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Let R be the real numbers, SC R and E be an ordered
topological vector space. Sufficient conditions are given that
a sequence {4}, ¥.: S — E, will have a subsequence {,} such
that for each t¢ S, {h,(t)} is either eventually monotone or
else is convergent. In case F is a Banach space, sufficient
conditions are given that {y,} have a subsequence {&,} so that
{h,(t)} converges for each ¢cS. Finally, if = R, the concept
of {y.} being equioscillatory is defined and it is shown that
a necessary and sufficient condition for {y,} to have a sub-
sequence that converges at every point of S is that {y,} have
a subsequence which is pointwise bounded and equioscillatory.
An application of these results to differential equations is
treated briefly.

1. Introduction. The existence of solutions to initial and boun-
dary value problems for both ordinary and partial differential equations
is frequently shown by obtaining a convergent subsequence from a
sequence of functions and showing that the limit function is the
desired solution. For example, in the proof of the Picard-Lindelof
Theorem [1, Theorem 1.1, p. 8] and the Cauchy-Peano Existence
Theorem [1, Theorem 2.1, p. 10] such techniques are used. The
question arises then, for a given sequence of functions, what conditions
suffice to allow extraction of a pointwise convergent subsequence.
For a sequence {y,} with y,: I — R, where I is a real interval, there
are many results which provide sufficient conditions for the existence
of a convergent subsequence; for example, the Helly Selection Theorem
and the Theorem of Ascoli.

Let {y.} be a sequence of functions from a nonempty subset S
of the real numbers R into an ordered topological vector space E.
Then we are interested in finding sufficient conditions that {y,} have
a subsequence {#,} such that for each se S, {h.(s)} is a convergent
sequence. Theorem 2.2 yields a subsequence {4,} such that for each
s€ S, {h(s)} is either eventually monotone or else is convergent. By
adding conditions which will make these eventually monotone sub-
sequences converge, the desired convergence result can be obtained.
Such a result is given by Corollary 2.3. Furthermore, when E = R,
we obtain a necessary and sufficient condition for a sequence {y,},
Y. S— R, to have a subsequence which converges for each seS.
This is stated in Corollary 2.5.
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In §3 an application to differential equations is given. A more
detailed description of the applications to boundary value problems
for ordinary differential equations may be found in [4].

2. Primary results. We begin this section with the definition
of a proper pair.

DEFINITION 2.1. Let S be a nonempty subset of real numbers
and f be a function, f: S— FE, where E is an ordered vector space
with positive cone K. Consider the set .7 of all finite nonempty
partitions P = {x,, x,, ++-, x,} of S wheren =1,2,eSfort=1,2, .-,
% and 2, < < o+ <x,. If f(s) + 6 for some seS, we say that
(f, P) is a proper pair if (—1)if(xz,) > for 1=1,2, ..., n or else
(—1)f(x;) <6 for 1=1,2, ..., mn. If f(s) =6 for all s€S we say
that (f, P) is a proper pair if P contains exactly one point.

THEOREM 2.2. Let S be a monempty subset of real mumbers
and {y,} be a sequence of functions, y,. S— E where E is a sequen-
tially complete ordered locally convex space with positive cone K.
For each t € S assume that {y,(t)} is an eventually comparable sequence.
Assume, for each s€ S, that E has a mested countable basis of circled
sets at 0 denoted by {U,(n)}. For eachteS and each positive integer
n assume that there are nonmegative integers N(n,t), Hn,t) and a
number é(n,t) > 0 such that for all k, j = H(n,t) if (Ye — ¥i, P) 18
a proper pair them P contains at most N(w,t) poimts x such that
Y:(x) — y;(@) ¢ Uy (n) and t — d(n, t) <z <t + 6(n,t). Then {y,} con-
tains a subsequence {h,} such that for each te S, {h,(t)} ts etther
eventually monotone or else is convergent.

Proof. If y,(t) and y;(t) are comparable for all k, j = M(t) and
M(t) is the smallest positive integer having this property then let
A, ={t:teS, Mt) =1} for +=1,2,.... For any tcA, we have
¥:(t) and y;(t) comparable for k, j = ¢. We will prove the theorem
assuming that y,(t) and y;(t) are comparable for all te€S and then
a standard diagonalization argument where S is replaced by A, A,

. yields the desired result.

We note that we may assume S is bounded because if the theorem
is true for bounded sets a standard diagonalization argument yields
the result for unbounded sets. Also, we may assume S is a closed
ieterval because if the theorem is true for closed intervals, I, then
we may choose I to be a closed interval containing the bounded set
S and define a sequence of functions {z,}, 2,: S— E by

zi(t) = ¥, (t) for teS
0 for te¢S
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then the sequence {z,} satisfies the hypotheses of the theorem on I
and the result would follow for bounded sets S.

Furthermore, because of the compactness of S, we may assume
that for each positive integer 7 there are nonnegative integers N(n),
H(n) such that for all &, j = H(n) if (y, — y;, P) is a proper pair
then P contains at most N(n) points x such that y,(z) — y;(x) ¢ U,(n).

Let {J;} be an enumeration of all nonempty open subintervals of
S with rational endpoints. Applying a slight modification of Corollary
2.2 of [3] to J,, observe that either there is a subsequence of {y,.},
again denoted by {y.}, such that {y,} is monotone on J, or else there
is a subsequence of {y,}, again denoted by {v.}, such that for &k == j,
Y, () >y;(t) and y.(z) < y;(z) hold for some t,7eJ,. Now repeat
the process described in the previous sentence consecutively on the
intervals J,, J;, --- and then take the diagonal subsequence, denoted
by {y.} again. This sequence has the property that on J, it is even-
tually monotone or else for every k == j sufficiently large, depending
on 1, there is ¢, 7 €J, such that y,(t) > y;(¢) and y.(z) <wy;().

Now using J; and U,1) it follows from a slight modification of
Corollary 2.3 of [3] that either there is a subsequence of {y,}, again
denoted by {y.}, such that, for k # 7, y.(t) — y;(t) € U) for all t e J,
or else there is a subsequence, again denoted by {y.}, such that for
k + j there is a teJ, with y,(t) — y;()¢ U,(1). Now repeat the pro-
cess described in the preceding sentence for U,(2), U,(3), --- and then
take the diagonal subsequence, denote it by {y,}. This sequence has
the property that for J, and U,(n) either for all k£ = j sufficiently
large, depending on =, y.(t) — y;(t)e U,(n) for all teJ, or else for
all k # j sufficiently large, depending on %, there is some ¢ €.J, such
that y.(¢) — yi(t) ¢ Udn).

We now repeat the entire process described in the preceding
paragraph consecutively on the intervals J,, J;, --- and then take the
diagonal subsequence again denoted by {y.}. This sequence has the
property that for J; and U,(n) either y,.(t) — y;(f) € U/(n) for all ¢ € J,
and k = j sufficiently large depending on ¢ and » or else there is
at € J; depending on k, j with v,(t) — v;(¢) ¢ U,(n), for k -+ j sufficiently
large depending on 7 and n.

We will now show by contradiction that for all but countably
many values of ze€S the sequence {y,(x)} is either convergent or
eventually monotone. For x € S such that {y,.(x)} is neither convergent
nor eventually monotone let {F,;} be the subsequence of {J;} consisting
of the intervals which contain . There must be a smallest positive
integer m,;, such that y,(t) — v;(t) ¢ U(n,) for all k= j sufficiently
large, depending on %, for some te F,, or else {y,} would be Cauchy
on F,, and hence would be convergent at each point in F,,. In
particular, {y.(x)} wold be convergent which contradicts the choice



304 K. SCHRADER AND J. THORNBURG

of x. If lim;,., 7%, = +o then there is a subsequence {n,;} of
{n,;} such that lim,. . %, = +c and by the definition of 7,;. and
the nestedness of {U,(n)} we have y,(t) — ¥;t) € U,y — 1) for all
k # j sufficiently large, depending on @, and all te F,;,. Thus
{y.(x)} is Cauchy and hence convergent which is contrary to the
choice of « so lim;_,..n,, = ¢, < + . Letd, > ¢, be an upper bound
for the set {n.}.

If there are uncountably many values of €S at which {y.(x)}
is neither convergent nor eventually monotone then there is some
fixed positive integer d so that d, < d holds for uncountably many
x €S at which {y,(x)} is neither convergent nor eventually monotone.
Denote this uncountable set of 2’s by A. We now have €A and
k = j sufficiently large, depending on %, implies ¥,(t) — y;(t) ¢ Ud)
for some te F,,.

Choose N > N(d) and u(1)e AN S° and F, ., € {F.w.} such that
(S — F,u:0) N A is uncountable. Choose u(2) € (S — F, ;) N (AN S°)
and Fl,e0 € {(Fuw) With Fuu0 N Fugie = @ and

(S - (Fu(l)i(l) U Fu(z)m))) N A

is uncountable. Continuing in this manner we get {u(l), «(2), ---,
w(@N + 1)} in ANS° and {F,uw, Fuwie, ***» Fuersniev+n} Which are
mutually disjoint. By renaming the points #(7) we may assume
uw(l) <u@) < .-« <w@N +1). So choose k # 7, k, 7 > H(d), suffi-
ciently large that for each odd positive integer a,1 < a < 2N + 1,
Y (@ (@) — y;(@ (@) € Uy (d) for some «(@)€ Fypiw, and for each
positive even integer «a, 2 < a < 2N, y.(t.) — ¥,(t.) < 6 holds for some
te € Fluimiw and y,.(z,) — yiz,) > 6 holds for some 7,€ F,miw. NOW
consider the partition P, = {8, B: +++, B} Where B, = z(a) if @ is
odd; B, is omitted from P, if « is even and y,(x(a—1))—y(x(a —1)) <8
and y.(x(a + 1)) — y;(x(a + 1)) > 0 or the opposite inequalities hold; B,
is taken to be ¢, if y(z(a — 1)) — y;(x(x — 1)) > 6 and y,(z(ax + 1)) —
yi(x(a + 1)) > 0 and B, is taken to be 7, if y.(x(ax — 1)) — y(z(a —
1)) < 6 and y.(z(a + 1)) — yi(x(a + 1)) < 8. Then the partition P, is
such that (y, — y;, ) is a proper pair and y.(x(®)) — y;(x(®)) ¢ U,w(d)
for a odd, xz(a) € P,, and there are N+ 1 such z(a). This is contrary
to the hypothesis of the theorem.

We conclude that the conclusion of theorem holds for all but
countably many values of 2. By choosing a monotone subsequence
of {y.(x)} for each such x and diagonalizing, the subsequence, again
denoted by {y.}, is either eventually monotone or convergent for
each z in S.

NoTE. If one wishes to consider sequences {¥.}, ¥ € [1..s F. where
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each FE, is an ordered topological vector space then the definition of
a proper pair given in Definition 2.1 may be modified by replacing
f:S—FE by fell..s E,, E by E, K by K,, and ¢ by 6,. With the
corresponding changes in the statement and proof of Theorem 2.2
this remains a valid resnlt.

COROLLARY 2.3. Let B be a reflexive ordered Banach space with
normal positive cone K and S be a nonempty subset of B. Let {y,},
Y S — B be such that for each s € S, {y.(s)} is an eventually comparable
norm bounded sequence. If there are monnegative integers N(n) and
H(n} such that for all k, j = H(n) (¥, — ¥;, P) is a proper pair then
P contains at most N(n) points x such that y,(x) — y;(x) ¢ U,(n) then
{y.) contains a subsequence {h,} which converges at each point of S.

Proof. It follows from Theorem 2.2 that there is a subsequence
which at each point s of S is either eventually monotone or else is
convergent. By [2, Proposition 3.7, p. 93] it follows that this subse-
quence conveges at every point of S.

DEFINITION 2.4. Let S be a nonempty set of real numbers and
{y,} be a sequence of functions, y,: S— K. We say that the sequence
{y:} is equioscillatory if for each se€S there exists a neighborhood
basis of 0 of radii &(n, s) and for each positive integer = there exist
positive integers N(n) and H(n) such that if %, j = H(n) and (v, — v;,
P) is a proper pair then P contains no more than N(n) points x for
which |y,(x) — yi(x)| > &(n, v).

COROLLARY 2.5. Let S be a nonempty subset of real numbers and
{y.} be a sequence of functions, y,: S— K. The sequence {y,} has a
subsequence which ts pointwise convergent if and only if it has a
subsequence which is pointwise bounded and equioscillatory.

Proof. The sufficiency follows from Theorem 2.2. The necessity
is trivial since if N(n) = 0 in Definition 2.4 we see that this is equi-
valent to saying that {y,} is pointwise Caucny.

3. Applications. In this section we examine some examples
which serve to illustrate the results obtained in §2.

ExAMPLE 1. Let H be a complex Hilbert space and E be the
ordered locally convex space, over the reals, of continuous linear
Hermitian operators on H with the strong operator topology. Let
the order for E be determined by A = 0= (Ax, ) = 0 for all xe¢ H
and A=D=A— D=0 for A, DeE. Let A,t) be a sequence of
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functions from the real interval I into £ which satisfies the hypotheses
of Theorem 2.2. It is known that monotone sequences in E which
are topologically bounded are convergent in the strong operator
topology. Thus it follows from Theorem 2.2 that if {4,(t)} is topo-
logically bounded for each ¢ €I then there is a subsequence {D;} of
{A,} such that {D;(t)} is convergent in the strong operator topology
on E for every tel.

ExampLE 2. If in Example 1 we take H to be the d-dimensional
complex Hilbert space C¢ and B to be the d x d Hermitian matrices
with the usual operator norm then B is a reflexive Banach with a
normal positive cone. Thus a sequence {A4,} of functions from a real
interval I into B which satisfies the hypotheses of Corollary 2.3 must
contain a subsequence which converges in norm for every tel.

Consider the sequence of linear differential equations

(3.1), y' = Aut)y + fi@), y(E) = ys

where ye R¢, A, (t) is a d x d matrix and f,(t) a d x 1 matrix each
with continuous real entries for ¢tel. Assume that A,(¢) can be
partitioned independent of % and ¢ into square submatrices, possibly
1 x 1 such that each of the sequences of square submatrices satisfies
the hypotheses of Corollary 2.3. Assume also that f,(¢) can be par-
titioned independent of %k and ¢ into square submatrices, necessarily
1 x 1, such that each sequence of square submatrices satisfies the
hypotheses of Corollary 2.3. Then the sequence {A4,}, A,.I—B
must contain a subsequence, {A,,J}, which converges in the operator
norm on the d x d matrices for each t€l and hence converges
in R in each entry for each tcl. Let us denote this limit by
Aft). Also, {f} must contain a subsequence which converges
in R in each entry for each tel to a function we will denote by
fu@). If t,—t, and y,— vy, as k— + <> wheret, el fork=0,1, ..-
then it follows that the sequence of solutions of (3.1), contains a
subsequence which converges at every point of I to a function y
which is a solution of (3.1), almost everywhere on I.
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