Vol. 57, No. 2, 1975

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 307: 1  2
Vol. 306: 1  2
Vol. 305: 1  2
Vol. 304: 1  2
Vol. 303: 1  2
Vol. 302: 1  2
Vol. 301: 1  2
Vol. 300: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
A remark on the lattice of ideals of a Prüfer domain

Daniel D. Anderson

Vol. 57 (1975), No. 2, 323–324
Abstract

For a ring R we will use L(R) to denote the lattice of ideals of R. It is known that for a Dedekind domain D, there exists a PID Dsuch that L(D) and L(D) are isomorphic. In this note we show that for a Prüfer domain D, there exists a Bézout domain Dsuch that L(D) and L(D) are isomorphic.

Mathematical Subject Classification 2000
Primary: 13F05
Milestones
Received: 10 October 1974
Published: 1 April 1975
Authors
Daniel D. Anderson