A REMARK ON THE LATTICE OF IDEALS OF A PRÜFER
DOMAIN

DANIEL D. ANDERSON
A REMARK ON THE LATTICE OF IDEALS OF A PRÜFER DOMAIN

D. D. ANDERSON

For a ring R we will use $L(R)$ to denote the lattice of ideals of R. It is known that for a Dedekind domain D, there exists a PID D' such that $L(D)$ and $L(D')$ are isomorphic. In this note we show that for a Prüfer domain D, there exists a Bézout domain D' such that $L(D)$ and $L(D')$ are isomorphic.

We use the Krull-Kaplansky-Jaffard-Ohm theorem which states that any lattice-ordered abelian group is the group of divisibility of a Bézout domain.

Let D be a Prüfer domain and let S be the set of nonzero finitely generated (i.e., invertible) ideals of D. Then (S, \geq) is a partially ordered cancellation monoid under multiplication; moreover, \geq is actually a lattice order. Let (S^*, \leq) be the group of quotients of S with \leq the partial order induced by \geq. Then (S^*, \leq) is lattice ordered and $S^*_+ = \{s \in S^* | s \geq 0\} = S$. By the Krull-Kaplansky-Jaffard-Ohm theorem [2], S^* is the group of divisibility of a Bézout domain D', more precisely, there exists a field L and a demivaluation $w: L \to S^* \cup \{\infty\}$ such that $D' = \{x \in L | w(x) \geq 0\}$ and D' is a Bézout domain. We proceed to show that $L(D)$ and $L(D')$ are isomorphic.

Theorem. Given a Prüfer domain D, there exists a Bézout domain D' such that $L(D)$ is isomorphic to $L(D')$.

Proof. We define a mapping $v: L(D) \to \mathcal{P}(S \cup \{\infty\})$ by $v(J) = \{K \in S | K \subseteq J\} \cup \{\infty\}$. We then define a map $\theta: L(D) \to L(D')$ by $\theta(J) = w^{-1}(v(J))$ where w is the demivaluation previously defined. θ is clearly well-defined and preserves order. For an ideal N in D' we consider the subset $w^{-1}(N)$ of S. The set $F = \bigcup \{K \in L(D) | K \in w^{-1}(N)\}$ is an ideal of D and $\theta(F) = N$; thus θ is onto. To show that θ is one-to-one and that its inverse preserves order, it is sufficient to show that $\theta(J) \subseteq \theta(K)$ implies $J \subseteq K$. Now $0 \neq j \in J$ implies $jD \subseteq J$ so $jD \in v(J)$. Let $x \in L$ such that $w(x) = jD$. Then $x \in \theta(J) \subseteq \theta(K)$. Now $x \in \theta(K)$ implies $w(x) \in w(K)$ so $w(x) = jD \subseteq K$. Thus θ is a lattice isomorphism.

This theorem raises the following question. Given an integral domain D, does there exist an integral domain D' such that $L(D)$ and $L(D')$ are isomorphic and such that every invertible ideal in D'
is principal? More generally, given a commutative ring R, does there exist a commutative ring R' such that $L(R)$ and $L(R')$ are isomorphic and every principal element in $L(R')$ [1] is a truly principal (cyclic) ideal?

REFERENCES

Received October 10, 1974.

University of Iowa
Norman Larrabee Alling, *On Cauchy's theorem for real algebraic curves with boundary* .. 315
Daniel D. Anderson, *A remark on the lattice of ideals of a Prüfer domain* ... 323
Dennis Neal Barr and Peter D. Miletta, *A necessary and sufficient condition for uniqueness of solutions to two point boundary value problems* ... 325
Ladislaw Beran, *On solvability of generalized orthomodular lattices* ... 331
L. Carlitz, *A three-term relation for some sums related to Dedekind sums* ... 339
Arthur Herbert Copeland, Jr. and Albert Oscar Shar, *Images and pre-images of localization maps* .. 349
G. G. Dandapat, John L. Hunsucker and Carl Pomerance, *Some new results on odd perfect numbers* ... 359
M. Edelstein and L. Keener, *Characterizations of infinite-dimensional and nonreflexive spaces* .. 365
Francis James Flanigan, *On Levi factors of derivation algebras and the radical embedding problem* .. 371
Harvey Friedman, *Provable equality in primitive recursive arithmetic with and without induction* .. 379
Joseph Braucher Fugate and Lee K. Mohler, *The fixed point property for tree-like continua with finitely many arc components* ... 393
John Norman Ginsburg and Victor Harold Saks, *Some applications of ultrafilters in topology* .. 403
Arjun K. Gupta, *Generalisation of a “square” functional equation* ... 419
Thomas Lee Hayden and Frank Jones Massey, *Nonlinear holomorphic semigroups* .. 423
V. Kannan and Thekkedath Thrivikraman, *Lattices of Hausdorff compactifications of a locally compact space* ... 441
J. E. Kerlin and Wilfred Dennis Pepe, *Norm decreasing homomorphisms between group algebras* .. 445
Young K. Kwon, *Behavior of Φ-bounded harmonic functions at the Wiener boundary* .. 453
Richard Arthur Levaro, *Projective quasi-coherent sheaves of modules* ... 457
Chung Lin, *Rearranging Fourier transforms on groups* ... 463
David Lowell Lovelady, *An asymptotic analysis of an odd order linear differential equation* .. 475
Jerry Malzan, *On groups with a single involution* ... 481
J. F. McClendon, *Metric families* ... 491
Carl Pomerance, *On multiply perfect numbers with a special property* .. 511
Mohan S. Putcha and Adil Mohamed Yaqub, *Polynomial constraints for finiteness of semisimple rings* ... 519
Calvin R. Putnam, *Hyponormal contractions and strong power convergence* .. 531
Douglas Conner Ravenel, *Multiplicative operations in BP*{BP} ... 539
Judith Roitman, *Attaining the spread at cardinals which are not strong limits* .. 545
Kazuyuki Saitō, *Groups of *'-automorphisms and invariant maps of von Neumann algebras* ... 553
Brian Kirkwood Schmidt, *Homotopy invariance of contravariant functors acting on smooth manifolds* ... 559
Kenneth Barry Stolarsky, *The sum of the distances to N points on a sphere* .. 563
Mark Lawrence Teply, *Semiprime rings with the singular splitting property* .. 575
J. Pelham Thomas, *Maximal connected Hausdorff spaces* ... 581
Charles Thomas Tucker, II, *Concerning σ-homomorphisms of Riesz spaces* .. 585
Rangachari Venkataraman, *Compactness in abelian topological groups* .. 591
William Charles Waterhouse, *Basically bounded functors and flat sheaves* .. 597
David Westreich, *Bifurcation of operator equations with unbounded linearized part* .. 611
William Robin Zame, *Extendibility, boundedness and sequential convergence in spaces of holomorphic functions* ... 619