Vol. 57, No. 2, 1975

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 294: 1
Vol. 293: 1  2
Vol. 292: 1  2
Vol. 291: 1  2
Vol. 290: 1  2
Vol. 289: 1  2
Vol. 288: 1  2
Vol. 287: 1  2
Online Archive
The Journal
Editorial Board
Special Issues
Submission Guidelines
Submission Form
Author Index
To Appear
ISSN: 0030-8730
Extendibility, boundedness and sequential convergence in spaces of holomorphic functions

William Robin Zame

Vol. 57 (1975), No. 2, 619–628

Let X be a compact subset of Cm and let p(X) be the space of germs on X of functions holomorphic near X, equipped with its natural locally convex inductive limit topology. The object of this paper is to give, under a mild topological assumption on X, an internal description of this topology, and in particular, of the bounded sets and convergent sequences. These results follow from a general extendibility theorem. Surprisingly, the topological assumption on X is necessary, and examples are constructed which illustrate this point. A related local extendibility result is also established.

Mathematical Subject Classification 2000
Primary: 32D15
Received: 22 August 1974
Published: 1 April 1975
William Robin Zame