COMPLETION AND SEMICOMPLETION OF MOORE SPACES

JOHN WILLIAM GREEN
COMPLETION AND SEMICOMPLETION OF
MOORE SPACES

JOHN WILLIAM GREEN

Two properties are given which characterize those metacompact Moore spaces that are completable and two which characterize those which are semicompletable. The relationship among these properties in nonmetacompact spaces is investigated. Two new characterizations of Moore-closed spaces are given as is a characterization of developability. Some unification of technique is achieved among the various ways of completing or semicompleting a Moore space.

In 1962, O. H. Alzoobaee stated two properties A and B of developments and showed that every Moore space having a development with property (A) B is (semicompletable) completable and every (semicomplete) complete Moore space has a development with property (A) B. In the present work, it is shown that every metacompact (semicompletable) completable Moore space has a development with property (A) B. Related properties A' and B' are investigated. It is shown that a Moore space is Moore-closed iff every strong development has property A and iff every strong development has property B. Finally, a developable topological space is shown to have a sequence \(\langle G_n \rangle \) of open covers such that for each point \(p \) and open set \(U \) containing \(p \), there is an \(n \) such that only one member of \(G_n \) contains \(p \) and it is a subset of \(U \).

Complete Moore spaces were introduced in [7] and it was shown in [12] and [17] that a metrizable space is metrically topologically complete iff it is a complete Moore space. Semicompleteness (sometimes called Rudin completeness), a weaker property, was introduced in [14] and shown to be equivalent to completeness in metrizable spaces. Unlike the theories of metrizable or uniformizable spaces, there exist Moore spaces that cannot be embedded in any semicompletable Moore space [14], [9] and there exist semicomplete Moore spaces that cannot be completed [14]. The question naturally arises then of characterizing (semi-) completable Moore spaces. Whipple [15] has characterized completable Moore spaces in terms of Cauchy sequences and Creede [3] has what might be called an external characterization in terms of the Wallman compactification. An external characterization of semicompletableability is given by J. N. Reed in [11]. Stronger completeness properties are investigated in [4] and [5]. The properties of Alzoobaee mentioned above were introduced in [1] and reported
1.2. Terminology. A development for a topological space S is a sequence $G = G_1, G_2, \ldots$ of open covers of S such that for each point x and neighborhood U of x, there is an n such that $st(x, G_n) \subseteq U$. The development G will be called monotonic if $G_n \supseteq G_{n+1}$ for each n and nested if in addition, G_{n+1} refines G_n. A Moore space is a regular Hausdorff developable space. A Moore space is (1) complete (2) semi-complete iff there is a monotonic development G for S such that if M_n, M_{n+1}, \ldots is a nonincreasing sequence of closed point sets and g_n, g_{n+1}, \ldots is a sequence such that for each $n, g_n \in G_n$, then (1) if $M_n \subseteq g_n$ for each n, then $\cap M_n \neq \emptyset$; (2) if $g_{n+1} \subseteq g_n$ for each n, then $\cap g_n \neq \emptyset$. It is shown in [14] that if the closure symbol is omitted in (1) or in its first occurrence in (2), then the resulting statements are equivalent to those given. If G is a monotonic development for a Moore space S then $F = \{f_n : n \in \mathbb{N}\}$ is (1) a G-filtersubbase, (2) a G-filterbase, (3) a G-nest [2] iff for each $n, f_n \in G_n$ and (1) F is a filtersubbase (i.e., the intersection of each finite subcollection of F is nonempty), (2) $f_n \supseteq f_{n+1}$ for each n, (3) $f_n \supseteq f_{n+1}$ for each n, respectively. A filtersubbase F intersects a set M iff every set in F intersects M and two filterbases are said to intersect iff every set in one intersects every set in the other. If G is a development for the Moore space S, then G is said to have property A', A, B', B according as G is monotonic and (A') if U and V are members of G_i and U is a proper subset of V and F is a G-nest intersecting U, then there is a positive integer n such that if $W \in G_n$ and F intersects W, then $W \subseteq V$.

(A) A is obtained from A' by replacing the phrase “U is a proper subset of V” with the phrase “$\overline{U} \subseteq V$”.

(B') If $U \in G_i$ and F is a G-filtersubbase some member of which is a proper subset of U, then there is a positive integer n such that if $W \in G_n$ and F intersects W, then $W \subseteq U$.

(B) B is obtained from B' by replacing the phrase “some member of which is a proper subset of U” with the phrase “the closure of some member of which is included in U”.

It should be observed that if G has property A' or B', then G_i is a nested basis for the topology of S; that is, if U and V belong to G_i and U is a proper subset of V, then $\overline{U} \subseteq V$. The argument for Theorem 9 of [5] shows that every metacompact Moore space has a nested basis. In 3.3 a nonmetacompact Moore space having a nested basis is indicated.

1.3. Preliminaries. If G is a nested development for the Moore
space S and α is a sequence of points and U is an open set, then α is said to be G-interior to U [15] iff (1) α is G-Cauchy (for each n, some member of G_n contains a final segment of α) and (2) for some n, every member of G_n containing a final segment of α is a subset of U. The open set U is G-interior to the open set V iff every G-Cauchy sequence having a final segment in U is G-interior to V. In [15] it is proved that a Moore space S is completable iff there is a nested development G for S such that if α is a G-interior sequence of the open set U, then for each n there is a G-interior subset of U belonging to G_n and containing a final segment of α. A development with this property will be said to have Whipple's property. It is easily demonstrated that if G is a nested development with Whipple's property, then (1) for each G-Cauchy sequence α, there is a G-nest $G(\alpha) = \{g_n(\alpha): n \in \mathbb{N}\}$ such that $g_{n+1}(\alpha)$ is G-interior to $g_n(\alpha)$ and contains a final segment of α, (2) $G(\alpha)$ intersects $G(\beta)$ iff $G(\alpha)$ and $G(\beta)$ are equivalent filterbases. Finally, some unification of technique among [15], [1], [2], [11], and the more general [8] (see [6] for additional references and results using the technique of [8]) is obtained by observing that if G is a nested development with Whipple's property, H is a collection of free nonintersecting G-nests such that every free G-nest intersects a member of H and for each open set U in S, $U^*_H = U \cup \{F \in H: U$ includes a member of $F\}$, then S^*_H, with $\{U^*_H: U$ open in $S\}$ as a basis, is a complete Moore space having S as a dense subspace and G^*_n, defined in the obvious fashion, is a complete monotonic development for S^*_n.

2. Completion and semicompletion in arbitrary Moore spaces.

Lemma 2.1. If S is a complete (semicomplete) Moore space and G is a monotonic development for S, then there is a complete (semicomplete) nested development H for S such that for each n, $H_n \subseteq G_n$.

The argument for the complete case is entirely trivial and for the semicomplete case is a straightforward application of Rudin's lemma ([14], Theorem 2).

Lemma 2.2. The property that every x of the Moore space S has a neighborhood having no point other than x as a limit point implies that S is semicomplete but not that S is complete.

Proof. Under the stated hypothesis, there is a nested development G for S such that if $U \in G$, then either U is singleton or for some point x of U, x is the only limit point of U. Suppose for each n, $g_{n+1} \subseteq g_n \in G_n$. If for some n, g_n is singleton, then $\cap g_i = g_n$. Suppose
for each \(n, g_n \) has only one limit point, \(x_n \). If for some \(i \) and \(j, x_i \neq x_j \), then for each \(n > i + j \), no nonsingleton member of \(G_n \) is a subset of \(g_i \cap g_j \), contrary to supposition. Thus, \(x_n = x_i \) for each \(n \) and \(\cap g_n = \{x_j\} \). Thus, \(G \) is a semicomplete development for \(S \).

Theorem 9 of [14] provides an example of a semicomplete Moore space that is not complete. If this example is modified by requiring each point above the \(x \)-axis to be open, then the resulting space satisfies the hypotheses of this lemma and Rudin's argument, with only the obvious modifications, shows the space is not complete.

Theorem 2.3. If \(D \) is an open (semi-) complete subspace of the (semi-) completable space \(S \), there is a (semi-) completion of \(S \) having \(D \) as an open subset.

Proof (Complete Case). Let \(S' \) denote a completion of \(S \) and for each subset \(A \) of \(S \), let \(\bar{A} \) denote the closure of \(A \) in \(S' \). Then \(D \cup S - D \) is a completion of \(S \) having \(D \) as an open subset. For clearly \(D \) is open in this space. Let \(\text{Cl} A = \text{closure in } D \cup S - D \) of \(A \).

Since \(S - D \) is closed in \(S' \), there exist sets \(U_i, U_2, \ldots \) open in \(S' \) such that \(S - D = \bigcap_i U_i \). Let \(F = F_1, F_2, \ldots \) denote a complete development for \(D \) such that for each \(n \) and each \(f \in F_n \), \(\text{Cl}_D f = \text{Cl} f \).

Let \(G = G_1, G_2, \ldots \) denote a complete development for \(S' \). For each \(i \), let

\[
H_i = \{g \cap (D \cup S - D) : g \in G_i \text{ and } \bar{g} \subseteq U_i\}.
\]

Finally, for each \(i \), let \(K_i = F_i \cup H_i \). Clearly, \(K = K_1, K_2, \ldots \) is a development for \(D \cup S - D \). Suppose \(M_1, M_2, \ldots \) is a nonincreasing sequence of closed point sets in \(D \cup S - D \) and for each \(i, \bar{M_i} \subseteq \text{Cl} k_i \) and \(k_i \in K_i \).

Case 1. For infinitely many \(i, k_i \in H_i \). Then \(\bigcap_i \bar{M_i} \subseteq \bigcap_i \bar{k_i} \) and since \(H_i, H_2, \ldots \) is a complete development for \(S' \), \(\bigcap_i \bar{M_i} \neq \emptyset \).

Since \(k_i \in H_i \) implies \(\bar{k_i} \subseteq U_i \), it follows that \(\bigcap_i \bar{M_i} \subseteq \bigcap_i U_i = S - D \). Hence, \(\bigcap_i \bar{M_i} = \bigcap_i M_i \neq \emptyset \).

Case 2. For infinitely many \(i, k_i \in F_i \). Then for each such \(i, \text{Cl} M_i \subseteq \text{Cl} k_i \subseteq \text{Cl} k_i \), so \(M_i \) is closed in \(D \). The completeness of \(F \) implies \(\bigcap_i \text{Cl} M_i = \bigcap M_i \neq \emptyset \).

2.4. Acknowledgment. The proofs of 2.3 and 2.5 and the last paragraph of the proof of 4.1 which appear here are considerably simpler than the author's original arguments and are due to the referee.
THEOREM 2.5. If M is a closed (semi-)complete subspace of the (semi-)completable Moore space S, there is a (semi-)completion of S having M as a closed subset.

Proof (Complete Case). Suppose M is a closed, complete subspace of S and S' is a completion of S. There is a set V open in S' such that \(V \cap S = S - M \). Now \(\text{Cl}_{S'} M \) is a complete space and since M is also complete, M is a \(G_\delta \) in S'. Let \(\bigcup U_i \cap \text{Cl}_{S'} M = M \). Then M is closed in \(V \cup \bigcap_i U_i \), which is a \(G_\delta \) in S' and hence complete.

COROLLARY 2.6. If M is a subspace of the (semi-)complete Moore space S, then in order that there exists a (semi-)completion T of S such that \(\text{Cl}_T M = \text{Cl}_S M \), it is necessary and sufficient that \(\text{Cl}_S M \) be (semi-)complete.

LEMMA 2.7. If S is a Moore space for which at least one development has property B', then S is completable.

Proof. There is a nested development G for S having property B'. Suppose \(\alpha \) is a G-interior sequence of the open set D, so that for some \(n \), every member of \(G_n \) containing a final segment of \(\alpha \) is a subset of D. If for some point \(x \), \(\{x\} \) is open and contains a final segment of \(\alpha \), then \(\{x\} \in G_i \) for every \(i \) and is G-interior to D. Suppose there is no singleton open set containing a final segment of \(\alpha \). There exist \(f_i \in G_n \) and \(f_\delta \) in \(G_{n+1} \), such that \(f_\delta \) is a proper subset of \(f_i \) and contains a final segment of \(\alpha \). Suppose \(\beta \) is a G-Cauchy sequence having a final segment in \(f_\delta \). Suppose further that for each \(m \), there exists \(t_m \in G_m \) and containing a final segment of \(\beta \) and intersecting \(S - D \). Let \(f_i = t_i \) for \(i > 2 \) and \(F = \{f_i : i \in \mathbb{N}\} \). F is a G-filtersubbase containing \(f_\delta \), and \(f_\delta \) is a proper subset of \(f_i \). Since G has property B', there exists \(m > 2 \) such that if \(W \in G_m \) and F intersects W, then \(\overline{W} \subseteq f_\delta \). But \(f_m \in G_m \) and F intersects \(f_m \) and \(f_m \) intersects \(S - f_i \). This is a contradiction. Therefore, \(\beta \) is G-interior to \(f_\delta \). It follows that G has Whipple's property and S is completable.

THEOREM 2.8. If some development for the Moore space S has property B', then some development for S has property B.

Proof. There exists a monotonic development G for S having property B'. Let \(M = \{x \in S : \text{there is a neighborhood of } x \text{ having no point other than } x \text{ as a limit point}\} \). M is an open semicomplete 2.2 subspace of a completable 2.7 space. By Theorem 5 of [14], M is complete. Let \(R = \{U \in G_i : U \cap (S - M) \neq \emptyset \text{ and } U \text{ is closed}\} \). For
each U in R, let x_U and y_U denote distinct limit points of U and let $U_x = U - \{x_U\}$ and $U_y = U - \{y_U\}$. Let $C_n = \{U \in G_n : U$ is singleton or U has only one limit point and is closed\}. C is a monotonic development for the subspace M. With the aid of 2.1 it may be seen that there exists a complete monotonic development D for M such that (1) $D_n \subseteq C_n$, (2) every nonsingleton member of D_{n+1} is a proper subset of some member of D_n. Since D_{n+1} refines D_n, it follows that D has property B for the subspace M and since $D_n \subseteq C_n$, D also has property B'. Let $H_n = D_n \cup \{U \in G_n - R : U \cap (S - M) \neq \emptyset\} \cup \{U ; U \in R \cap G_n \text{ and } t = x \text{ or } y\}$. There is a nested development K for S such that for each n, $K_n \subseteq H_{n+1}$.

NOTATION. If $U \in K_t \cap G_n$, let $U' = U$. If $U \in K_t - G_n$, let U' denote a set in R such that $U' - \{t\} = U$ for some $t \in \{x, y\}$. If $F \subseteq K_t$, let $F' = \{f' : f \in F\}$.

Suppose U and V belong to K_t and not both are subsets of M and $U \subseteq V$. V is not closed since no member of $K_t - D_t$ is a subset of any member of D_t. Since $U' = \overline{U} \subseteq V$, it follows that U' is a proper subset of V and of V'.

Suppose $V \in K_t - D_t$ and F is a K-filtersubbase the closure of some member f of which is a subset of V. As shown above, f' is a proper subset of V'. Thus, there is an integer n such that if $W \in G_n$ and F' intersects W, then $\overline{W} \subseteq V'$. Suppose for each $i \geq n$ there is a set $W_i \in K_t$ such that F intersects W_i and \overline{W}_i is not a subset of V. F' intersects W_i, so $\overline{W}_i = \overline{W}_i \subseteq V'$. There is a point p such that $V' - \{p\} = V$ and it follows that $p \in \overline{W}_i$ for each i. Since K_{t+1} refines K_t, there exists $Z_i \in K_t$ containing \overline{W}_i and thus containing p. It follows that $Z = \{Z_i ; i > n - 2\}$ is a local base at p and contains a K-nest. $\tilde{f} \subseteq V$ and $p \in \tilde{f}$. Suppose for some $i > n$ such that $Z_{n+1} \cap f = \emptyset$. There exists $j > m$ such that Z_i either is $\{p\}$ or is a proper subset of Z_{n+1}.

Case 1. Z_i is a proper subset of Z_{n+1}. Since G has property B', there is an $i > j$ such that if $W \in G_i$ and Z intersects W, then $\overline{W} \subseteq Z_{n+1}$. In particular, $\overline{f}_i \subseteq Z_{n+1}$. But $f \cap Z_{n+1} = \emptyset$ and $f \cap f_i \neq \emptyset$. This is a contradiction.

Case 2. $Z_i = \{p\}$. There is an $i > j$ such that $st(p, G_i) = \{p\}$. Since F intersects $\{p\}$, it is necessary that $p \in \overline{f}$. This is again a contradiction. Therefore, there is an $i > n$ such that if $W \in K_t$ and F intersects W, then $\overline{W} \subseteq V$.

Suppose $V \in D_n$ and F is a K-filtersubbase such that for some f in F, $\overline{f} \subseteq V$. There exists U in D_t such that either U is singleton
and is V or U has V as a proper subset.

Case 1. V is a proper subset of U. U and V belong to G_i, so there is an n such that if F' intersects W' and $W' \in G_n$, then $W' \subseteq U$. If $W \in K_i$ and F intersects W, then $W \subseteq U$, so that $W \in D_i$. Thus, F contains a D-filter subbase having f as a member. Since D has property B, there is an $i > n$ such that if $W \in D_i$ and F' intersects W, then $W \subseteq V$.

Case 2. $U = \{x\}$ for some point x of M. For some i, $st(x, G_i) = \{x\}$. If $W \in G_i$ and $x \in W$, then $W = \{x\}$. Thus, $f_i = \{x\}$ and if $W \in G_i$ and is intersected by F, then $W = \{x\} \subseteq U = V$.

Therefore, K has property B.

Theorem 2.9. If some development for the Moore space S has property A', then some development for S has property A.

This may be established by a minor alteration of the proof of Theorem 2.8.

Theorem 2.10. In order that a Moore space S be (semi-)completable, it is sufficient that some development for S have property $(A')B'$.

This follows from Theorems 2.8 and 2.9 above and 3.7 and 4.4 of [2].

Theorem 2.11. Every (semi-)complete Moore space having a nested basis has a development with property $(A')B'$.

Proof. Suppose D is a nested basis for the (semi-)complete Moore space S. There exists a nested (semi-)complete development G for S such that $G_i \subseteq D$. Such a development must have property $(A)B$ and from this and the fact that G_i is a nested basis, $(A')B'$ follows.

2.12. It is easily demonstrated that B' implies A' for any monotonic development. (This parallels Theorem 4.2 of [2].) It may be shown along the lines of the argument for Theorem 10 of [5] that if a Moore space has a completion having a nested basis of regular open sets, then some development for S has property B'. It may also be of interest that an argument like that for Theorem 9 of [5] may be used to obtain a characterization of metrizable spaces related to property C of [2] in the same way that B' is related to B. For the next result, a Moore-closed space [5] is a Moore space that is a
closed subspace of every Moore space containing it. A development G is strong \cite{15} iff it is monotonic and for each point x and neighborhood U of x, there is a positive integer n such that if $W \in G_n$ and $x \in \widetilde{W}$, then $W \subseteq U$. It is easily verified that a (semi-)complete monotonic development for a Moore space S has property (A) B iff it is strong, and that every nested development is strong (but not conversely). 1 \rightarrow 3 of the next result provides a striking contrast to Theorem 3 of \cite{5} since it follows from hypothesis 3 that every strong development is complete but it does not follow that S is compact, while the property that every monotonic development is complete characterizes compactness. From a private communication with G. M. Reed, the author has learned that Reed, independently and somewhat earlier than the date of 2.13, characterized Moore-closed spaces as the Moore spaces in which every strong development is complete.

Theorem 2.13. If S is a Moore space, the following are equivalent:

1. S is Moore-closed.
2. Every strong development for S has property A.
3. Every strong development for S has property B.

Proof. (1 \rightarrow 3). Suppose S is Moore-closed, G is a strong development for S, $U \in G_i$ and F is a G-filtersubbase the closure of some member of which is a subset of U. $(\bigcap_n f_n : n \in N)$ is a countable open filterbase and by the argument for Theorem 2 of \cite{5} S is feebly compact, so there is a point p in $\bigcap_n \overline{f}_n$. Suppose D is an open set containing p. Since G is strong, there is a positive integer n such that if $k \geq n$, then $f_k \subseteq D$. Thus, F converges to p and if W is a set intersected by F, then $p \in \overline{W}$. Therefore, there is an m such that if $W \in G_m$ and F intersects W, then $\overline{W} \subseteq U$.

(3 \rightarrow 2) is a consequence of Theorem 4.2 of \cite{2}.

(2 \rightarrow 1). Suppose S is a Moore space that is not Moore-closed. There exist a Moore space S' having S as a dense subspace, a point p and a strong development G' for S' such that $S' - S = \{p\}$ and p is a limit point of S. There exist sequences $\{x_i\}$ and $\{y_i\}$ of points of S and G'-nests $\{R_i\}$, $\{T_n\}$, and $\{Q_n\}$, for each n such that (a) x and y converge to p, (b) $x_n \in T_{n+1} \subseteq T_{n+1} \subseteq T_n \subseteq R_n - R_{n+1}$, (c) $y \in Q_{n+1} \subseteq Q_{n+1} \subseteq Q_{n+1} \subseteq Q_n \subseteq R_n - R_{n+1}$, (d) $p \in R_n$, (e) $T_{n+1} \subseteq Q_n$. Let $U = R_2 - \bigcup_n \overline{T}_{n+1} - \{p\}$, $V = R_1 - \bigcup_n \overline{T}_{n+1} - \{p\}$, $f_n = \bigcup_{i \geq n} T_{n+1} \cup Q_{n+1}$ and $F = \{f_i \mid i > 1\}$. For each n, let $G_n = \{g \in G' : p \in \overline{g} \text{ and either } g \cap f_{n+1} = \emptyset \text{ or } g \subseteq T_{n+1} \text{ or of } Q_{n+1} \text{ for some } k \geq n\}$. For $n > 1$, let $H_n = G_n \cup \{f_k : k \geq n\}$ and let $H_1 = H_1 \cup \{U, V\}$. H is a strong development for S, $U \subseteq V$ (in S), U and V belong to G_i and F is an H-nest intersecting both U and $S - V$. Thus, H does not have property A.
2.14. "Strong" cannot be omitted from (2) of 2.13. For consider the space Δ of Example 9, page 66 of [7]. Let α and β be distinct members of Z and suppose "region" means what is intended in the cited example or one of these sets $W_n = \{x: \text{for some } k \geq n, x \text{ is the } k\text{th term of } \alpha \text{ or of } \beta\}$. These new regions can be used to construct a monotonic development G for Δ that is not strong. But Δ is Moore-closed (see the section headed "Examples" in [5]) so by Theorem 2 of [5] G is semicomplete. From 2.12, G cannot have property A.

Theorem 3.1. If S is a metacompact Moore space, the following are equivalent:

1. S is completable.
2. Some development for S has property B.
3. Some development for S has property B'.

Proof. In view of Theorem 2.8 above and 4.4 of [2], all that remains to be shown is that (1 \implies 3). Under the hypothesis of (1), there is a nested development K for S having Whipple's property. There exists a sequence B_0, B_1, \ldots of point-finite open collections covering S minimally such that for each n, B_{n+1} refines B_n and K_{n+1}. Let $C_i = B_i$ and for each n, let C_{n+1} denote the collection of all members U of B_{n+1} such that for every $V \in \bigcup_{i \leq n} C_i$, either $U \cap (S - V) = \emptyset$ or U is K-interior to V.

Suppose for some m, $\bigcup_{i \leq m} C_i$ does not cover S and p is a point not covered by this collection. Let U_0, U_1, \ldots, U_n denote the members of $\bigcup_{i \leq m} C_i$ containing p and let $U = \bigcap_{i \leq m} U_i$. The constant sequence p is K-interior to U. By Whipple's property, there is a set R in K_m containing p which is K-interior to U. There is a $k \geq m$ such that $st(p, G_k) \subseteq R$. There is a set V in B_k containing p. $V \subseteq R$, so V is K-interior to U. Therefore, either $V \in C_k$ or there is a set in $\bigcup_{m < i < k} C_i$ containing p. In either case a contradiction is obtained.

Let $H_i = \bigcup_i C_i$ and for each n, let $H_{n+1} = \{U \in \bigcup_{i > n} C_i: U$ is K-interior to some set in $H_n\}$. H is a nested development for S. For clearly H_i covers S and suppose p is a point and n a positive integer such that H_n covers S. There exists U in H_n containing p and $m > n$ such that $st(p, K_m) \subseteq U$. There is a set V in $\bigcup_{i \geq m} C_i$ containing p. $V \cap (S - U) = \emptyset$, so V is K-interior to U. $V \in H_m \subseteq H_{n+1}$ and it follows that H_{n+1} covers S. That H is nested follows from the fact that every member of H_{n+1} is K-interior to some member of H_n.

(i) If U and V are distinct members of H_i and $U \subset V$, then U is K-interior to V. For $V \in C_n$ for some n and $U \in C_k$ for some k. If $k \leq n$, then there is a set W in B_k containing V. But $U \subset V \subseteq W$
and U and W are thus distinct members of B_k. This contradicts the fact that B_k covers S minimally. Therefore, $k > n$ and by construction of C_k, U is K-interior to V.

(ii) H has Whipple's property. This may be shown along the lines of the argument for Theorem 3 of [15].

There exists a collection T' such that (1) if $F \in T'$, then $F = H(\alpha)$ for some H-Cauchy sequence α (cf. 1.3), (2) if α is an H-Cauchy sequence, then $H(\alpha)$ intersects some member of T', (3) no two members of T' intersect. Let T denote the collection of all free filter bases in T'. As observed in 1.3, S_\ast^* is a completion of S and H_\ast^* is a complete monotonic development for S_\ast^*.

(iii) H_\ast^* is nested and has property B. For if $U^* \in H_{n+1}^*$ (the subscript T will be dropped here), there is a set V in H_n such that U is K-interior to V. Then $\bar{U} \subseteq V$ (in S) and if for some $H(\alpha)$ in T, $H(\alpha)$ intersects U (i.e., $H(\alpha) \in \text{Cl } U^*$ (in S^*)), then $H(\alpha)$ is equivalent to $H(\beta)$ for some H-Cauchy sequence β having a final segment in U and therefore, $H(\alpha) \in V^*$. So, $\text{Cl } s^* U^* \subseteq V^*$. So H^* is nested and complete and this suffices to show H^* has property B.

(iv) H has property B'. For suppose $U \in H$, and F is an H-filtersubbase such that some member V of F is a proper subset of U. By (i), V is K-interior, hence H-interior, to U. By the argument for (iii), $\text{Cl } s^* V^* \subseteq U^*$. Since H^* has property B, there is a positive integer n such that if $W^* \in H_n^*$ and F^* intersects W^*, then $\text{Cl } s^* W^* \subseteq U^*$. If $W \in H_n$ and F intersects W, then F^* intersects W^*. Therefore, H has property B'.

3.2. There is a metacompact Moore space that is not semicompletable. In [10], G. M. Reed makes the very fine observation that the first nonsemicompletable Moore space constructed in [9] is metacompact.

3.3. There exist nonmetacompact Moore spaces having property B'. The space A cited in 2.14 is not metacompact and its topology has a basis of sets both open and closed. Now every topology with such a basis has a nested basis and so, by Theorem 2.11, it has property B'. By the same reasoning, the example given in the proof of Lemma 2.2 has property A'.

Theorem 3.4. If S is a metacompact Moore space, the following are equivalent:

1. S is semicompletable.
2. Some development for S has property A.
3. Some development for S has property A'.

Proof ($1 \rightarrow 3$). (This again is all that need be shown.) Suppose
S' is a semicompletion of the metacompact Moore space S, G' is a nested semicomplete development for S' and $G = \text{Tr}_S(G')$. G is a monotonic development for S. By Rudin's lemma, there exist $H_a \subseteq G_a$ and $H'_a \subseteq G'_a$ such that (a) H_a and H'_a cover S and $H_a \supseteq H_{a+1}$ and $H'_a \supseteq H'_{a+1}$, (b) if $h_a \in H_a$ and $h_a \supseteq h_{a+1}$, then there exists an increasing sequence $\{p_n\}$ of positive integers and a sequence $\{h'_n\}$ of sets such that $h'_n \in H'_a$ and contains $\text{Cl}(h'_a \cup h_{p_n})$, where \bar{M} and $\text{Cl} M$ mean the closure of M in S and S', respectively. There exists a sequence B_1, B_2, \ldots of point-finite open collections covering S minimally such that B_i refines H_i and B_{i+1} refines B_i and H_{i+1}. Let $C_i = \bigcup_{\alpha \leq i} C\alpha$ and for each n, let C_{n+1} denote the collection of all members U of B_{n+1} such that for each V in $\bigcup_{\alpha \leq n} C\alpha$, either (1) $U \cap (S-V) \neq \emptyset$ or (2) $\overline{U} \subseteq V$ and if F is an H-nest intersecting U there is an i such that if $W \in H_i$ and F intersects W, then $W \subseteq V$. Finally, let $I_m = \bigcup_{\alpha \leq n} C\alpha$.

Suppose for some m, I_m does not cover S and p is a point not covered by this collection. Let V_1, V_2, \ldots, V_n denote the members of $\bigcup_{\alpha \leq n} C\alpha$ containing p. There is a set V' in H' containing p such that $V = V' \cap S \subseteq \bigcap_{\alpha \leq n} V_\alpha$. There is a set W' in H' such that $p \in W'$ and $\text{Cl} W' \subseteq V'$. Let $W = W' \cap S$, so $\overline{W} \subseteq V$. There is a set R in $\bigcup_{\alpha \leq n} B_\alpha$ containing p such that $\text{Cl} R \subseteq W'$. Thus, $R \subseteq V$. Suppose F is an H-nest intersecting R and F' is an H'-nest generated by F as in (b). F'' intersects W and $\text{Cl} W' \subseteq V'$. Since $H'_a \subseteq G'_a$ and G' has property A for S', it follows that there exists an integer q such that if $D' \in G'_q$ and F' intersects D', then $D' \subseteq V'$. Suppose $D \in H_q$ and F intersects D. By construction, $D = D' \cap S$ for some $D' \in G'_q$. Since F intersects D, F'' intersects D' and $D' \subseteq V'$. Thus, $D \subseteq V$. It follows that either $R \in I_m$ or there is some other set in I_m containing p. This is a contradiction. Therefore, I_m covers S for each m.

Thus, I is a monotonic development for S such that if U and V belong to I, and U is a proper subset of V and F is an H-nest intersecting U, then there is a positive integer n such that if $W \in H_n$ and F intersects W, then $W \subseteq V$. Rudin’s lemma may be applied again resulting in statements a' and b' obtained from a and b by replacing G' with H, G with I, H with J, and H' with J' and in which closure always means with respect to S.

J is a monotonic development for S having property A'. For suppose U and V belong to J_1, U is a proper subset of V and F is a J-nest intersecting U. U and V belong to J, and by (b') there is an H-nest F' generated by F. F' intersects U, so there is a positive integer n such that if $W \in H_n$ and F' intersects W, then $W \subseteq V$. Suppose $W \in J_n$ and F intersects W. By construction, there is a set Z in H_n including W. F' intersects Z and $Z \subseteq V$, so $W \subseteq V$.

4. Developable spaces.
THEOREM 4.1. The topological space S is developable iff there is a sequence G_1, G_2, \ldots of open covers of S such that for each point p and neighborhood U of p, there is a positive integer n such that there is only one set in G_n containing p and it is a subset of U.

Proof. That a space with such a sequence is developable is trivial. Suppose S is developable. By Theorem 4 of [16], there is a sequence H_1, H_2, \ldots of open collections (not covers) such that if p is a point and U is an open set containing p, there is a positive integer n such that $\{V \in H_n : p \in V\}$ is a nonempty finite set containing a subset of U. For each n and k, let $H_{nk} = \{V : V$ is the intersection of exactly k members of $H_n\}$. (This technique may be found in [13].) Suppose p is a point and U is an open set containing p. There exist n and k such that H_n has exactly k members containing p and one of them is a subset of U. H_{nk} has only one member containing p and it is a subset of U.

Since every closed set in a developable space is a G_δ, for each n and k there exists a sequence $\langle V_{nk} : i \in N \rangle$ such that $\bigcap_i V_{nk} = S - \bigcup H_{nk}$. Let $H_{nk} = H_{nk} \cup \{V_{nk}\}$. The sequence H_{nk} is the desired development.

4.2. The technique used in 4.1 can be used to obtain a simpler proof of Theorem 4 of [16] which does not depend on the lemma stated there.

REFERENCES

Received March 26, 1973.

The University of Oklahoma
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keith Roy Allen, Dendritic compactification</td>
<td>1</td>
</tr>
<tr>
<td>Daniel D. Anderson, The Krull intersection theorem</td>
<td>11</td>
</tr>
<tr>
<td>George Phillip Barker and David Hilding Carlson, Cones of diagonally dominant matrices</td>
<td>15</td>
</tr>
<tr>
<td>David Wilmot Barnette, Generalized combinatorial cells and facet splitting</td>
<td>33</td>
</tr>
<tr>
<td>Stefan Bergman, Bounds for distortion in pseudoconformal mappings</td>
<td>47</td>
</tr>
<tr>
<td>Nguyễn Phuon Cá, On bounded solutions of a strongly nonlinear elliptic equation</td>
<td>53</td>
</tr>
<tr>
<td>Philip Throop Church and James Timourian, Maps with 0-dimensional critical set</td>
<td>59</td>
</tr>
<tr>
<td>G. Coquet and J. C. Dupin, Sur les convexes ubiquitaires</td>
<td>67</td>
</tr>
<tr>
<td>Kandiah Dayanithy, On perturbation of differential operators</td>
<td>85</td>
</tr>
<tr>
<td>Thomas P. Dence, A Lebesgue decomposition for vector valued additive set functions</td>
<td>91</td>
</tr>
<tr>
<td>John Riley Durbin, On locally compact wreath products</td>
<td>99</td>
</tr>
<tr>
<td>Allan L. Edelson, The converse to a theorem of Conner and Floyd</td>
<td>109</td>
</tr>
<tr>
<td>William Alan Feldman and James Franklin Porter, Compact convergence and the order bidual for $C(X)$</td>
<td>113</td>
</tr>
<tr>
<td>Ralph S. Freese, Ideal lattices of lattices</td>
<td>125</td>
</tr>
<tr>
<td>R. Gow, Groups whose irreducible character degrees are ordered by divisibility</td>
<td>135</td>
</tr>
<tr>
<td>David G. Green, The lattice of congruences on an inverse semigroup</td>
<td>141</td>
</tr>
<tr>
<td>John William Green, Completion and semicompletion of Moore spaces</td>
<td>153</td>
</tr>
<tr>
<td>David James Hallenbeck, Convex hulls and extreme points of families of starlike and close-to-convex mappings</td>
<td>167</td>
</tr>
<tr>
<td>Israel (Yitzchak) Nathan Herstein, On a theorem of Brauer-Cartan-Hua type</td>
<td>177</td>
</tr>
<tr>
<td>Virgil Dwight House, Jr., Countable products of generalized countably compact spaces</td>
<td>183</td>
</tr>
<tr>
<td>John Sollion Hsia, Spinor norms of local integral rotations. I</td>
<td>199</td>
</tr>
<tr>
<td>Hugo Junghenn, Almost periodic compactifications of transformation semigroups</td>
<td>207</td>
</tr>
<tr>
<td>Shin’ichi Kinoshita, On elementary ideals of projective planes in the 4-sphere and oriented Θ-curves in the 3-sphere</td>
<td>217</td>
</tr>
<tr>
<td>Ronald Fred Levy, Showering spaces</td>
<td>223</td>
</tr>
<tr>
<td>Geoffrey Mason, Two theorems on groups of characteristic 2-type</td>
<td>233</td>
</tr>
<tr>
<td>Cyril Nasim, An inversion formula for Hankel transform</td>
<td>255</td>
</tr>
<tr>
<td>W. P. Novinger, Real parts of uniform algebras on the circle</td>
<td>259</td>
</tr>
<tr>
<td>T. Parthasarathi and T. E. S. Raghavan, Equilibria of continuous two-person games</td>
<td>265</td>
</tr>
<tr>
<td>John Pfaltzgraff and Ted Joe Suffridge, Close-to-starlike holomorphic functions of several variables</td>
<td>271</td>
</tr>
<tr>
<td>Esther Portnoy, Developable surfaces in hyperbolic space</td>
<td>281</td>
</tr>
<tr>
<td>Maxwell Alexander Rosenlicht, Differential extension fields of exponential type</td>
<td>289</td>
</tr>
<tr>
<td>Keith William Schrader and James Lewis Thornburg, Sufficient conditions for the existence of convergent subsequences</td>
<td>301</td>
</tr>
<tr>
<td>Joseph M. Weinstein, Reconstructing colored graphs</td>
<td>307</td>
</tr>
</tbody>
</table>