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The purpose of this paper is to establish a universal cri-
terion for a generalized orthomodular lattice to belong to
a primitive class of lattices.

The starting point for the investigation is the description of the
reflection and the coreflection. These lattices can be determined by-
two lattice congruences defined by means of alleles on any lattice.

The main results permit to characterize a generalized orthomodu-
lar lattice solvable in a nontrivial primitive class <ϊf of lattices as
a lattice belonging to ^ . The characterization is further used to
show that such a lattice belongs to <g* if and only if its commutator
sublattice is a lattice of ^

l Preliminaries* Basic facts on orthomodular lattices used in
this paper may be found in [4], and also most of the notation and
terminology will be taken from that book. We assume familiarity
with the results of Marsden [8] on solvability of generalized ortho-
modular lattices. The notation concerning the projectivity of quotients
in a lattice is essentially the same as in [7].

Let Ω be a nonempty set of quotients of a lattice £f. A quotient
b/a is called an Ω-allele of Sf if there exists n e N and a sequence
bo/aQ = b/a, bjalf , bjan of quotients of Ω such that bjan ~ 6J+1/αJ+1

for every i = 0, 1, , n — 1 where [αj+1, b'i+ι] c [ai+1, bi+1] and b ^ an

or a ^ bn. The set AΩ(£f) of all β-alleles of £f will be called the
Ω-allelomorph of the lattice Sf

For the special case Ω = ΩQ = {b/a \ a —< b (b covers a)}, the ΩQ-
alleles of a submodular lattice have been studied in the paper [1].
Other results concerned with β-alleles can be found in [3].

In the present paper we shall investigate the ί2Γalleles where QX

is the set of all quotients of Sf and we shall omit reference to QX;
e.g., we shall refer to an ί^-allele as an allele; similarly, A(Jίf) (or
simply A) will be the set of all alleles. Hence, i>/αeA(^) if and
only if there exists d/c such that b/a is weakly protective into d/c9

i.e. b/a ^w d/c, and c ^ b or d ^ a.

2. Reflection and coreflection* For each lattice <2f there exists
a smallest congruence A such that £f{Δ is distributive. Let 4* be
the pseudocomplement of A. We define the reflection of £f, denoted
by Ref Sf, to be the lattice £f/A*; the lattice SfjΔ is denoted by
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Coref Sf and it is called the corefiection of ^ . A well-known result
asserts that a nontrivial primitive class of lattices contains the class
of distributive lattices. Since £f is a subdirect product of Ref £<?
and Coref £f9 it follows that a lattice belongs to a nontrivial class ^
of lattices if and only if its reflection belongs to ^ .

The following lemma (which appears in [9, p. 95] as Lemma 2)
is useful:

LEMMA 2.1. Let Sf be a lattice and Θ a congruence of £?. If
[b]/[a] &w [d]/[c] in £f/θ, then there exists χa e [a], xδ 6 [6], χc e [c],
χd e [d] such that xδ/xα ^ w VZ/V? in £f.

Proof. Suppose [b]/[a] = [δo]/[αo] ~ [δ,]/[αj ~ w . [6J/[αJ =
[<Z]/[c] with α0 = a ^ 6 = δ0 and an = c ^ d = bn. Let V? = xδw = cZ and
χc = xαΛ = c, and suppose that χaj9

 χbd for i <j <n have already been
defined so that xα, €[&,], ^e l&y] , xα, ̂  Nδ, , and ^ / α , - — w

 Nδ i + 1/
Nα i + 1.

Then if [6J/[αJ / * . [&<+J/[α<+1], let xα, = v α ί + 1 Λ 6<f

 xδί = xδ< + 1 Λ bi9 and
if [δj/[αj \ w [δ i+1]/[α ί+1], let Nαf =

 χai+1 V α ,̂ Nδf =
 x δ ί + 1 V at. So we

get Nα = xα0 e [a], xδ = xδ0 e [δ], and Nδ/Nα ^ w VZ/̂ c. Note that if [a] Φ [δ],
we must have \z =£ xδ.

COROLLARY 2.2. Lei .Sf be a lattice and θ a congruence of £f.
If [b]/[a] is a n (Mele of Sfjθ, then there exists ^ae[a], xδe[δ] such
that xδ/xα is an allele of

Proof. Let [δ]/[α] &w [d]/[c] with a ^ δ ̂  c ^ d. Choose \ xδ, \ ^d
as in Lemma 2.1. It suffices to prove that xδ ^ xc. But we may
assume that [δ]/[α] = [δo]/[αo] /w [6J/[αJ, so Nδ = xδ0 = % Λ δ0 = \ A
δ ^ δ ^ c = xc.

LEMMA 2.3. ( i ) Le£ .SP δe any lattice and let a < δ, r < s δβ
elements of £?. Then if bfa ?&w s/r and r = r0 < rx < < rΛ = s,

aί9 j = 0, 1, , ^ swcft ί^αί α = α0 ^ «! ^ ^ αΛ = δ
&V, TJ+JTJ for each j .

(ii) Let Jί? be a lattice and let 7 be the binary relation defined
on L by

a = δ(τ) *=>3%eN lal9 a2, , an

α Λ δ = α o ^ α ! ^ ^ an = a V δ ,

Λi+i/αy 6 A(.Sf) /or ever^/ j = 0, 1, , n — 1 .

J/ b/a &w q/p and p == g(7), ίfeβ^ α Ξ δ(7).
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Proof. ( i ) It is enough to consider the case b/a ~ws/r. Assume
b/a \ w s/r; then α̂  = a V rjf j = 0, 1, , n are the required elements,

(ii) We will first treat the following two cases:

Case I. b/a \ w q/p, q/p <***w s/r and r >̂ q. Let r0 = r, rx = r V
(6 Λ s) and r2 = s. Since r^r \b A s/b A r and δ/g \ α / α Λ q, we
get that rjro ρ&w a/a A q* We also have r%/rx &w b V s/b. Since
6/α &w s/r, (i) implies that there exist a0 = a 5g a} ^ α2 = b such that
«iM> ̂ w α/α Λ ^ and α2/αi ̂ wb V s/6. Thus αx/α and δ/αx belong to
the allelomorph and so a = &(τ).

Case II. δ/a ̂  g/p, g/p ̂ w s/r and r ^ q. However, here we
have b/a ̂ w s/r and r^q^pVb^b. This yields 6/α e A and, con-
sequently, a = &(7).

By the same argument as in the proof of (i) it is clear that
b/a ~w q/p and p = q(y) implies a = 6(7). The general case now
follows by induction.

Our next theorem provides much more information on 7.

THEOREM 2.4. Let £? be a lattice. Then Ί is a congruence
relation of

Proof. If x ^ y, x = y(y) and t e L, then y A t/x A t ^w y/x.
By Lemma 2.3 (ii) it follows that x A t ~ y A ί(τ). The conclusion
is now immediate from [6, Lemma 8, p. 24].

The following theorem can be proved by similar arguments; we
omit the proof.

THEOREM 2.5. Let Jίf be a lattice and let β be the binary rela-
tion defined on L by

a ΞΞ b{0) «=> {(die &waVb/a Ab & d/c e A(JS^)) => c = d) .

Then β is a congruence of Sf. Moreover, β is the pseudocom-
plement of 7.

COROLLARY 2.6. Let £? be a weakly modular lattice. Then

a ΞΞ b(β) <=> {([m, n] c [a A b, a V b] & n/m e k(Sf)) =~m = n) .

Observe that the description of β as given in Corollary 2.6 is a
direct consequence of the proof of [7, Theorem III. 4. 10].

REMARK. If Sf is a relatively complemented lattice, then [5,
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p. 355] y/x^wb/a implies y/x^V/af where [a', b'] c [a, b]. We say-
that b/a has a close allele d/c if there exists a quotient d/c such that
b/a f* d/c & (b ̂  c or a ^ d). Thus, in such a lattice δ/αe A if and
only if δ/α has a close allele and the congruences β and 7 of =Ŝ  can
be characterized in terms of close alleles.

PROPOSITION 2.7. Let £f be a lattice and let Θ be a congruence
relation of £f. Then the quotient lattice Sf/θ is distributive if and
only if θ D 7.

Proof. If Sf/Θ is distributive and if a = 6(7), then there are
elements xt such that

a Λ b = x0 ^ xx t ί ••• ̂  x s == a V b

and such that xt+Jxt e A(iS^) for every £ = 0, 1, , s — 1. But then
[xi+i]/[Xi]eA(^f/θ) and by [7, Lemma III. 2.7] we have [xi+1] = [a?J.
Thus [α] = [δ], i.e., α Ξ b{θ) and so 7C0.

To prove the converse, suppose Jίf/Ί is not distributive; then
there exists an allele [b]/[a] in Sf/Ί such that [a] Φ [b]. By Corollary
2.2 there exists xae[a], xbe[b] such that X6/Vα is an allele in
hence Nα = N6(7) and so we get [a] = [b], a contradiction.

The following is an application of Proposition 2.7.

COROLLARY 2.8. If ^f is a lattice, then Coref £f = Sf/Ί and
Ref Sf =

3* Solvability in classes of lattices. If α, 6 are two elements
of an ortholattice £? = (L, V, Λ, ', 0, 1), then

com^(α, b) = (α V b) A (a V δ') Λ (α' V 6) Λ (a' V δ')

is called the commutator of α, δ (cf. [8]). The n — th commutator
sublattice &n of a generalized orthomodular lattice ^ is defined by
induction in the following way: ^ = ^ and &n(n ^ 1) is by defini-
tion the p-ideal generated in gf»_i by all the commutators of the
generalized orthomodular lattice ^ _ i . The lattice ^ is said to be
solvable (in the sense of Marsden) if there exists t^GN such that
&n = <0>. Recall that [8, Theorem 9, p. 361] gf is solvable if and
only if it is distributive.

It is easily verified that if we define gf(0) = S? and if 3?{n)(n ^ 1)
equals to the ideal of the generalized orthomodular lattice & generat-
ed by all the commutators of g^*-15, then ^ Λ = ^{n) for every n =
0, 1, . A generalized orthomodular lattice Ŝ 7 is said to be solvable
in a class <& of lattices if and only if there exists ^ e N such that
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&{n) belongs to <gf.
Since it is known [8, Theorem 9, p. 361] that g^ = g 2̂ = •••, it

is clear that in the definitions above we can suppose n = 1. We
remark that it is a simple matter to verify that a lattice & is
solvable in the class of distributive lattices if and only if it is solvable
in the sense of Marsden.

The solvability of generalized orthomodular lattices in the class
of modular lattices has been investigated in [2].

PROPOSITION 3.1. Let & be a generalized orthomodular lattice.
Then an element a of & belongs to <&' if and only if a = 0(7).

Proof. By [8, Theorems 6 and 7, p. 360], the commutator sub-
lattice gf' is the kernel of the congruence A. The conclusion 7 = A
is now immediate from Proposition 2.7.

THEOREM 3.2. The commutator sublattice &' of a generalized
orthomodular lattice & is a dually distributive ideal.

Proof. To prove the assertion, it is sufficient to show that if
Iί9 I2 are ideals of gf, then necessarily Gf Π (Λ V 72) c (Gr Π Id V
((?' Π / 2). Suppose meG' and m ^ ί± V i2, is e I8(s = 0, 1). Let x'
denote the orthocomplement of an element x e [0, iλ V i2] in the ortho-
modular lattice determined by the interval [0, i t V i 2].

Set

fci = ίi Λ (il V m V i,) Λ (i[ V m V ί2) ,

Λ2 = 2̂ Λ (ij V m V ii) Λ (ίί V m V i[)

so that k8 = i8 A ce I8 where

c = (i[ v m V ia) Λ (iί V m V i2) Λ (i2 V m V ii) .

Let w = ix Λ (i[ V m) and i; = ^ Λ m. Since v ^ meG', veG'.
Now we have w Λ 1;' = ̂  Λ com (ilf m) e G' and so w = v V (w A v') e G'.

Let w+ — wf A fci Since ix commutes with ί[ and i t Λ m', it
follows that [iί V (it A m')] A ix = ix Λ m'. Thus w+ ^ com (ij V m, i2)
and this yields w+ e Gf. Therefore k, = w V ^ + € G' Π /1 and, by
symmetry, ί ; 2 e G ' n J2.

It is clear that m ^ (^ V ί2) Λ c and that every is commutes with
each element (•••) of the definition of the element c. Therefore, ix

and i2 commute with c and this gives

m S (ii V i2) A c = {ix A c) V (i2 A c) — kι V k2 .

This shows that m e ( G ' U Id V {Gf Π I2), completing the proof.
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COROLLARY 3.3. The ideal &' of a generalized orthomodular
lattice & is neutral.

Proof. By Proposition 3.1 and Theorem III. 3.10 of [7], the
ideal &' is standard. By Theorem 3.2 and Theorem III. 2.5 of [7]
we see that 2^' is neutral.

For an element g e G let [g] denote the corresponding element of
the quotient lattice 5̂ 7/3 where ^ is a generalized orthomodular
lattice and let K([g]) = (g] n (?'. If &e [g] and ke K([g]), then k =
k A gt A g{i). Since k/k AgιAg/w g\g^ A g and g = g1 A g(β), we
have k =k A g± A g(β) By Theorem 2.5 this implies k ^ gι A g ^ gt.
The set K([g]) is therefore well-defined.

LEMMA 3.4. Under the convention made above we have
( i ) [g]=sui>*iβ{[k]\k
(ii) K([gi A g2]) = XίforJ) Λ

ί(I ί i V g2]) = ϋΓ(bJ) V
where the symbols V, Λ o/ £fte right-hand side denote the join and
the meet in the ideal lattice j?~ of the lattice <&'\

(iii) the mapping f: [g] π-> K([g]) is an isomorphism of the lattice
onto a sublattice of the lattice

Proof. ( i ) If [h] is such that [h] < [g] with h < g, then, by
Corollary 2.6, there are v, w satisfying h ^ v < w ^ g and w/v e A.
Let 2 denote a complement of v in [0, w]. Then v == w(τ) implies
2;G G'. If [z] ̂  [fe], then [v] = [t̂ ?] and so v = w(β Π 7). Therefore,
by Theorem 2.5, v — w, a contradiction. Since zeK([g]), we see
that [A] is not an upper bound for the set {[k] \ k e K([g])}. Conclusion
(i) results.

(ii) This is immediate by Theorem 3.2.
Assertion (iii) now follows directly from (i) and (ii) above.

THEOREM 3.5. Let ^ be a primitive class of lattices which con-
tains a lattice with more than one element. Then a generalized
orthomodular lattice is a lattice of ^ if and only if its commutator
sublattice belongs to &.

COROLLARY 3.6. A generalized orthomodular lattice is solvable
in a primitive class ^ which contains a lattice with more than one
element if and only if it belongs to the class &.

Proof. If ^ belongs to ^ then its sublattice g^' belongs also
to <gf.
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Conversely, suppose g ^ ' e ^ . By [6, Lemma 8, p. 34], the ideal
lattice J7~ oί <&' also belongs to the class ^ Since ^ is primitive,
every isomorphic image of a sublattice of J7~ belongs to <g*. It,
therefore, follows from Lemma 3.4 (iii) that ref & e <£*. It is now
immediate that 5f belongs to ^ .

The author wishes to thank the referee for suggestions on the
formulation of the theorems in §2 and particularly for his pointing
out the consequence stated in Corollary 3.3 as well as for his many
other valuable comments.
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