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D. Gorenstein has made the following conjecture: suppose
that G is a finite simple group which is simultaneously of
characteristic 2-type and characteristic 3-type. Then G is
isomorphic to one of PSp(4:, 3), G2(3) or ί/^δ). In this paper,
we prove two results which, taken together, yield a proof of
this conjecture under the additional assumption that G has
2-local 3-rank at least 2.

1* Introduction* In this paper we study finite simple groups,

all of whose 2-local and 3-local subgroups are 2-constrained and
3-constrained respectively. The results we obtain are extensions of
Thompson's theorem ES, and their relation to simple groups of
characteristic 2-type is entirely analogous to the relation of theorem
ES to simple iV-groups.

The two Main Theorems are actually slight extensions of a
conjecture of Gorenstein [10], and we refer the reader to [10] for a
more detailed discussion of these ideas.

It will be convenient, before stating our main results, to develop
some notation, most of which is standard.

Let X be a group, Y a subgroup of X, and π a set of primes.
Then V\x( Y; π) denotes the set of Y-invariant τr-subgroups of X. In
particular, if the only F-invariant π-subgroup of X is 1, we write

Mx(Γ;ττ) = {l}.
For a finite group X, π(X) is the set of prime divisors of \X\.

As in [26], the subdivision of π{X) into πί9 π2, πz and π4 will be
important. We recall that peπ3i)π4 if a Sp-subgroup P of G has
a normal abelian subgroup of rank at least 3, which we write as
SCN,(P) Φ 0 . Moreover,

p eττ3 if SCN3(P) Φ 0 and HZ(P; p') Φ {1}

p e π, if SCN,(P) Φ 0 and HZ(P; p') = {1} .

If p is a prime, X a group, and P a S^-subgroup of OP,)P(X),
we say that X is ^-constrained if CX{P) ^ OpryP(X).

For p a prime and X a group, a p-local subgroup of X is the
normalizer of some nonidentity ^-subgroup of X.

We say that X is of characteristic p-type if p e ττ4 and every
p-local subgroup of X is ^-constrained.

With these definitions we can now state Gorenstein's conjecture:
Suppose that G is a finite simple group, p an odd prime, and
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suppose further that G is simultaneously of characteristic 2-type and
characteristic p-type. Then G is isomorphic to one of (?2(3), PSp(4, 3)
or ϋi(3).

A little more notation is required to state our own results: if
p e π3 U π4, 3I(p) denotes the set of elementary abelian subgroups of
type (p, p) which are contained in elementary abelian subgroups of
type (p, p, p).

Suppose that P is a Sp-subgroup of X and that SCNd(P) Φ 0 .
We write

pent if MX(P;2) = {1}.

Hence we require that P should not normalize any nontrivial
2-group, though it may well normalize some proper {2, p}'-group.

We can finally state the main results of the present paper.

THEOREM 1. Suppose that G is a finite simple group, p an odd
prime, and that the following conditions hold:

( a ) G is of characteristic 2-type.
(b) perct and all p-local subgroups of G are p-constrained.
(c) Some 2-local subgroup of G contains an element of %{p).
Then p = 3 and G is isomorphic to G2(3), PSp(4, 3) or U4(3); or

p = 5 and G satisfies the conditions of part (c) of Theorem D of
[19].

THEOREM 2. Suppose that G is a finite simple group and that
the following conditions hold:

( a ) G is of characteristic 2-type.
(b) 3 G 7Γ* and all 3-local subgroups of G are 3-constrained.
(c) Some 24ocal subgroup of G contains an elementary abelian

subgroup of type (3, 3).
Then G is isomorphic to G2(3), PSp(4, 3) or i74(3).

A word about the hypotheses of Theorems 1 and 2. Evidently
hypothesis (b) is a little weaker than requiring G to be of character-
istic p-type (respectively, of characteristic 3-type). The point here
is that the only relevant elements of MG(P; p'), for P a S^-subgroup
of G, are the 2-groups. It is condition (c) which provides an initial
hold on the subgroup structure of G. The strength of this assumption
has previously been demonstrated in [19], and we will make use of
the results obtained there in the present paper. Of course, elimination
of (c) in Theorem 1 would provide a complete proof of Gorenstein's
conjecture.

Finally we remark that although Theorems 1 and 2 are of a
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very similar nature, the proofs of the two theorems are completely
different. Indeed if G is a finite simple group of characteristic 2-
and p-type, the truth of Gorenstein's conjecture would imply that
p — 3. Under the assumptions of Theorem 1, the results of [19]
already show that p = 3, but in Theorem 2 we must assume at the
outset that p — 3. Moreover in Theorem 2 we have to account for
the possibility that G has a 2-local subgroup containing an elementary
abelian subgroup F = (3, 3) with F£2I(3), and this causes difficulties.
In view of Thompson's work in [4] and [26] this is not unexpected.

Finally, we emphasize that all groups considered in this paper
are finite. Our notation is standard and usually follows that of
[26]. We use the notation Zn, Dn, Q2n, SD2n to denote the cyclic
group of order n, dihedral group of order n9 generalized quaternion
group of order 2n, and semidihedral group of order 2n respectively.
A^B is the regular wreathed product of A with B, A*B the central
product of A and B, and A Q B means A is isomorphic to a sub-
group of B. Our notation for simple groups also follows [26], in
particular An, Σ» a r e the alternating and symmetric groups of degree
n respectively. The solvability of groups of odd order [4] is assumed
throughout.

2* Some preparatory lemmas* In this section we collect together
some results which we shall need in the sequal. Most of the results
are already in the literature.

LEMMA 2.1 (Generalized P x Q-lemma): Suppose that P is a
p-gronpj Q a q-group with p and q distinct primes and p odd.
Suppose further that Q <] PQ and that PQ normalizes the p-group
M. Then [Q, M] = 1 if, and only if, [Q, 0,(0M(P))] = 1.

Proof. This is contained in a result of Bender [2], and is a
slight extension of a result of Thompson [9, Lemma 5.3.4] which we
shall also need.

LEMMA 2.2. P is a p-group which admits a fixed-point-free
automorphism of order 3. Then P has class at most 2.

Proof. This is an old result of Burnside. A proof can be found
in [12, Theorem 8.1].

LEMMA 2.3. G is a solvable group such that O(G) — 1 and
I G: O2(G) I = 2.3α, a ^ 1. Suppose that a Sz-subgroup R of G has a
subgroup Ro of order 3 such that Ro is weakly closed in R and
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C(i?0) Π O2(G) = 1. Then one of the folloiving holds:

(a) GsΣ.
( b ) O2(G) is characteristic in a S2-subgroup of G.

Proof. Let Q = Q2(G) with T a S2-subgroup of G, so that
I T: Q I = 2. If I Q I = 4 then (a) obviously holds, so we may assume
that I Q I ̂  8. Now as CQ(R0) = 1 then Q has class at most 2 by
Lemma 2.3. We will show that Q is the only subgroup of T of its
isomorphism class, in which case (b) is immediate.

Now by the Frattini argument we have G = QNG(R), so because
of the existence of Ro we get | NG(R) | = 2 | R\, so ΛΓG(i2) = i2<i> with
T = Q<ί> for some involution ί. Since i?0 is weakly closed in R then
RQ <| 12<£> so t either inverts or centralizes RQ. If t inverts RQ then
the desired result is proved by Higman in [12, Theorem 8.1], so we
may assume that [Ro, t] — 1.

Suppose to begin with that Q is abelian. If there is a second
subgroup of T which is isomorphic to Q then t must centralize a
subgroup of index 2 in Q. As Ro normalizes CQ(t) we get Qf] C(R0) Φ 1,
a contradiction. Now suppose that Q has class 2. Higman shows
in [12, Theorem 8.1] that every subgroup Qo of ζ) with \Q:QQ\ = 2
is such that Q' = QJ. If there is a subgroup Qx < T with ζ^ ~ Q
and ζh ̂  Q then Qo — Qi Π Q has index 2 in Q, so we get Q[ — Q'.
But Q ^ Q [ ^ Q', so Q[ - Q'. _ Finally, set G = G/Q'. As Q' ^ ̂ (Q)
then G/Q acts faithfully on Q and Q is abelian. Since Q : — Q0(tq)
for some g e Q and Q3 is abelian then t centralizes Qo. But | Q: Qo \ = 2,
so t centralizes a subgroup of Q of index 2 and we obtain a contra-
diction as before. This completes the proof of Lemma 2.3.

The next result, though apparently of an elementary nature,
requires deep results of Gorenstein and Gilman [5] and Walter [27]
for its proof.

LEMMA 2.4. G is a 3'-group which admits an automorphism a
of order 3 such that CG(a) has odd order. Then G is solvable of
2-length 1.

Proof. Since (| G\, | <α> j) = 1 then G has an <α>-invariant
S2-subgroup T. By Lemma 2.2 T has class at most 2.

First we show that G is solvable, so suppose that this is not the
case. Proceeding by induction, we may assume that G is character-
istically simple, hence is the direct product of isomorphic groups
Gl9 , Gr. As (a) permutes the Gt among themselves we get r — 1
or 3 and if r — 3 and then <α> is transitive on {G}9 G2y G3}. But in
this case <α> must centralize the involution ttata2 whenever t is an
involution of Gu against the assumption that CG(a) has odd order.
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So in fact G is simple. As T has class at most 2 we may identify
G by the results of Gorenstein-Gilman and Walter mentioned above.
As G is 3'-group the only possibility G ~ Sz(q) for some q ^ 8. But
every outer automorphism of Sz(q) has a fixed-point subgroup of
even order (see [25]), which contradiction completes the proof that
G is solvable.

In proving that G has 2-length 1 we may assume that O(G) = 1
and try to prove that T <| G. As G is solvable it has an <α>-invariant
Hall 2'-subroup H, and H(a) acts faithfully Q = O2(Q). Next we
show [α, if] = 1, so suppose this is not the case and choose V to be
an <α>-invariant subgroup of H minimal subject to [V, a] Φ 1. As
V(a) is faithful on Q, it is well known that CQ(a) Φ 1, a contradiction.
So F does not exist and hence [H, a] — 1. It follows that ζ)<α> <J
G(a), and hence Γ - QNτ((a)). But Λ^«α» - Cτ(a) - 1, so Q - T
as required.

LEMMA 2.5. G is a simple group with a cyclic Sp-subgroup P, p
an odd prime. Suppose that C(P) has odd order and | N(P): C(P) | = 2.
Then G has only one class of icvolutions.

Proof: This is a result of Brauer's [3].

LEMMA 2.6. G is a group, p an odd prime, G — Op(G)f and P
a Sp-subgroup of G. Suppose that P is non-cyclic and abelian, and
that I N(P): C(P) \ = 2. Then G is p-solvable.

Proof. This is a recent result of Smith and Tyrer [24].

LEMMA 2.7. G is a simple group of characteristic 2-type. Then
O(N) — 1 for each 24ocal subgroup N of G.

Proof. This is a well-known result of Gorenstein [7] which we
will frequently use without specific reference to it.

LEMMA 2.8. G is a simple group of characteristic 2-type with
a maximal 2-local subgroup N such that O2(N) is of sympletic type.
Then G has a non-solvable 2-local subgroup.

Proof. This is contained in a result of Lundgren [20]. (Observe
that 0(N) = 1 by Lemma 2.7.)

LEMMA 2.9. G is a simple group such that 2eτr3U^4 and CG(x)
is solvable of 2-length 1 for each involution x of G. Then G is
isomorphic to one of the following groups: L2(q), Sz(q) or Uz{q) for
q = 2n ^ 8.



238 GEOFFREY MASON

Proof. This is a combination of results of Bender, Goldschmidt
and Suzuki. The result is discussed in [8].

LEMMA 2.10. G is a simple group and T a S2-subgroup of G.
Suppose that T has an abelian subgroup of index at most 2. Then
the following hold:

(a) T is either abelian or isomorphic to D2n, SD2n or Z2n I Z2.
( b) G is isomorphic to one of the following groups: L2(q), q ̂  4,

L3(q) or Uz(q), q ̂  3, a group of Ree-type, AΊi Mn or Jx.

Proof. This is the combination of the work of a number of
authors. For a fuller discussion of the result we refer the reader
to [21].

3* The Proof of Theorem 1* In this section we will present
a proof of Theorem 1. So for the balance of this section G will
denote a simple group satisfying the hypotheses of Theorem 1, and
p Φ 5.

We have already made an initial investigation of the consequences
of the hypotheses of Theorem 1 in some joint work with Klinger
[19]. We obtained there the following result which represents the
first major reduction in the proof of Theorem 1.

PROPOSITION 3.1. Under the assumptions of Theorem 1, the
following conditions hond.

( a ) p = 3
(b) No 2-local subgroup of G contains an elementary abelian

subgroup of type (3, 3, 3).
( c) We can choose B e 21(3) and a maximal element F of M(S; 2)

such that F is extra-special of width w ^ 4. Moreover F is the
central product of w B-invariant quaternion subgroups. We have
Z = Z(F) = CF(B), and CF(B0) has rank 1 for 1 < Bo < B.

We shall retain the notation of Proposition 3.1 throughout.
Moreover we set B = {Bo \ 1< BQ < B and CF(B0) Φ Z}. Thus CF(BQ) ~ Q8

for Bo e B, | B \ = w, and if B = {Bίy . . . , Bw) with CF{B%) = Qifl^i^w9

then F = Qΐ ... *QW. We also set Z = (z).
We also obtained in [19] the following useful result.

LEMMA 3.2. Suppose that De 21(3), He M(D; 2), and CH{D) Φ 1.
Then H is of symplectic-type.

LEMMA 3.3. Let x be an involution of G. Then exactly one of
the following holds.
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( a ) CG(x) has cyclic S^subgroups.
( b ) x ~ z in G.

Proof, Suppose that (a) is false, in which case C(x) contains a
noncyclic elementary 3-subgroup D. By Proposition 3.1(b) we have
| Z > | = 9 . Suppose to begin with that De3I(3). Then if (x) ^
Fo e M*(Z>; 2) we get that Fo is of symplectic-type by Lemma 3.2,
in particular (x) = Ω^ZiFo)). But if T is a S2~subgroup of G con-
taining Fo we must have, since O2(N(F0)) = Fo, that Z(T) < FQ. Hence
(x) = Ωλ{Z{T)) and so a; - 2.

Finally, suppose that Z)g2I(3). We will show that this case
cannot occur: namely, if Z)£3I(3) then D contains every element of
order 3 in C(D), in. particular if R is a S3-subgroup of G containing
D then ZQ = Ω^ZiR)) < D. Set L = CG(Z0) > j?. As SCN3(R) Φ 0
then O3,(L) has odd order, so x acts faithfully O3f}Z(L)/O3f(L). Set
P = O3,t3(L)/O3,(L). (x) x JD acts on P and we have [x, Ω^CpiD))] £
[x, D] = 1 , hence [#, CP(i))] = 1, hence [x, P] = 1 by the P x Q-lemma.
This contradiction proves the lemma.

We now set C = CG(Z). T will denote some fixed S2-subgroup
of C, and i2 is a S3-subgroup of C which contains B. We collect
the facts we shall need about C in the following lemma:

LEMMA 3.4. The following conditions hold:
( a ) C = N(F), and C is a maximal 2-local subgroup of G.
( b ) T is a S2-subgroup of G and Z = Z(T).
(c ) Either R= B is elementary of order 9 or one of the following

holds:
( i ) w = 3 and R is non-abelian of order 27.
(ii) w = 4 and R is non-abelian metacyclic of order 27.
( d ) M?(5; 3') = {F}.

Proof. We have \Z\=2, so clearly N(F) ^ C. On the other
hand if Fo = O2(C) we must have Fo ^ F since otherwise we get
F < F0F e )A(B; 2), against the maximality of F. Now as C is
2-constrained we must have Z < FOf hence CFQ(B) Φ 1 and F o is of
symplectic-type by Lemma 3.2. We deduce that Fo is a product of
the subgroups Qlf •••, Qw. If FOΦ F then some Q o say Qlf satisfies
Qx Π Fo = ^ But then [Qx, i^] = 1, against the 2-eonstraint of C,
and so we must have Fo = F and N(F) = C. The same proof now
yields that C is also a maximal 2-local subgroup of G, so (a) is
proved, (b) is a straight forward consequence of (a).

As for (c), suppose that B < R. In this case, we must have
w = 3 or 4, so assume to begin with that w = 3. Hence, we get

s O6~(2), so i 2 C ; ^ 3 ? ^ 3 . Since i? has rank 2 by
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Proposition 3.1(b) we get that R is non-abelian of order 27. Now
suppose that w = 4 and assume without loss that Bλ ^ B Π Z(i2).
Hence R normalizes Qι = CF{B/) and CpXQλ) = Rt is a cyclic subgroup
of ϋ? index 3, in particular R is metacyclic. Moreover i2x is faithful
on Q*QtQi so RtQ Z5l Z3 and | Rλ | = 9. This completes the proof
of (c).

Now we certainly have {F} = HJ(J3; 2) by part (a), so to prove
(d) it suffices to show that \ΛC(B', q) = {1} for each prime q e {2, 3}'.
We get, since q ^ 5, that [Cρ(i?), QJ = 1 for 1 <£ ί <Ξ w, hence
[Cρ(S), JP] = 1, hence Cρ(i3) = 1 by 2-constraint. Now if w = 3 we
get [ Q I — 5 and hence [Q, J5] = 1, a contradiction. Thus w = 4.
Now choose δeΰ* with Cρ(&) ^ 1. We have CF(b) ~ QQ so [CQ(b),
CF(b)] = 1, hence | Q(6) | = 5 and we get [CQ(b), B] = 1 which is again
impossible. This completes all parts of the lemma.

As a corollary of Lemmas 3.4(a) and 2.8 we obtain immeditely

LEMMA 3.5. G has a non-solvable 2-local subgroup.

Next we prove

LEMMA 3.6. One of the following occurs,
( a ) C is solvable.
(b) w = 4 and C/F is isomorphίc to a subgroup of Aut (Aβ)

containg Inn. (A6).

Proof. Suppose that C is nonsolvable. Then we obviously have
w ^ 3. Suppose that w — 3, and let E/F be a minimal normal sub-
group of C/F. By Lemma 3.4(d) E has order divisible by 3, so as
all 3-local subgroups of 07(2) = Out. (F) are solvable whilst C is
nonsolvable we must have that E/F is simple. Now 0^(2) has 3-rank 3,
whilst C has 3-rank 2 by Proposition 3.1(b). We deduce that E/F&
0<τ(2), so the only possibilities are E/F ~ Aδ or AQ. But if E/F = A5

some element of B* centralizes E/F, an impossibility. Suppose that
E/F ~ A6. In this case B is a S3-subgroup of E and there is a cyclic
subgroup of order 4 in E/F normalizing and acting irreducibly on
B. On the other hand there is exactly one subgroup of B of order
3 not in B, so Nβ(B) cannot act irreducibly on B. This contradiction
establishes that fact that w = 4 if C is nonsolvable.

Again let E/F be a minimal normal subgroup of C/F, where we
are now assuming that w — 4. As before E/F is either simple or a
3-group. If the latter case occurs then we can choose be(EC\ Bf.
Setting C — C/F we deduce that Cc(b) is nonsolvable and that Cz(b)
has a normal subgroup A ~ Aδ. But then B normalizes a S3-subgroup
of A, against FeM*(B;2), so we have shown that E/F is simple.



TWO THEOREMS ON GROUPS OF CHARACTERISTIC 2-TYPE 241

Next, let S be a S7-subgroup of E and suppose that S Φ 1. Thus
| S | = 7, and a simple computation shows that CF(S) = D8. Now as
no 3-element of C* contralizes a four-group of F and as 0^(2) has no
elements of order 35 we deduce that NC(S) is a {2, 7}-group. A
Frattini argument now yields R < E, so R — B by Lemma 3.4(c) and
a theorem of Huppert [14]. Sylow's theorem now tells us that
\E:F\ = 2α327 or 2α32527 for some a. However, Ot(2) has no such
simple subgroup (with elementary S3-subgroups), so we have shown
that E is a 7'-group. Being simple E/F is a {2, 3, 5}-group, and
surveying the possibilities we find that E/F ~ A5 or A6. However
if E/F ~ A5 then some element of B* contralizes E/F, and we have
already shown that this cannot occur. Hence E/F = A6, and the
conclusions of Lemma 3.6 now follows easily.

LEMMA 3.7. Suppose that w = 3 and that Bo is the subgroup of
B of order 3 satisfying BQ £ B. Then the following hold:

( a ) CC(BO) has cyclic S2-subgroups.
( b ) C contains a S2-subgroup of CG{B0).

Proof. Let I be a S2-subgroup of CC(BO). Thus Z ^ /. Since
Bo £ B we have IΠ F = Z. Now if (a) is false then there is an
involution x e I — Z; x must invert a subgroup of B so we may
suppose that x inverts Bt. Thus <#> x Bo normalizes Q1 — CF(B^, so
[x, Qt] = 1 since BQ is faithful on QL.

Next, suppose that either x or xz (say x for definiteness) is
conjugate to z, and set L = CG(x). We have (x) = 0(O2(Z#)) and
^oQi < L. Since L~C and Qx = [Qu Bo] we get Qi < 02(L), hence
^ = ^(Qχ) = <a;>. This is false, so we deduce that neither x or xz is
conjugate to z.

Finally consider N= N^B,) > B^Q, x (x)). If P is an (x, z)-
invariant S3-subgroup of O3/fS(iV) then P = (CP(y) \ y e (x, «>*>. But
by Lemma 3.3 and the provious paragraph we get that both CP(x)
and CP{xz) are cyclic, hence are both centralized by z. But then z
centralizes P, contradiction. This proves part (a) of the lemma, and
(b) is a straightforward consequence of it.

LEMMA 3.8. Suppose w >̂ 3. Then C controls fusion of its
subgroups of order 3.

Proof. As a consequence of Lemma 3.7(b) we get (with the
notation of that lemma) that Bo is conjugate to no element of B in
case w = 3. Now suppose that B5, B6 are two subgroups of R of
order 3 with Bh ~ B6 in G. It follows that CF{B%) is a quaternion
group, i = 5, 6.
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Let Qτ = CriBt) with I, a S2-subgroup of Cc(Bτ), i = 5, 6, Thus
Qi <3 li A simple computation shows that /̂  is either quaternion or
semidihedral (of order 16), so in any case we have Z = Z{IX) and I7

is a S2-subgroup of C^B,), i = 5, 6. As 5 5 - S 6 we can choose ge G
satisfying Bξ = B6, Iξ = J6 by Sylow's theorem. Hence Z9 = Z, that
is geC, as required.

LEMMA 3.9. Suppose w Ξ> 3 emd # is α involution with x eC — F,
Then Cc{x) is a 2-group.

Proof. We only need show, after Lemmas 3.4 and 3.6, that x
centralizes no nontrivial 3-subgroup of C, so suppose that this is false.
By Lemma 3.7 we can assume that x centralizes Bt. We calculate
that (x, Qj) is semidihedral of order 16.

Now set N = NgiBJ, and let P be a (x, Q^-invariant ^-subgroup
of O3,,S(N). Thus P= <CP(y)\ye(x,zy). If x ^ ^ in G then
CP(x) = CP(xz) is cyclic by Lemma 3.3, hence Bx = Ω^Cpix)) — ΩXCpixz)),
hence 2 centralizes P, contradiction. It follows that x ~ xz — z in
G. Setting L = CG(x) and ΛJ - z9, we get JB̂  Bί < L, so J?x = B?1

for some 1 e L by Lemma 3.8. We have thus shown that x~ xz~z
in N.

Finally, since CP(Z) admits Qt we must have Bι = Ωι(CP{Z))t so
JBX = Ω^Cpiy)) for any 2/ e <x, ^>*. This is absurd, and the lemma is
proved.

LEMMA 3.10. The following conditions hold.
( a ) If BteB then CF{Bτ) is a S2-subgroup of Cc(Bi).
( b) If C is solvable and w Ξ> 3 then C/F has cyclic S2-subgroups.
(c) If C is nonsolvable then C/F has 2-rank 2.

Proof. To prove (a), let BteB with Q< = CF(Bt) and suppose
that Q, is not α S2-subgroup of CC{B%). Let J, be a S2-subgroup of
CciBi) which contains Qt. By Lemma 3.9 It is generalized quaternion
of order at least 16, so CC(B%) has a normal 2-complement. But then
we get [JB, Qt] <Ξ Q* Π 0{Cc(Bτ)) = 1, a contradiction which proves (a).

(b) is a simple consequence of (a) together with Lemma 3.7(a).
Finally, suppose that C is nonsolvable and that C/F has 2-rank

at least 3. By Lemma 3.6 we must have that C/F contains a sub-
group isomorphic to Σ 6 , and that w = 4. But Σ 6 has elements of
order 6 and every subgroup of B of order 3 lies B as w = 4. This
contradicts (a), and the lemma is proved.

LEMMA 3.11. Suppose that w }> 3. !%ew ^ is weakly closed in
F.
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Proof. Suppose false. Then there is g e G — C such that Z9 =
Y < F. Set O = L = CG(F) with I> - O2(L). Now C^(Γ) = Γ x Fo

where Fo is extra-special of width w — 1 and Fo < I/. It is a simple
consequence of Lemma 3.10 that Fo Π D Φ 1, so Z < D, so F0D/D is
elementary abelian. By Lemma 3.10 again, we deduce that
I F o : î o Π DI ̂  4, and | F o : F o Π D | ^ 2 if w = 3 (for C is solvable in
this case). Thus F0Γ\ D is not elementary abelian, so we obtain the
contradiction Z = ^(i^0 Π ΰ ) = <ρ(D) = F. This proves the lemma.

It is now easy to prove

PROPOSITION 3.2. The case w = 3 cannot occur.

Proof. Let ΛΓ be a nonsolvable 2-local subgroup of G, the
existence of which is guaranteed by Lemma 3.5, and set D — O2(N)
with N2 a £2-subgroup of N. As w = 3 then C is solvable by Lemma
3.6, so NΦC. Lemma 3.4(b) allows us to assume that N2<C, in
which case Z < Z(D).

Let V = ΩlZ{p% so that Z < V<\ N. As w = 3 Lemma 3.10(b)
shows that a £2-subgroup of C has rank at most 4, in particular
I F | ^ 16. So if X is the JV-orbit of V* which contains z then | ϊ | ^ 9 ,
as follows from Lemma 3.11.

Now we have \N\ = | ϊ | \CN(Z)\. Since C^(Z) is a {2, 3}-group, ΛΓ
is nonsolvable, and | ϊ | ^ 9 , we deduce that 1361 = 5 or 7. In either
case there is a subgroup J < N of order 3 centralizing Z, so J < C.
Since V= CV(J)[V, J], Lemmas 3.9 and 3.10 yield V< F, s o ϊ g F
against Lemma 3.11. This completes the proof of Proposition 3.2.

PROPOSITION 3.3. The case w = 4 cannot occur.

Proof. Our proof in this case is a little different to that of
Proposition 3.2, since if C is nonsolvable, then Lemma 3.5 is of no
help. We break the proof into a number of steps. We start with

( 1 ) Suppose that x is an involution of C — F, and that x e O2(C)
if C is nonsolvable. Then CF(x) is elementary of order 16.

Observe that since w — 4 then every subgroup of order 3 in B
lies in B. Now as x & O2(C) then x inverts a subgroup of C of prime
order by the Baer-Suzuki theorem [1], If C is solvable such a sub-
group must have order 3 by Lemma 3.4(c). If C is not solvable then
in C = C/F, x must invert a subgroup of order 3 by the structure
of A6. Let Bo be a subgroup of C such that x inverts Bo. Thus
H = FB0(x) is a group. If H is 2-closed we get that | CH(BQ) |2 = 16,
so CF(B0) is not a £2-subgroup of CC(BO), against Lemma 3.10(a). So
H is not 2-closed, hence x&02(H), hence x inverts a subgroup of H
of order 3. So in any case x inverts a subgroup of C of order 3,
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and we may assume that such a subgroup is Bι e B.
The same argument also shows that x inverts a subgroup of

order 3 in CC(B^/BU so that x inverts an elementary subgroup of C
of order 9. We may therefore assume that x inverts B. Hence x
normalizes Qt and (Qif x) = SDld for 1 ^ i rg 4. A simple computation
now proves (1).

( 2 ) Let y be an involution of F — Z such that C contains a
S2-subgroup of Cσ(y). Then CG(y) < C.

Set Y= (y), L = CG(Y), D=O2(L). Since D < C we get Z<V =
Ωj(Z(D)). Proceeding under the assumption that L < C we get Z < L,
so if X is the L-orbit of F* which contains z we get that | X | is odd
and | X | ^ 3. By Lemma 3.11 we get X Π F = {z}.

We claim next that D Π F is elementary abelian. If C is solvable
or C is nonsolvable and (36 — {z}) Π O2(C) ^ 0 , this is an immediate
consequence of step (1), so we may suppose that neither of these
conditions hold. Choose xel — {z}, Thus by Lemma 3.6(b) and 3.10(c)
we have C = O2(C)(x). In this case we have that x g φ{K) whenever
K is a 2-subgroup of C containg x, in particular x£φ{D). As x~ z
in L then also z $ φ(D), so z $ φ(D Π F) so ΰ Π F is elementary abelian,
as required.

Now CF(Y) = Y x FQ where Fo is extra-special of width 3. By
the last paragraph D Γ\FQ is elementary, so | Fo: D Π Fo \ ̂  8, so L/D
has 2-rank at least 3.

Next we show that CL(Z) is a 2-group. If false, the structure
of C yields only one possibility, namely that CL(Z) is a {2, 5}-group
and C is nonsolvable. Let K be a S5-subgroup of CL(Z), so that
V = CF(1Γ) x [V, UL]. NOW it is a simple consequence of step (1)
t h a t I V\ £ 26, so if[V,K]Φl then \[V, K]\ = 2\ CV(K) = <Γ, Z>,

so F < F . This is false, so [ F, JSΓ] = 1 and K < CL( V) <\ L. However
[FQ, K] is nonabelian and [FQ, K] ^ O2(CL(V)) = O2(L). This is im-
possible as D f] F is elementary, so we have shown that CL(Z) is a
2-group.

Since \L\ = \Z\\CL(Z)\ we deduce that | X| = | L|2, < 63. As
3.5.7 > 63 it follows that π(L) contains at most 3 distinct primes.
Next, suppose that L is solvable. As L/D has 2-rank at least 3 and
L has cyclic S3-subgroups by Lemma 3.3, we gain a simple contra-
diction using Lemma 5.34 of [26]. So L is nonsolvable. Hence L/D
is a nonsolvable {2, 3, p}-group with cyclic S3-subgroups, 2-rank at
least 3, O2(L/D) = 1, \L:D\2, < 63, and L/DQGL(5,2). There are
no such groups, and step (2) is proved.

( 3 ) If y is an involution of F - Z then CG(y) < C. If C
contains a S2-subgroup of CG(y) we are done by step (2). In any
case by Sylow's theorem y is conjugate to an involution x of C such
that C contains a ^-subgroup of CG(x). Suppose that xQ — y for
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some geG. Evidently x e F, so we get C(y) < Cg by step 2. Now
if CF(y) = (y) x Fo then FQ is extra-special of width 3. By the structure
of C9 we get Fo Π 02{C9) Φ 1, so Z < O2(Cg), so Z = Z(O2(C9)) by
Lemma 3.11. Hence C° = C, and step (3) follows.

(4) Z is weakly closed in C with respect to G. For suppose
that g e G and Z° < C, Z9 = Y Φ Z. Set L = CG(Y), D = O2(L). A
straightforward calculation shows that F Γ\ D Φ 1, so let / be an
involution with / e F Π D. By step 3 we get CG(f) <̂  L, in particular
CF(f) < L. This leads to Z < D, so Z = Z(O2(D)) = Γ by Lemma
3.11. This is a contradiction, so (4) is proved.

Finally, since C contains a S2-subgroup of G, step 4 and the
Z*-theorem [6] yield G = O(G)C. As 2 e ττ4 then O(G) = 1, so Z < G.
But then a S3-subgroup of G normalizes a nontrivial 2-group, contra-
diction. Proposition 3.3 is thus proved.

Thus in order to proved Theorem 1, we are reduced to studying
the case w = 2. In this case a simple computation shows that the
£2-subgroup T of G has section 2-rank at most 4, hence the theorem
is a consequence of the results in Part II of [11]. However, we can
avoid direct appeal to this important result by making use of prior
characterizations of the groups G2(3), PSp(4, 3) and ί74(3) by the
centralizers of their central involutions.

We retain our previous notation, so that F = Q?Q2 with Qτ ~ Q8

and Bt = CB{Qi), i = 1, 2. We set Z = Z(F) with C = C(Z) = N(F).
As w — 2 then B is a >S3-subgroup of C and moreover C/F Q X3 ? Z2,
in particular C = TB and Γ/JP Q D8.

Now as a simple consequence of the Z*-theorem [6] we cannot
have T = F. Because SCN,(T) Φ 0 we also calculate that T/F £ D8

and T/F ^ Z,. Hence \T:F\ = 2n and T/F is elementary abelian,
n = 1 or 2.

LEMMA 3.12. Suppose that A is an elementary abelian subgroup
of T with A<\T and \A\ = 8. Then A < F.

Proof. Since A <\ T then Z ^ AQ = A Π F. Suppose that Z = Ao.
Then [A, F] ^ Z so A stabilizes the chain: F\> Z£>1, so A < F , a
contradiction. Now suppose that | Ao \ = 4 and choose α e i - i 0 .
As a normalizes F it either fixes Q: and Q2 or interchanges them.
If Qt = Qui = 1, 2, we get [Q,, a] ^ Qs Π A = Z, so a stabilizes and
hence ae F, contradiction. On the other hand if Qΐ = Q2 we get
\[F, (a)]\ = 8 against ]F, (a)] ^ Ao. The lemma is thus proved.

Now by Lemma 2.8 G has a nonsolvable 2-local subgroup N.
Lemma 3.4(b) allows us to assume that T contains a S2-subgroup of
N. Set D = O2(ΛΓ), V = ΩiZ{Ό)), and retain this notation for the
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remainder of this section. As T has 2-rank at most 4 than | V\ = 8
or 16. We consider these two possibilities separately. First we have

PROPOSITION 3.4. If \ V\ = 8 then G ~ (?2(3).

Proof. Since C{D) — Z(D) we get Z < F, and a simple compu-
tation yields C(V) = Zλ As N is not solvable we get JV/D ~ L3(2),
so N has a Frobenius subgroup K of order 21 transitive on F*. Thus
if has a subgroup Jof order 3 such that Z — CV(J). It follows that
J< C and that V = Z x [V, J] < F.

Now JP has exactly 6 elementary subgroups of order 8, falling
into two conjugacy classes of length 3 under the action of C. It
follows that Nc( V) contains a £2-subgroup of C, hence T < N. Thus,
I T\ = 8 I D\. As I T\ £ 27 then | D\ ̂  24 and so D is abelian. Evi-
dently D cannot be nonelementary, so in fact | D \ = 8, V = D, and
I Γ| = 26.

Since F <N, F <£ D, there are involutions in N— D, so there is
an involution cc e iV— D such thst DJ(x) is a group with DJ(x}ID~^-
Hence we may assume that x inverts /, in which case x centralizes
Z. As x e C and x £ F we get T = F(x) and C = FB(x). Now we
may assume that J < B. The structure of N yields J&B (that is,
CF{J) = ^ ) . so x normalizes ΰ = O3(C(J) Π F5). Let Jx be an <x>-
invariant complement to J in JB.

If OJ centralizes Jl9 then x must interchange Qt and Q2. In this
case F(x) contains elementary abelian subgroups of order 16, and
some such elementary subgroup of C must contain V. But as
V— C(V) this is impossible. Hence, x inverts Jx. Now we check
that C is isomorphic to the centralizer of a (central) involution of
G2(3). By a theorem of Janko [15] we get G — G2(3) as required.

PROPOSITION 3.5. If | V\ = 16 and \ T\ = 26 ίfeew G ~ PSp(3, 4).

Proo/. As F has 2-rank 3 we get F Π F < F, so if v e V - F
then T = iΓ'</y> and C = FB(v). Since t; centralizes an elementary
abelian subgroup of F of order 8 (namely F ΓΊ F) then v must inter-
change Qι and Q2.

Hence C is isomorphic to the centralizer of a central involution
of PSp(4, 3). By a theorem of Janko [16] we get G ~ PSp(4, 3) as
required.

PROPOSITION 3.6. // | V\ = 16 απd | Γ| = 27 ί/̂ βu G ̂  Z74(3).

Proof. As F < T a simple computation proves that in fact
F < Γ so that Γ is a S2-subgroup of iSΓ. Moreover CT(V) = F,
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hence V= C(V), V= D, and T/D ~ D8.
As in Proposition 3.5 we can choose v e V — F. Then v inter-

changes Q1 and Q2 and centralizes a subgroup J of C of order 3.
We may assume that J<B in which case J&B. Moreover /nor-
malizes Vf) F = CF(v), hence J < N. Let U be a S2-subgroup of
NC(J), so that £7 contains (v, z) as a subgroup of index 2. We next
show that U is either elementary abelian or dihedral.

Since N/D is nonsolvable with a dihedral S2-subgroup of order 8
then one of the following occurs: N/D ~ L2(l), N/D ~ A6, or N/D
contains a subgroup isomorphic to Σβ Suppose to begin with that
the latter case occurs. By Lemma 2.6 of [11, Part II] the extension
N/D splits, so N = DH with H~ Σβ Hence, Nf]C = D(HΠ C) with
Hf]C~ Σ 4 . Now J is a S3-subgroup of N(~) C, hence is conjugate
to a 53-subgroup of Hf) C, hence is inverted by a involution x of
NO C. We thus get that Ϊ7 = <#, z, x) has the desired isomorphism
type in this case. Now suppose that N/D is isomorphic to either L2(7)
or A6. If the A6 case occurs then J must correspond to (123) (456)
since CV(J) Φ 1 (c.f. [13, p. 157] so in either case NN(J) has ^-sub-
groups of order 8. Moreover, since F < JV, F < D there are invo-
lutions in N — D, so there is an involution x e N — D which inverts
J. Hence, W = (y, z, x) is a S2-subgroup of NN(J). But N contains
a S2-subgroup of NC(J), so U~ W and again U has the required
isomorphism type.

Suppose to begin with that U is elementary of order 8. Then
we find, since C — FBTJ, that the extension C/F splits. Following
a paper of Phan [22] we check that C is isomorphic to the centralizer
of a central involution of £4(3). Phan goes on to show that G has
a second class of involutions with nonconstrained centralizers. As
G is of characteristic 2-type this cannot occur, so we deduce that U
is not abelian.

Finally, suppose that U = D8. Now we check that C is isomorphic
to the centralizer of an involution in U^S). A second result of Phan
[23] yields G = Z74(3) as required. This completes the proof of
Theorem 1.

4* The proof of Theorem 2* In this section we will present
a proof of Theorem 2. In a sense our proof is unsatisfactory: for
one thing we must assume at the outset that the relevant odd prime
p for which the ^-locals are ^-constrained is 3. Moreover our proof
utilizes several deep characterization theorems whose relevance, at
least superficially, would appear to be small.

From now on, we use the following notation: G is a finite simple
group of characteristic 2-type and R is a S3-subgroup of G. We
assume that all 3-local subgroups of G are 3-constrained and that
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\Λ(R\ 2) = {1}. B is an elementary subgroup of R of order 9 such
that M(5; 2) Φ {1}.

Now if some 2-local subgroup of G contains an element of 2C(3)
then by Theorem 1 we have G ~ G2(3), PSp(4, 3), or J74(3) as required.
So in trying to prove Theorem 2 we may, and shall, assume

( * ) No 2-local subgroup of G contains an element of §1(3). We
will eventually show that (*) leads to a contradiction, in which case
Theorem 2 will be proved.

Our first lemma gives a number of properties of B which we
shall use in the sequel. First observe, since B& §1(3), that Z(R) is
cyclic and that Z = Ωι{Z(R)) < B. We fix this notation for the
remainder of the paper.

LEMMA 4.1. The following conditions hold.
(a ) If Fe H(B; 2) then CF{Z) = 1.
(b) If FeH(J3; 2) then F has class ot most 2.
(c) C(B) has odd order.
(d) Z is weakly closed in B.
(e) If 1 <B0<B, Boφ Z, then C(B0) is solvable.

Proof. To prove (a), let FeVi(B;2) and suppose that E =
CF{Z) Φl. Set L - CG{Z) > EB. Since Z ^ Z(R) then R < Z,, hence
03>(L) has odd order since M(J?; 2) = {1}. On the other hand L is
3-eonstrained, so there is an EB-invariant S3-subgroup P of O3)3(L)
on which E acts faithfully. We get [E, Ω^CpiB))] ^PO[E, B] ^
Pf]E = 1, so [E, P] = 1 by the generalized P x Q-lemma. This is a
contradiction, so (a) is proved. Part (b) follows from (a) and Lemma
2.2. As for (c), since C(B) is 3-constrained and B contains all elements
of order 3 in C(J3), we find that C(B) has a normal 3-complement.
Now (c) follows immediately from (a).

Next choose 1 Φ FZV\{B\2). AS B is noncyclic there is a sub-
group 1 Φ BQ < B satisfying CF(BQ) Φl. It follows from (a) that BQ

is not conjugate to Z in G. On the other hand, since NR(B) > CR(B),
all subgroups of order 3 in B distinct from Z are conjugate in R.
Thus Z is weakly closed in B as required.

Finally let 1 Φ BQ < B with BQ Φ Z. Set L = C(B0). By (d) we
can assume that CR(B0) is a S3-subgroup of L. Thus CB{BQ) = Bo x Rλ

where R1 is cyclic and Z — Ω^R^. Since L is 3-constrained we get
that L is 3-solvable and LjOy{L) is solvable. But by (a), C(Z) Π
O3,(L) has odd order. So O3(L) is solvable by Lemma 2.4, hence L
is solvable, as required.

LEMMA 4.2. A S2-subgroup of N(B) has order at most 2.
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Proof. Let T be a S2-subgroup of N(B). We have CT(B) = 1
by Lemma 4.1(c), so T acts faithfully on B. By Lemma 4.1(d), we
have Z <] N(B), so T is actually both faithful and reducible on B.
Now assume that | T\ > 2. The only possibility is | T\ = 4 and T is
a four-group.

Set L = NG(Z) > TB. As usual we have OZ{L) of odd order,
so there is a TU-invariant £3-subgroup P of Os>tB(L) such that T is
faithful on P. Let K be a critical subgroup of P of exponent 3
(that is, K is a characteristic subgroup of P and every 3'-element
of L/O3,,S(L) is faithful on K. The existence of K is proved in [9,
Theorem 5.3.13]). Now as a consequence of (*) and Lemma 4.1(c) we
find that if x is an involution of G then CG(x) has cyclic S3-subgroups.
Hence \K\£2Ί.

Suppose first that | JSL| = 9. Then K~ (3, 3), so as Z<\L then
L is solvable and T covers a Hall 3'-subgroup of LjOz>{L). Thus L
has a normal 2-complement and L has 3-length 1, so we may assume
that P = R. Thus Ke U(R), so that K is contained in an element
of SCNZ(R). On the other hand K Φ B, [K, B] Φ 1, so there is an
involution of T acting without fixed points on CR(K). This forces
CR(K) to be abelian of rank 2, a contradiction. So we have \K\ = 27.

Suppose K is abelian. Then K = (3, 3, 3), hence

K = (ΩάCsit)) \teT*)> B.

But then J3e5I(3), against (*). So K must be extra-special of order
27 and exponent 3. It follows, since Inn. (K) = O3 (Aut. (if)), that
P=K*CP(K) and I//O3,,3(L) C; GL(2, 3). Next, notice that CP(ίC)
is cyclic: this follows since K Π (^(if) = Z, K= (Ωx{Cκ{t)) \te Γ*>,
and CP{K) admits Γ. Hence, we get K = ̂ ( P ) . Since SCN3(R) Φ 0 ,
whilst SCNS(P) = 0, we get that P<R. As L also contains a four-
group, it follows that LjO^^L) ~ (?L(2, 3). Now if contains exactly
four subgroups of order 9, including B and some Ue U(R). Since
B o6 U we deduce that i? has exactly 3 conjugates in L, so NL(B)
contains a S2-subgroup of L. This contradicts the first paragraph
of the proof, so the lemma is proved.

Now set Ro = CB(B). As we have observed, we can assume that
Ro is a S3-subgroup of CG(B). The next lemma is crucial.

LEMMA 4.3. Suppose that 1 Φ FeH*(i20; 2). Le£ N=NG(F),
with T a S2-subgroup of N. Then the following hold:

( a ) T is a S2-subgroup of G.
(b) \T:F\£2.

Proof. Let S be a S3-subgroup of iV which contains RQ. We
may assume without loss that S ^ R. Now by (*) we have that S
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contains no element of 21(3), so if Ue^(R) we have S Π CR(U)
cyclic. Hence S is metacyclic. Set K = O3(N). By a theorem of
Huppert [14] K has abelian £3-subgroups. Set So = K Γi S.

Case 1. SQ is non-cyclic. We get B = Ω^SQ), SO by Lemma 4.2
it follows that | NK(B): CK(B) | ^ 2. If Λ^(5) = CK(B) then if has a
normal 3-complement by a transfer theorem of Burnside. If
I NK(B): CK(B) I = 2 then K is 3-solvable by Lemma 2.6. So in either
case if is 3-solvable, hence K= O3,(K)NK(B). As F is a S2-subgroup
of O3,(ϋQ we get T = FNT(B), so | Γ: JF| ^ 2 by Lemma 4.2. Finally,
T5 is a group satisfying all the conditions of Lemma 2.3, so F is
characteristic in T, so (a) follows and the result is proved in Case 1.

Case 2. So is cyclic. If So = 1 then K = Oy(N) is the normal
3-complement of N, so F — T and there is nothing to prove. Hence,
we may assume that So Φ 1. Set Bx = î OSΌ) < 5.

Now set iV = N/03>(N). Cκ{B^ has a normal 3-complement which
admits B, so if Cκ(Bλ) has even order then there is a 2-group ΌΦ\
admitting B. But then I? normalizes a <S2-subgroup of Ϊ7 which
properly contains F, contradiction. So C^(5:) has odd order. If K
has a minimal normal subgroup of order 3 then ΪC, and hence K, is
3-solvable. In this case we complete the proof as in Case 1, so we
may suppose that every minimal normal subgroup of K is non-
solvable. As K has cyclic S3-subgroup we deduce that L = K™ is
simple.

Next we have Cι{B^ of odd order and | Nι(B^\ Ciφ,) \ = 2. By
Lemma 2.5 we get that L has one class of involutions. Moreover,
as B normalizes N^B^) there is a subgroup B2 of order 3 in B such
that B2 centralizes an involution x of Nι(Bx). Thus B2 < L and i?2

normalizes Cz(^). We show next that <x> is a S2~subgroup of Cχ(B2).
For this, it is enough to show that Cι(B2) is solvable: for Cχ(B2) has
a cyclic S^-subgroup, so if Cι(B2) is solvable and has a ^-subgroup
of order at least 4 then M(J3; 2) ^ {1}, a contradiction. Now if B2 Φ Z
the solvability of Cι(B2) follows from Lemma 4.1(e). On the other
hand if B2 = Z then CG(Z) has S2-subgroups of 2-rank at most 1, so
the solvability of Cι(B2) follows easily in this case also. So we have
indeed shown that <£> is a S2-subgroup of Cz(B2).

Consider now the group Cz(x). It is a 3'-group, and moreover
Cι(x) Π C(B2)/(x) has odd order by the last paragraph. By Lemma
2.4 we find that Cj,(x)/(x) is solvable of 2-length 1, so Cχ(x) has the
same property. So we have shown that L is a simple group such
that every involution of L has a centralizer which is solvable of
2-length 1. Let Ϋ be a B2-invariant S2-subgroup of L with (x) ^
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Z(Ϋ). We claim that SCNd(Ϋ) Φ 0 . Otherwise, since (x) = QΫ(B2),

we find easily that Ϋ is of symplectic type, and even extra-special.
But as is well-known, no simple group has such a £2-subgroup. Thus
we may now identify L using Lemma 2.9. As L has a cyclic S3-
subgroup with an odd-order centralizer, and as L admits an auto-
morphism (induced by B2) with fixed-point subgroup having twice
odd order, we find that the only possibility is L ^ L2(8). Hence a
S3-subgroup of AT is isomorphic to a S3-subgroup of Aut. (L2(8)), hence
is metacylic of order 27 and exponent 9. But then B = Ro = Ω^S)
char S and as | NB(B): CR(B) | - 3 we get S = NB(B). As SCN3{R) Φ ψ
and B$ §1(3) this is impossible. So the analysis of Case 2 is completed,
and the lemma is proved.

We can now prove

PROPOSITION 4.1. O3>(C(R0)) is transitive on M*(ϋ;0; 2).

Proof. First notice that M(i20; 2) Φ {1}. For by assumption we
have U\(B; 2) Φ {1}. So if 1 Φ FeM(B; 2) and 1 < BQ < B satisfies
Fo = CF(B0) Φ 1 we get, since Fo Φ Z by Lemma 4.1(a), that C(B0) is
solvable. Thus Fo ^ (Vic{Bc])(B; 2)> ^ Oy(C(B0)). As Ro < C(B0) then
Ro must normalize a (nontrivial) S2-subgroup of O3(C(B0)), as required.

Supposing the proposition false, choose elements Du D2 in M*(iϋ0; 2)
such that A and D2 are not conjugate in O3,(C(R0)) and such that
I A Π A I is maximal subject to this condition. Set D = DιΓ\ D2. We
next show that D Φ 1. Namely, since ΏiΦ\ then D% = 02{N(D%))
for i = 1, 2, and so 5 is faithful on A and Z>2. Thus if 2?f = {1 <
5 0 < 5 I CD.(B0) Φ 1}, then | Bt | ^ 2 for i = 1, 2. As Z^BlyZ^B2

by Lemma* 4.1(a) it follows that BΐΓ\B% Φ 0 . Choose BQeBΐΓ\Bt,
with Dΐ = CD.(B0) Φ 1, i = l, 2. As before, we get <A f, A*>^O8,(C(B0)),
so there is # e Oy(C(R0)) such that <A*> (A*)x> is a 2-group. It follows
that D Φ 1.

Now set J W = ΛΓ(D). Maximality of | D\ ensures that D ~ O2(N).
As N is 2-constrained then C(D) = Z(D), in particular i?(A) ^ D for
i = 1, 2. As A has class at most 2 by Lemma 4.1(b), then D <\ Dίf

so D% ^ N for ΐ = 1, 2. Let TΊ be a S2-subgroup of ΛΓ which contains
A By Lemma 4.3, we have | Tλ: A I S 2. Moreover A/̂ O is abelian,
so TΊ/D has an abelian subgroup of index at most 2.

As in Lemma 4.3, we may argue that N has metacyclic S^-sub-
group. Suppose that N is 3-solvable. Then we get

<NDι(D), ND2(D)) £ <kUi?0; 2)> ^ OV(N) ,

so (NDl(D), ND2(D)X) is a 2-group for some x e O3,(C(R0)), and the
maximality of \D\ is contradicted. Hence, iVisnot 3-solvable. The
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argument of Case 1 of the previous lemma now yields that K — O\N)
has a nontrivial cyclic S3-subgroup, and moreover if N = N/O3,(N)
then L = N°° is simple. Now as N has £2-subgroups which have
abelian subgroups of index at most 2, L has the same property, so
we may identify L using Lemma 2.10. In particular, if T — ϊ\ Π L,
so that T is a S2-subgroup of L, then T is either elementary abelian,
or isomorphic to D2n, SD2n or Z2n I Z2. Now B normalizes Dι Π L
and I T: A Π L | ^ 2. As 5 Π L is cyclic it follows that there is a
subgroup Bo of J3 of order 3 such that Bo < L and J50 normalizes a
^-subgroup of L. Hence we can assume that BQ normalizes T.

Now if T is non-abelian then [T, J50] = 1. Since CL(B) has odd
order by Lemma 4.1(c) it follows in this case that Cτ{B^) has odd
order, where B1 = Ω^BΠ L). It follows that L £ Lz{q) or Ua(q) (q
odd), A7 or ikfn, for these groups have nonabelian S2-subgroups and
elements of order 6.

Suppose we have L = L2(q) for some q. We may choose B2 < J5,
I B21 — 3, 5 2 Φ Z, B2 < L. Then 5 2 induces a field automorphism of
L of order 3. Since C(B2) is solvable by Lemma 4.1(e), the only
possibilities are q = 8 or q — 27. In the latter case L has a noncyclic
S3-subgroup, a contradiction. We may eliminate the former possibility
as in Lemma 4.3, and so L ί L2(q) for any q.

As J1 has no outer automorphisms of order 3 [17], and as groups
of Ree-type have non-cyclic S3 subgroups [18], L can be isomorphic
to none of these groups. Having exhausted the possibilities given
by Lemma 2.10, we deduce that L does not exist, so the proof of
Proposition 4.1 is completed.

The Proof of Theorem 2. We retain the notation of the previous
lemma, so that B^R0 = CR{B). As SCN,(R)^0 then there is Ue ^r(R)
such that R0U = NR(B). So \B0U:R0\ = 3, so Rϋ <\ R0U. Hence, U
must permute the elements of M*(.β0; 2) among themselves. By
Proposition 4.1 M*(iϋ0; 2) contains a 3' number of elements, so U
must fix some element Fe M*(i20; 2). As F ^ l then M(Z7;2)^{1}.
However, C7e2C(3). This contradicts our basic assumption (*), so
Theorem 2 is proved.
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