
Pacific Journal of
Mathematics

COUNTABLE PRODUCTS OF GENERALIZED COUNTABLY
COMPACT SPACES

VIRGIL DWIGHT HOUSE, JR.

Vol. 57, No. 1 January 1975



PACIFIC JOURNAL OF MATHEMATICS
Vol. 57, No. 1, 1975

COUNTABLE PRODUCTS OF GENERALIZED
COUNTABLY COMPACT SPACES1

V. DWIGHT HOUSE

In this paper two ways of generalizing compactness are
studied. We may consider various types of refinements of
open covers, such as countable open refinements, locally
finite open refinements, etc. In another direction, countably
compact spaces may be characterized as having the property
that any sequence has a cluster point. Spaces which require
that certain sequences have cluster points, such as ^-spaces,
mJ-spaces, and g-spaces, will be referred to as generalized
countably compact spaces.

These more general properties do not behave as well as compact-
ness with respect to products. For example, the product of two
Lindelδf spaces need not even be meta-Lindelδf, and the product of
two countably compact spaces need not be a #-space. The question
naturally arises as to what conditions must be placed on such spaces
to insure that they are better behaved with respect to products.

Let Q be a class of generalized countably compact spaces, let
Xl9 X2, be a sequence of spaces each of which belongs to Q.
Consider the following two questions.

1. When does Un^Xn belong to Q?
2. Suppose that each Xn has a covering property P which

generalizes compactness. When does Π~=iX* have P?
In § 3 we answer the first question where Q is any of the follow-

ing classes: countably compact spaces, J-spaces, wJ-spaces, (/-spaces,
/3-spaees, and wiNΓ-spaces. In § 4 the second question is answered
for the case where Q is the class of wJ-spaces and P is one of the
following: paracompact, metacompact, subparacompact, and meta-
Lindelδf.

2 Preliminaries. Unless otherwise stated, no separation axioms
will be assumed. Undefined terms are used as defined in [16], except
that paracompact spaces are always Hausdorff. The set of natural
numbers will be denoted by N9 and i, j , k, and n will denote
elements of N. If Ĵ Γ, , JK are collections of subsets of a set X,
we let Ai=i *&ϊ denote the collection {Π?=i At\ Ate J&tt i = 1, , n}.
A sequence j % 9 J^, of collections is said to be decreasing if J^+i
refines J^n (written JK+i < ^K)> for n = 1, 2, . Also, if J^ is a

1 This work was taken from the author's doctoral dissertation at Duke Univer-
sity. I would like to thank Dr. R. E. Hodel for his guidance in the preparation of
this paper.
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collection of subsets of X, and peX, then we will denote by
St(p, J&) the set (J {A \ p e A e J^}, by c(p, ^f) the set f){A\peAe
J^f} and by oτd{p, J^f) the number of elements of A which contain p.
If ^/ is a collection of open sets of a space X, and M §Ξ X such that
Λf <Ξ £7, for all C7 in ^ , then we call ^ a δαsβ for M, if given an
open set W with MaW. Then we have MSUS= flF, for some ί7
in ^ .

The following conventions will be used in discussing product
spaces. Recall that in the product space ΠαeiX> basic open sets
are of the form Π?=i Pa-(Ua.), where pβ: ΐlaeA X<χ—+ Xβ is the projec-
tion function onto the /3th coordinate space, and where each Uai is
open in Xα.. We will denote ΠUPal(Uai) by (Uav •••, UaJ. Also,
given any nonvoid open set U in ILe^Xa> we have that pa(U) Φ
Xa, for at most finitely many a in A. We will use i?(C/) to denote
the set of "restricted coordinates" of U, i.e., B(U) ={a\aeA, and
PJJJ) Φ Xα}. Since the elements of ILe^X* are functions from A
into IJaeA^af the symbols /, #, and A will be used to denote
elements of an infinite product space.

Let X be a topological space. If every open cover of X has a
locally finite (respectively, point finite; or point countable) open
refinement, then X is paracompact (respectively, metacompact, or
meta-Lindelof). If every open cover of X has a σ-discrete closed
refinement, then X is subparacompact [4]. (These spaces were intro-
duced in [21] as jPσ-screenable spaces.) If for any open cover ^ of
X there is a sequence 3^, ĝ 2, of open refinements of ^ such
that given x in X, there is an n in N such that ord (x, &n) is finite,
then X is 0-refinable [30].

Let &u ĝ 2, be a sequence of open covers of a space X having
the property that given xn e St(p, &n), for all n in N and some p in
X, then <#w) has a cluster point. Such a sequence of open covers
is called a wJ-sequence for X, and X is called a wJ-space [3]. If a
sequence gfx, ^ 2 , of open covers of a space has the property that
S? *+1 < Sf», for rc = 1, 2, , where SfΛi = {pt(G, %?n+1) | G e S^+J,
then it is called a normal sequence. A space which has a normal
wzf-sequence is called an M-space [22]. A paracompact wJ-space is
an Λf-space. Let _^7, ̂ f be a sequence of locally finite closed
covers of a space X having the property that given xn e c(p, ^l),
for all n in N and some p in X, then (xn) has a cluster point.
Such a sequence is called a Σ-net for X, and X is called a Σ-space
[23]. Clearly C(p) = f|"=ic(P, <^Q is countably compact. If C(p) is
compact for all p in X, X is called a strong J?-space. Thus a J?-
space is a strong J-space in the presence of a property which when
combined with countable compactness implies compactness. For
example a 0-refinable J?-space is a strong J-space by Theorem (i) of
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[30], and by Proposition 3 of [1], a meta-Lindelof J-space is a strong
J-space.

Let (X, ^") be a topological space, and let g: N x X^J?" be a
function such that x e ΠΓ=i g{n, x), for all x in X. Consider the
following conditions on g.

(a) If {xn, p} S #(w, yn), for w — 1, 2, , then the sequence
(xn) has a cluster point.

(b) If xn e #(w, p), for n = 1, 2, , then the sequence <xw> has
a cluster point.

(c) If p € £(w, cθ, for w = 1, 2, , then the sequence (xn) has
a cluster point.

(d) If g(n, xn) Π ̂ (^, p) Φ Φ, for % = 1, 2, , then the sequence
(xn) has a cluster point.

The class of wJ-spaces can be characterized by (a). X is defined
to be a g-space [19] or a /S-space [12] if (b) or (c) hold respectively.
A space with a function satisfying (d) is called a wiV-space [13].
The relationship between the classes of spaces defined in this section
is summarized in the two diagrams below.

paracompact countably compact metrizable

/ \ \ /
metacompact subparacompact ikf-space

\ I / 1 \
meta-Lindelof 0-refinable wJ-spacev wiV-space I'-space

\
g-space x—>/3-space

3* Countable products of generalized countably compact spaces*
This section is devoted to the consideration of question (1) of

§ 1. In [15] Ishiwata gives an example of two countably compact
spaces whose product is not a g-space. This example indicates that
we must restore some sort of compactness to the spaces Xn in order
to insure that Π~=i X% belongs to Q.

In [24] Noble introduces the class C* of all T} spaces X satisfying
the property that every infinite subset of X meets some compact
subset of X in an infinite set. We see this property again in [26],
where it is proved that a product of at most χ2 spaces in C* again
belongs to C*. Next notice that for a Hausdorff space X, XeC*
if and only if X is countably compact and every sequence in X has
a subsequence with compact closure. These remarks and the follow-
ing definition prompt Definition 3.2.
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DEFINITION 3.1. A topological space X is called subsequential if
each sequence in X which has a cluster point has a convergent
subsequence.

DEFINITION 3.2. A topological space X is called weakly sub-
sequential if each sequence in X which has a cluster point has a
subsequence with compact closure.

REMARK 3.3. In [14], Ishii, Tsuda, and Kunugi essentially prove
that a countable product of weakly subsequential Λf-spaces is a
weakly subsequential M-space. In this section the technique of [14]
is abstracted to obtain a general theorem (Theorem 3.10) on countable
products from which follow product theorems for several classes of
generalized countably compact spaces, including ikf-spaces.

Before proving the main theorem of this section, we will first
study the property of being weakly subsequential and compare it
with other properties which are more familiar.

DEFINITION 3.4. A topological space X is weakly~k if given
F g l , FΠ C is finite for all compact subsets C of X implies that F
is closed.

DEFINITION 3.5. A topological space X is of point countable type
if X has a cover consisting of compact subsets each of which has a
countable base.

Definition 3.4 was introduced by Rishel [25] as a generalization
of Λ-spaces [16], and Definition 3.5, which simultaneously generalizes
first countable and locally compact spaces, is due to ArhangeΓskiϊ
[2]. ArhangeΓskiϊ proved that Hausdorff spaces of point countable
type are fc-spaces. It will be shown that weakly-Λ, Hausdorff spaces
are weakly subsequential. Also notice that since a countably compact
space which is subsequential is sequentially compact, an uncountable
product of closed unit intervals is weakly subsequential, but not
subsequential. We have the following diagram for Hausdorff spaces.
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first countable

sequential [9]

locally compact

i
p-space

point countable type

subsequential

weakly-& space

weakly subsequential

THEOREM 3.6. Let X be a weakly-k, Hausdorff space. Then X
is weakly subsequential.

Proof. Let (xn) be a sequence in X with a cluster point p.
Let F — {xn I neN}. If for each k in N, there is an nk^k such
that xnjc = p, then (xnfe) is a subsequence of (xn) with compact
closure. Otherwise F — {p} is not closed, so there is a compact sub-
set C of X such that (F - {p}) Π C is infinite. Set (F - {p}) D C =
{^l&eiNΓ}, where <#**> is a subsequence of < %̂>. Then <a;Wfc> has
compact closure.

q-space which is weaklyTHEOREM 3.7. Let (X, J7~) be a

subsequential. Then X is weakly-k.

Proof. Let g: NxX-+^~ satisfy condition (b) in §2. Let
peF — F. Then we have a sequence (xn) of distinct points such
that xn € g(n, p) D F, for n = 1, 2, . Hence <X> has a cluster
point, and thus it has a subsequence (#ΛJfe> with compact closure.
Let C — (xnk)~ Then F Γ\ C is infinite, and X is therefore weakly-fc.

EXAMPLE 3.8. A paracompact, weakly subsequential space which
is not weakly-fc.

Let X be an uncountable set, and let peX. Open neighborhoods
of p will be sets whose compliments are countable, and all other
points are open. It is easy to see that X is Tlf regular, Lindelof,
and weakly subsequential. Since compact subsets of X are finite, X
is not weakly-fc.
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EXAMPLE 3.9. A strong I'-space which is neither a g-space nor
a weakly subsequential space.

Let X be the Arens-Fort Space (Example 26 of [28]), i.e., X is
the set of all ordered pairs of nonnegative integers topologized so
that {(m, n)} is open if at least one of m or n is nonzero, and
basic neighborhoods of (0, 0) are sets which contain all but finitely
many points in all but finitely many columns in X. It is well known
that X is a Tif regular, Lindelof space which is not first countable
at (0, 0). One can see that X is a I'-space, hence a strong I'-space.
Since {(0, 0)} is a G5-subset of X, according to Lutzer [17], (0, 0) is
not a g-point of X, for otherwise X would be first countable at (0, 0).
Finally, it is not hard to see that X is not weakly subsequential.

THEOREM 3.10. Let {(X3 , S"s) \ j eN} be a sequence of Trspaces,
and let </w> be an infinite sequence in ΠΓ=i ^ Suppose that for
each j in N, and each subsequence (fnk) of (fn) with n} Ξ> j , there
is a subsequence (fn]c ) of (fnjc) such that (fnk (j))~ is compact. Then
(fn) has a subsequence with compact closure.

Proof. Since </Λ> is a subsequence of itself, there is a sub-
sequence (fnιt) of (fn) such that </»It(l)>" is compact. We may
assume that 2 ^ nu for all t in N. We thus have a subsequence
<Λ2ί> of (fnιt) such that </»2t(2)>~ is compact. We may assume
that 3 ^ n2t, for all t in N. In general, suppose that we have
sequences </«„>, •••, (fnkt) such that:

( 1 ) </ni+M> is a subsequence of </n<ί>, for i = 1, -., k - 1.
( 2 ) i + 1 ^ nit, for all t in N, and for i = 1, , k.
( 3 ) (fn.t(i))~ is compact, for i = 1, , k.
Then (fnkt) is a subsequence of (fn) with & + 1 ^ wΛr So there

is a subsequence (fnfe+1>t) of </^> such that <ΛΛ+lfί(fc + 1)>" is
compact. We may assume that H 2 ^ wfc+ίfί, for all t in iV. Thus
we obtain a sequence of sequences (fnιt), <Λ2ί>, ••• such that:

( 1 ) (fni+lft) is a subsequence of </n<ί>, for all i in N.
( 2 ) ΐ + 1 '<£ 72r«, for all ί and i in iV.
( 3 ) (fn.t(i))~ is compact, for all i in AT.

It will now be shown that the subsequence (fnjtk) of (fn) has com-
pact closure. Set C3 = {fnιt(l) | ί e iV}~. For i ^ 2, set

C, = {/Nf(<) 11 e N}- U {/.it(i) I i, ί < i) .

Now let C = Π?=i C€. Clearly C is closed and compact. Since fnkk e C,
for all k in N, we see that (fnkk)~ is compact.

THEOREM 3.11. Let {(Xjf ^}) \ j e N] be a sequence of weakly
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sub sequential, Tλ-spaces. Let X = ΠΓ=i Xΐ> an(^ ^ ^ be the product
topology on X.

( 1 ) If each X3 is countably compact, then X is weakly sub-
sequential and countably compact.

( 2 ) If each X3 is a wΔ-space, then X is a weakly subsequential,
wΔ-space.

(3 ) If each X3 is a q-space, then X is a weakly subsequential,
q-space.

( 4 ) // each X3 is a wN-space, then X is a weakly subse-
quential, wN-space.

( 5 ) // each X3 is a β-space, then X is a β-space.
( 6 ) If each X3- is a Σ-space, then X is a Σ-space.

Proof. Only the proofs of (2) and (6) will be included; the others
will be left for the reader.

( 2 ) For each j in N, let g3: Nx X-+^~3 be a function satisfy-
ing condition (a) in § 2. We may assume that g3{n + 1, x) S 9j(n, x),
for all x in X3 and all n in N. Let g: N x X—>^" be defined
as follows: g(n, f) = (g^n, /(I)), , gn{n, f(n))}. Suppose that
{/, fn) S g(n, K), for n = 1, 2, . . . . Let j e N, and let </^> be a
subsequence of </n> with n, ^ j . Since {/, fnf) g g(nk, Kk) and
nk ^ j , for all k in N, we have {f(j), fnk(j)} g ^.(wfc, hnjc(j)) S
flr5(fc, h%k(j)). So (fnk(j)) has a cluster point in X, , and thus it also
has a subsequence </%A;ί> such that (fnjct(j))~ is compact. By
Theorem 3.10 (fn) must have a subsequence with compact closure,
thus assuring that it also has a cluster point.

To see that X is weakly subsequential, let (fn) be a sequence
with a cluster point /. Then there is an nλ in N such that n] ^ 1
and fnιeg(l, f). If for i = 1, , k, we have ^ in N such that
WΊ < n2 < < nk, nt >̂ i, and /w< e βr(ί, / ) , then choose ?H + 1 in ΛΓ such
that nk+ι ^ max{fc + 1, nk+1} and fnkΛ1eg(k + 1, / ) . Then we get a
subsequence </ΛJfc> of </w> such that {/njfe, /} s flr(fc, / ) , for A; =
1, 2, . As above we see that (fn]c) has a subsequence with com-
pact closure, thus assuring that (fn) also has a subsequence with
compact closure.

( 6 ) For each j in N, let jF?', J^7, . . . be a I'-net for X3 with
the property that ^J = ^ J = 1 ^7/', for all n in JSΓ. For each n in
iSΓ, set ^ ; = {UUFJ x Π ^ . X i l ^ e ^ ; ^ i = 1, -",n}. Let / Λ e
^(/, - ^ ) ι for w = 1, 2, . Let i e iV, and let </ΛJfc> be a subsequence
of (fn) with n^ j . Since nk^ j , for all fc in JV", we have /WA(i) e
c(fU)> JKQ Sc(f(j), ^rk>'), for fc=l,2, ••-. Thus (fnk(j)) has a

cluster point. So (f%k) has a subsequence {fnjc) such that (fnkt(j)}~
is compact. </„> therefore has a subsequence with compact closure,
and hence it also has a cluster point.
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REMARK 3.12. Theorem 3.10 should be compared to 4.2.3 in
[11]. As was mentioned earlier, in [26] Saks and Stephenson show
that we may actually take a product of up to χ3 factors in (1) of
Theorem 3.11 instead of just countably many. In [13] (Proposition
3.2 and Remark 3.3) it is shown that a wiV-space is countably
paracompact, and that a /S-space is countably metacompact. So in
(4) and (5) X is respectively countably paracompact and countably
metacompact. Ishiwata's example [15] shows that weakly subse-
quential can not be dropped from the hypothesis in (l)-(4) of
Theorem 3.11, and the following example (Stone [29]) shows that
we must have a countable product in (2)-(6).

EXAMPLE 3.13. Let X = ΐ[aeANa, where A is uncountable, and
each Na is a copy of the positive integers with the discrete topology.
Then X is neither a g-space nor a /3-space.

Proof. We will first show that X is not a g-space. Let g: A—> N
be the constant function which maps each a in A to 1. Let
Vlf V2, be a sequence of open neighborhoods of g. Let β eA —
Un^R(Vn). Then Pβ(Vn) = Nβt for all n in N. For each k in 2V,

let fk:A~+N be defined as follows: fh(a) = | £ £ J o T h e n / * e v*>
for all k in N. Suppose / is a cluster point of (fn). Let W =
-P^ι({/(/9)}). Then /» £ TF, for nΦf(β). This is a contradiction. Thus
(fn) has no cluster point, and so X is not a #-space.

We will now show that X is not a /3-space. Suppose that
g:NxX-+^~ is a function which satisfies condition (c) in §2.
Let /j in X be such that fx{a) = 1, for all α in 4 . Let V, be a
basic open neighborhood of /, such that V1 S g(l, /i). Set f2(a) =

) ί % P Γ t n ^ ^ L e t F2 be a basic open neighborhood of /2 such
that V2 S ^(2, /2), and i2( FJ S R{ V2). Now suppose that we have
flf ...,fn and Vlf . . . , K such that:

(1) Vi is a basic open neighborhood of /,, for i = 1, , w;
(2) ViSiKi,/,), for i = l, ...,w;
(3) Λ(Vi)SΛ(V;+1), for ΐ = l, . . . , w - l ;

Set Λ+1(α) - { ^ f ^ g ^ ^ and let Vn+1 be a basic open

neighborhood of fn+1 such that Vn+ι S ^(^ + 1, Λ+i)> and JB( FW) S
i?(F%+1). We continue in this manner to get a sequence (fn) and
open sets Vu Vly satisfying (l)-(4) above for all i in N. Now,
suppose that </w> has a cluster point /. Let β eA — Un=iR(Vn),
and let TF = pj'Ufiβ)}). Then / n ί TΓ, for nΦf(β). This is a
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contradiction. So </n> has no cluster point.
To show that X is not a /5-space, it suffices to find an

element h in X such that h e g(n, fn), for all n in N. Set

h(.σ\ _ ί/ (α)ι if «e f i (7J , for some w in N T h , F f π

π in N.

4* Countable products of covering properties* Paracompact-
ness is perhaps the most important covering property which
generalizes compactness. However, the product of two paracompact
spaces is not necessarily paracompact [27]. The question naturally
arises as to what extra conditions can be placed upon paracompact
spaces to insure that products of these spaces will also be para-
compact. In [29], Stone has shown that we may as well concern
ourselves only with products which are at most countable. We know
that a countable product of metric spaces is a metric space, and is
therefore paracompact by [29]. Frolίk [10] has shown that a countable
product of paracompact absolute Gδ (i.e., being Gδ in its Stone-Cech
compactification) spaces is paracompact. ArhangeΓskiϊ [2] and Morita
[22] have improved upon Frolίk's result by showing that a countable
product of paracompact wz/-spaees is paracompact. In a different
direction, Ceder [7] has shown that a stratifiable space is paracompact
and that a countable product of stratifiable spaces is stratifiable.
The best result so far is that of Nagami [23] which generalizes all
of the above mentioned results. Nagami's theorem is that a countable
product of paracompact J-spaces is paracompact.

in this section we will utilize Nagami's technique of proof to
obtain countable product theorems for other covering properties
such as metacompactness, subparacompactness, and the meta-Lindelof
property. In this direction Nagami [23] has shown that a countable
product of strong 2*-spaces is a strong J?-space. Since a regular,
strong J-space is subparacompact, it follows that a countable product
of regular, #-refinable (or metaLindelof) J-spaces is subparacompact.
In connection with this problem we introduce the class of strong
wJ-spaces whose difinition is suggested by Nagami [23] and Burke
and Stoltenberg [6]. (Also see MichaePs discussion of τnoά-k networks
[20].)

DEFINITION 4.1. Let X be a topological space. A decreasing
sequence Ŝ Ί, 2 2̂, of open covers of X is called a strong wΔ-
sequence for X if

(1) C(p) = Π?=i St(p, g^) is compact, for all p in X;
(2) {St(2>, SfJ I n = 1, 2, .. •} is a base for C(p), for all p in X.

A space with a strong ^//-sequence is called a strong wd-space.
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REMARK 4.2. It is clear that a developable space is a strong
wzZ-space, and a strong wJ-space is a space of point countable type.
Thus a Hausdorff strong wJ-space is weakly subsequential. We also
have the following theorem whose proof is left for the reader.

THEOREM 4.3. Let &u S 2̂, be a strong wA-sequence for X.
Then it is also a wΔ-sequenee for X.

EXAMPLE 4.4. A weakly subsequential, countably compact space
which is neither a strong wz/-space nor a strong Jf-space.

Let W = [0, Ω), the space of all ordinals less than the first
uncountable ordinal Ω with the order topology. It is well known
that W is countably compact and first countable. We will show
that W is not a strong w//-space first. To do this we will need two
lemmas about W which are based on ideas due to J. H. Roberts.

LEMMA 4.5. Suppose that g: N x W—+J7" is a function which
has as its values open sets in W of the form g(n, a) — (β, a], for
all a in W. Then for fixed m in N, there exists vm in W such
that vm 6 g{m, a), for uncountably many a in W.

LEMMA 4.6. Let g be as in Lemma 4.5. Then there is a v in
W such that for each n in N, v e g(n, a), for uncountably many a
in W.

Now suppose that &lf 5f2, is a strong wJ-sequence for W.
Define g: N x W-*^ by g(n, a) = (β9 a], where (/3, a] £ G, for
some G in § ^ containing a, for all a in W. Let v be as in Lemma
4.6. Since C(y) is compact, there is a 7 in W such that C(v) £ [0, 7).
Thus there is an n in N such that St(v, gfn) £ [0, 7). By Lemma
4.6, we have an a > 7 such that veg(n, a). But veg(n, a) implies
that aeSt(v, Sfn) Hence a < 7; a contradiction. So W is not a
strong wJ-space.

To show that W is not a strong J-space, we need to know that
a regular, strong J?-space is subparacompact [20]. Then it is easy
to see that W is not a strong J?-space. For it is well known that
W is a regular, T19 countably compact space which is not compact.
Thus by Therem (i) of [30], and by the fact that a subparacompact
space is ^-refinable, W can not be subparacompact, and hence not a
strong J-space.

Before we can prove our theorems on countable products and
covering properties, we must have the following two lemmas which
are based on notes by J. Vaughan.



PRODUCTS OF GENERALIZED COMPACT SPACES 193

LEMMA 4.7. If szf is a collection of subsets of X, p e X, and
f:X-+Y is a function, then we have f(St(p, J*f)) S St(/O),
where f(J^f) = /{(A) | A G

LEMMA 4.8. Let S^7, ̂ 2

n, . . . be a sequence of covers of Xn, for
n — 1, 2, . . . . i^or eαcή j in N, let

^ i — i 11 Cry x 11 Λn \ o y G <&$, n — l ,

( 1 ) ^ covers Π ϊ U -3Γ»» / o r βαc/2, i w JV.

( 2 ) j

(3 ) St(/, gf,) == Πί-i St(/(»)f ^ / ) x Π >ί X,.
(3') c(f, S?,) = TίU c(f(n), S?/) x Π«>i X.
(4) ηr=i S t (/ . s?i) = π r-i (nr-i st(/(»), gf, )), ί/ gf;+1 < g?/, /or

all n and j in N.
(40 nr=ie(/,s?» = n«i(n"-ie(/(TO),gf/))f %/s?,n = AU&Ί?,

for all j and n in N.

Proof. The proofs of (1), (2), and (3) are straightforward and
are left to the reader.

(4) Let g e flΓ-i St(/ Sfy). We have

St(/, ^ ) s Π -P.(St(/, ^ ) ) ς _
i=i i=i

= Γήst(/(Λ)fgfί )ΊnΓn1

Li=^ J Li=i

= [nst(/(»),^ )]nχ. = n

So flr(w) G ΠΓ-1 St(/(w), gfy ), and thus 0 G Π ^ I (ΠΓ=i St(/(w)f Sf/)).
Now, let flreΠ?-i(ΠΓ-iSt(/(w),gfy")). Fix i . Then for 1 ̂  n ^ i,
we have g(n)eSt(f(n)9 %?"). For % = 1, •-, j , choose G* in ^ Λ so
that ί/(n), f(n)GGJ. Let G - Π U G j x Π.>i-X». Then /, ^ G G G gfy,
and thus we have # e St(/, ^ ).

We now need a well known generalization of a theorem of
Wallace (5.12 of [16]). The proof of Lemma 4.9 can be obtained by
generalizing the the proof in [16].

LEMMA 4.9. For each a in an index set A, let Da be a compact

subset of a topological space Xa. Let D~ ΓLe^A^ and let U be
an open subset of Π « e i ^ with D S U. Then there is an n in N
and open sets Bav . , Ba% in Xai9 . , Xa% respectively such that D g
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THEOREM 4.10. A countable product of strong wA-spaces is a
strong wA-space.

Proof. For each n in N, let 2^7\ 3̂ Y\ be a strong wA-
sequence for Xn. For each j in JV, let

^i = JΠ G] x UXn I G] 6 ̂  , n = 1, , ή .

We will show that %?l9 ̂ 2 , is a strong w^-sequence for Π~=i Xn

Π«=i C(f(n)) is compact, since it is the product of compact sets.
Now, let U be open in ΠϊU -3Γ» sucli that C(/) S Z7. Then we have
a & in N, and open sets Vn in XΛ, for n = 1, •••, fc such that
Π ^ i C(/(w)) S ΠίU K x Π*>ib XnSU. For w - 1, . . . , fc, we have
an iVn in AT such that C(/(rc)) S St(/(w), ^ J S K Let m =
max {JVi, - ;Nk,k}. Then C(/) - Π?=i C(f(n)) S St(/, ^ w ) S U. Thus
{St(/, ^ ) I j = 1, 2, . . •} is a base for C(f).

COROLLARY 4.11. A countable product of strict p-spaces is a strict
p-space.

Proof. This follows immediately from Theorem 2.2 of [6].
Before we get to the main theorem of this section, we must

have two lemmas about covers of spaces.

LEMMA 4.12. Let ^/ be an open cover of a space X, and let
*%ff be the collection of all finite unions of elements of ^ .

( 1 ) If ^/r has a point countable open refinement^ then so
does %f.

( 2 ) If <%" has a σ-point finite open refinement, then so does ^/.
( 3 ) If *%/' has a σ-locally finite open refinement, then so

does %f.
( 4 ) If °Γ is an open cover of X such that °F < ^ , Ύ*' is the

collection of all finite unions of elements of ψ\ and Y*' has a
σ-locally finite closed refinement, then so does Ήf.

LEMMA 4.13. Let X be a topological space, and let 5fly S 2̂,
be a strong wΔ-sequence for X.

( 1 ) // each &% has a point finite open refinement, then X is
metacompact.

( 2 ) If each ^ n has a locally finite open refinement, and X is
Tλ and regular, then X is paracompact.

( 3 ) If each ^ n has a point countable open refinement, then X
is meta-Lindelbf.
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(4) If each &n has a σ-locally finite closed refinement, and X
is regular, then X is subparacompact.

Proof. Let ^ be an open cover of X, and let *%Sf be the
collection of all finite unions of elements in Ήf.

(1) For each n in N, let ^ be a point finite open refinement
of &n, and let Tn = {G \ G e g^, and G £ U, for some U in ^"} .
Clearly 3^ = U"=i ̂  is a σ-point finite open collection, each element
of which is contained in an element of ^ ' . Now let peX. Then
C(p) £ Z7, for some U in ^ ' . Thus C(p) £ St(p, &n) £ 17, for some
% in JV. So y covers X. By (2) of Lemma 4.12, *%/ has a σ-point
finite open refinement. Now by Remark 3.12, we see that X is count-
ably metacompact since it is a wz/-space. Hence X is metacompact.

(2) This argument is similar to that in (1). We get a σ-
locally finite open refinement of ^ . Since X is T1 and regular, it
is paracompact by a theorem of Michael [18].

(3) This argument is easy and is left to the reader.
(4) Let T be an open cover of X such that Ψ < ^ , and let

y be the collection of all finite unions of elements of yi Let _ ^
be a σ-locally finite closed refinement of 2^, for each n in N. Set

?ej?l, and F £ F, for some F in T'}. Clearly < ^ =
a σ-locally finite closed collection, each element of which

is contained in an element of y . £%f covers X by an argument
similar to that in (1). By (4) of Lemma 4.12, *%s has a σ-locally
finite closed refinement. So X is subparacompact by Theorem 1.2
of [4].

THEOREM 4.14. Let Xh X2, « be a sequence of strong wΔ-

spaces, and let X = Π~=i -X̂
( 1 ) // each Xn is metacompact, then X is metacompact.
(2) If each Xn is paracompact, then X is paracompact.
(3) If each Xn is meta-Lindelbf, then X is meta-Lindelof.
(4) // each Xn is subparacompact and regular, then X is

subparacompact.

Proof. Let 5^7, ̂ 2

n, be a strong wz/-sequence for Xn, for
n = 1, 2, . . . . Let gfy = {ΠίUi G] x ΓL>i Xn\G] e &*, for % = 1, , j}
for each j in N. Then 2^, Ŝ 2, . . . is a strong wJ-sequence for X.

(1) For each w and j in N, let y}n be a point finite open
refinement of ^ / . Set Tό = {ULi V? x Π»>i X i ^ / e 3^w* f or
^ = 1, . . ,i}, for each j in ΛΓ. Then clearly each Ύ] is a point
finite open refinement of S^ . So by (1) of Lemma 4.13, X is
metacompact.

The arguments for (2) and (3) are similar to (1).
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(4) For each n and j in N, let J^n = UΓ=i ̂  ? be a closed
refinement of 5^7, where each _^"> is discrete. For each j and i
in N, set J ^ , - {ΠLi *?* x Π»>/ -*• I ̂  e J ^ ?, for n = 1, . . ., i}.
Then each ^7z is a locally finite closed collection, and ^ 7 = UΓ=i J^~H
refines gf, , for i = 1, 2, - -.. By (4) of Lemma 4.13, X is sub-
paracompact.

COROLLARY 4.15. Let Xl9 X2, be a sequence of wΔ-spaces and

let X = Π ϊ U -3Γ».
( 1 ) 7/ βαcfe X% is regular and metacompact, then X is

metacompact.
(2) If each Xn is paracompact, then X is paracompact.
(3) If each Xn is regular and sub paracompact, then X is

subparacompact.

Proof. By Remark 1.9 of [5], we see that a regular, #-refinable,
wz/-space is a strong wJ-space. So each Xn in (l)-(3) is actually a
strong wz/-space.

REMARK 4.16. Note that (2) of Corollary 4.15 is the theorem
of ArhangeΓskiί and Morita. Theorem 5 of [8] is also the same as
(1) of Corollary 4.15. This can be seen by checking that the proof
of Theorem 2.2 of [6] also works for the Wallman compactification.
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