Vol. 57, No. 2, 1975

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 294: 1
Vol. 293: 1  2
Vol. 292: 1  2
Vol. 291: 1  2
Vol. 290: 1  2
Vol. 289: 1  2
Vol. 288: 1  2
Vol. 287: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Special Issues
Submission Guidelines
Submission Form
Contacts
Author Index
To Appear
 
ISSN: 0030-8730
A remark on the lattice of ideals of a Prüfer domain

Daniel D. Anderson

Vol. 57 (1975), No. 2, 323–324
Abstract

For a ring R we will use L(R) to denote the lattice of ideals of R. It is known that for a Dedekind domain D, there exists a PID Dsuch that L(D) and L(D) are isomorphic. In this note we show that for a Prüfer domain D, there exists a Bézout domain Dsuch that L(D) and L(D) are isomorphic.

Mathematical Subject Classification 2000
Primary: 13F05
Milestones
Received: 10 October 1974
Published: 1 April 1975
Authors
Daniel D. Anderson