Theorem 2.10].

Examples of operators satisfying the conditions of the theorem
are due to Jack Schwartz [2, Theorem XIX.5.8] and Browder [2,
Theorem XIV.6.28]. The next theorem is related to the result above.

THEOREM 3. Let {ξn9 ζ*: n = 0, 1, 2, •} be an X-complete bior-
thogonal system such that {ζ*} is total in X*. Then there exists a norm
on X for which the expansion

is unconditionally convergent for each element x of X.
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