CHARACTERIZATIONS OF INFINITE-DIMENSIONAL AND NONREFLEXIVE SPACES

M. Edelstein and L. Keener
CHARACTERIZATIONS OF INFINITE-DIMENSIONAL AND NONREFLEXIVE SPACES

M. Edelstein and L. Keener

Infinite-dimensional, resp. nonreflexive spaces are characterized in terms of subsets having a finite visibility property without being starshaped.

1. Introduction. A well-known result of Smulian [4] states that every nonreflexive normed linear space contains a decreasing sequence of nonempty closed and bounded convex sets whose intersection is empty. This result was used by V. L. Klee [1] to show that a normed linear space is nonreflexive if, and only if, it contains a decreasing sequence of closed and bounded starshaped sets whose intersection is empty. Also proved by Klee [2] is the following. Theorem [Klee]. Every infinite dimensional normed linear space contains a decreasing sequence of unbounded but linearly bounded closed convex sets whose intersection is empty. Here, a set is called linearly bounded if each straight line intersects it in a bounded set.

In the present paper other characterizations of infinite-dimensional, and of nonreflexive spaces are given which are similar in spirit and not unrelated to those mentioned above. To this end use is made of the notion of finite visibility. A set S is said to have the finite visibility property, f.v.p. for short, if for any finite $F \subseteq S$ there is an $x \in S$ such that the line segment $[x, y]$ is contained in S for all y in F. As customary a set S is called starshaped if an $s \in S$ exists such that the above condition is satisfied with s replacing x and S replacing F. A well-known theorem of Krasnoselski [3] implies that in a finite dimensional normed linear space X if S is closed and bounded and has f.v.p. then S is starshaped. (In fact, if $\dim X = n$, and card $S \geq n + 1$, then the above mentioned theorem holds if the hypothesis is satisfied for all F with card $F = n + 1$.) A previous version of this paper was mainly concerned with showing that in some Banach spaces a weakly closed bounded set may have f.v.p. without being starshaped. The broader scope of the present paper is due to suggestions made by Professor Klee in a personal communication, in which he conjectured the two theorems of this paper and directed us to relevant passages in some of his works. It is indeed a pleasure to acknowledge his help.

2. Preliminary results.

Lemma 1. A compact subset S of a Hausdorff linear topological
space X is starshaped if it has the finite visibility property.

Proof. For $x \in S$, let $S_x = \{y \in S : [x, y] \subset S\}$, a closed set. The family $\{S_x : x \in S\}$ has the finite intersection property by f.v.p. so $\bigcap S_x \neq \emptyset$ by compactness, and S is starshaped.

Lemma 2. Let E be a closed subspace of a normed linear space X, S a closed convex linearly bounded set in E and x a point in $X \sim E$. Then $K = \text{co} \{\{x\} \cup S\}$ is closed.

Proof. Let $y \in \bar{K}$, $y \neq x$, and let F be the subspace spanned by x and S. Clearly $y \in F$. Thus if R is the ray emanating from x, through y, i.e. $R = \{z \in X : z = x + \alpha(y - x), \alpha \geq 0\}$, then R is contained in F. Moreover, R cannot be parallel to E, for if parallel, then with $w \in S$, $R' = \{z \in X : z = w + \alpha(y - x), \alpha \geq 0\}$ is contained in E and by linear boundedness there is a $w' \in R' \sim S$. But then w' and S can be separated by a hyperplane $H \subset E$, relative to E. The subspace spanned by H and x clearly determines a closed half space of F which contains $\{\{x\} \cup S\}$ and is disjoint from y, leading to a contradiction, since $y \in \bar{K}$. Suppose now that u is the point of intersection of R and E. It suffices to show that $u \in S$. If not, then there is an open ball B about u which is disjoint from S and $\text{co} \{\{x\} \cup B\}$ is a neighborhood of u which contains no point of the form $\lambda x + (1 - \lambda)s$ for any λ, $0 \leq \lambda < 1$ and $s \in S$. This is impossible since $y \in \bar{K}$. Hence $y \in K$ and $K = \bar{K}$ as claimed.

Lemma 3. Let x be a normed linear space, E a closed subspace of X and l a line skew to E, i.e. l neither intersects E nor is parallel to any line of E. Let $\{C_k : k = 1, 2, \cdots\}$ be a decreasing sequence of closed convex subsets of E and $\{p_k : k = 1, 2, \cdots\}$ a sequence on l converging to some p_\circ. Let $K_i = \text{co} \{\{p_i\} \cup C_i\}$ for $i \geq 1$ and $K_\circ = \text{co} \{\{p_\circ\} \cup C_\circ\}$.

Then $S = \bigcup \{K_i : i = 0, 1, \cdots\}$ is weakly closed. If, in addition, C_i is linearly bounded then so is S.

Proof. To prove that S is weakly closed let $x \in X \sim S$. Then $x \in K_\circ$, which is closed by Lemma 2, and convex. Thus there is a hyperplane H such that $x \in H^+$ and $K_\circ \subset H^-$ where H^+ and H^- are open half spaces determined by H. Let n_\circ be such that $p_n \in H^-$ whenever $n > n_\circ$. Then, for such n, $K_n \subset H^-$ since $\{\{p_n\} \cup C_n\} \subset H^-$. On the other hand, as $\bigcup \{K_i : i \leq n_\circ\}$ is weakly closed there is a weak neighborhood W of x which is disjoint from it. It follows that $W \cap H^+$ is a weak neighborhood of x which is disjoint from S. Hence S is weakly closed. To prove linear boundedness observe first that,
as can be readily verified, in finite dimensional spaces boundedness and linear boundedness are equivalent for closed convex sets. If now \(l_i \) is a line in \(X \) let \(L \) be the subspace spanned by \(l \cup l_i \). Then \(L \cap C_i \) is bounded and closed and \(l_i \cap S \) is contained in the compact set

\[
\text{co} \{\{p_i; k = 0, 1, \cdots\} \cup (C_i \cap L)\}
\]

and therefore bounded. Hence \(S \) is linearly bounded, as asserted.

Lemma 4. Let \(X \) be a linear space, \(E \) a subspace of \(X \) and \(l \) a line in \(X \) which is skew to \(E \). If \(p, q \in l \), \(p \neq q \), and \(A, B \) are convex subsets of \(E \) then

\[
\text{co} \{(p) \cup A\} \cap \text{co} \{(q) \cup B\} = A \cap B.
\]

Proof. Let \(x \in \text{co} \{(p) \cup A\} \cap \text{co} \{(q) \cup B\} \). It suffices to show that \(x \in A \cap B \). If this were not the case then \(x \in [p, a) \cap [q, b) \) for some \(a \in A \) and \(b \in B \), with \(a \neq b \). But then \(a, b, p, q \) would have to be coplanar against the assumption that \(l \) is skew to \(E \).

Lemma 5. Let \(X \) be a linear space, \(E \) a subspace of \(X \) and \(l \) a line in \(X \) which is skew to \(E \). Suppose \(p_i; i = 1, 2, \cdots \) is a sequence of distinct points on \(l \). Let \(C_i \subset E \) be convex, \(K_i = \text{co} \{(p_i) \cup C_i\} i = 1, 2, \cdots \) and \(S = \bigcup \{K_i; i = 1, 2, \cdots\} \). Then \(S \) is starshaped if, and only if, \(\bigcap \{C_i; i = 1, 2, \cdots\} \neq \emptyset \) and \(S \) has f.v.p. if, and only if, \(\{C_i; i = 1, 2, \cdots\} \) has the finite intersection property.

Proof. If \(l' \) is a line such that \(l' \cap (K_j \sim C_j) \neq \emptyset \) then \(\text{card} (l' \cap K) \leq 1 \) for any \(i \neq j \). Indeed, if for some \(i \neq j \) \(l' \cap K_i \) contains two or more points then \(l' \) is contained in \(L_i \), the linear span of \(K_i \); but then \(l' \cap (K_j \sim C_j) = \emptyset \) since \(L_i \cap K_j \subset C_j \) by the preceding lemma. Hence \([u, p_i] \), with \(u \in K_j \sim C_j \) and \(i \neq j \), is not contained in \(S \) as \(\text{card} ([u, p_i] \cap S) \leq \aleph_0 \). Thus \(\bigcup \{[u, p_m]; S: m \in M\} \), where \(M \) is a set of two or more positive integers, implies that \(u \) and for it to have f.v.p. \(\{C_i; i = 1, 2, \cdots\} \) has to have the finite intersection property.

For the converse note that \(u \in \bigcap \{C_i; i = 1, 2, \cdots\} \) implies \(S_u = S \) and if \(F \subset S \) is finite then, for \(N \) sufficiently large, \(F \subset \bigcup \{K_i: i = 1, 2, \cdots\} \) and this last set is contained in \(S_u \) for any \(u \in \bigcap \{C_i; i = 1, 2, \cdots, N\} \).

3. Main results.

Theorem 1. A normed linear space is infinite-dimensional if,
and only if, it contains a linearly bounded, weakly closed subset S which has the finite visibility property but fails to be starshaped.

Proof. If X contains a set S with the stated properties then by the Krasnoselski theorem [3] X must be infinite-dimensional.

Assume now that X is infinite-dimensional and E is a closed subspace of X of codimension 2. By the theorem of Klee quoted in the introduction, E contains a decreasing sequence $\{C_k: k = 1, 2, \ldots\}$ of nonempty, closed, linearly bounded subsets whose intersection is empty. Let l be a line which is skew to E and $\{p_k: k = 1, 2, \ldots\}$ a sequence of distinct points on l converging to $p_0 \in l$. Let $K_i, i = 0, 1, \ldots$ and S be as in Lemma 3. Then S is weakly closed and linearly bounded by that lemma. By Lemma 4 S has f.v.p. but fails to be starshaped.

Theorem 2. A normed linear space X is nonreflexive if, and only if, it contains a set S which is bounded, weakly closed, has the finite visibility property but fails to be starshaped.

Proof. If X contains a set S with the stated properties then, by Lemma 1, it fails to be reflexive.

Assume now that X is nonreflexive and, as in the construction of the proof of Theorem 1, let E be a closed subspace of X of codimension 2 and l a line skew to E. Let $\{p_k\}$ be a sequence of distinct points on l converging to $p_0 \in l$. By the Smulian theorem [3] there exists a decreasing sequence $\{C_k: k = 1, 2, \ldots\}$ of nonempty, closed and bounded convex sets in E whose intersection is empty. Let $K_i, i = 0, 1, \ldots$ and S be defined as in the proof of Theorem 1. Then the arguments used there apply again to the effect that S is weakly closed, bounded, with f.v.p. but not starshaped.

4. An example in l_1. The following is an example of a concrete subset of l_1 having all the properties of the set S of Theorem 2. Let S consist of all $x = (x_1, x_2, \ldots, x_n, \ldots) \in l_1$ such that

(i) $x_n \geq 0$ for $n = 1, 2, \ldots$;

(ii) $\|x\| = 1$;

(iii) if $x_{2n} \neq 0$ then $x_k = 0$ for $1 \leq k < 2n$.

To show that S has the finite visibility property let $F \subset S$ be finite and N an odd integer which is larger than the index of the first positive coordinate of each member of F. If $e_S \in S$ has 1 for its Nth coordinate then clearly $[u, e_n] \subset S$ for all $u \in F$.

To prove that S is weakly closed let $y = (y_1, y_2, \ldots, y_n, \ldots) \in l_1 \sim S$ and assume, as we may, that $\|y\| = 1$. Since $y \in S$, there must be
positive integers n, k such that $k < 2n$ and $y_k > 0$ and $y_{2n} > 0$. If $u = (u_1, \ldots, u_k, \ldots), v = (v_1, \ldots, v_{2n}, \ldots) \in l_\infty$ are such that $u_k = v_{2n} = 1$ and all other coordinates $= 0$ then

$$W = \{z \in l_1: u(z) > 0 \text{ and } v(z) > 0\}$$

is a weak neighborhood of y which is disjoint from S. Since boundedness of S is obvious it remains to show that S is not starshaped. If now $u = (u_1, u_2, \ldots, u_k, \ldots) \in S$ and $u_k \neq 0$ then for $x = (x_1, \ldots, x_n, \ldots) \in S$ with $s_{2k} = 1$ we have $[u, x] \in S$.

References

4. V. Smulian, On the principle of inclusion in the space of type (B), Mat. Sbornik N. S., 5 (1939), 317-328.

Received December 8, 1974 and in revised form February 5, 1975. This research was supported by the National Research Council of Canada, Grants A-3999 and A-8755.

Dalhousie University, Halifax, Nova Scotia
Norman Larrabee Alling, *On Cauchy's theorem for real algebraic curves with boundary* .. 315
Daniel D. Anderson, *A remark on the lattice of ideals of a Prüfer domain* ... 323
Dennis Neal Barr and Peter D. Miletta, *A necessary and sufficient condition for uniqueness of solutions to two point boundary value problems* ... 325
Ladislav Beran, *On solvability of generalized orthomodular lattices* ... 331
L. Carlitz, *A three-term relation for some sums related to Dedekind sums* ... 339
Arthur Herbert Copeland, Jr. and Albert Oscar Shar, *Images and pre-images of localization maps* ... 349
G. G. Dandapat, John L. Hunsucker and Carl Pomerance, *Some new results on odd perfect numbers* ... 359
M. Edelstein and L. Keener, *Characterizations of infinite-dimensional and nonreflexive spaces* ... 365
Francis James Flanigan, *On Levi factors of derivation algebras and the radical embedding problem* .. 371
Harvey Friedman, *Provable equality in primitive recursive arithmetic with and without induction* ... 379
Joseph Braucher Fugate and Lee K. Mohler, *The fixed point property for tree-like continua with finitely many arc components* ... 393
John Norman Ginsburg and Victor Harold Saks, *Some applications of ultrafilters in topology* ... 403
Arjun K. Gupta, *Generalisation of a “square” functional equation* ... 419
Thomas Lee Hayden and Frank Jones Massey, *Nonlinear holomorphic semigroups* ... 423
V. Kannan and Thekkedath Thrivikraman, *Lattices of Hausdorff compactifications of a locally compact space* ... 441
J. E. Kerlin and Wilfred Dennis Pepe, *Norm decreasing homomorphisms between group algebras* ... 445
Young K. Kwon, *Behavior of Φ-bounded harmonic functions at the Wiener boundary* ... 453
Richard Arthur Levaro, *Projective quasi-coherent sheaves of modules* ... 457
Chung Lin, *Rearranging Fourier transforms on groups* ... 463
David Lowell Lovelady, *An asymptotic analysis of an odd order linear differential equation* ... 475
Jerry Malzan, *On groups with a single involution* ... 481
J. F. McClendon, *Metric families* ... 491
Carl Pomerance, *On multiply perfect numbers with a special property* ... 511
Mohan S. Putcha and Adil Mohamed Yaqub, *Polynomial constraints for finiteness of semisimple rings* ... 519
Calvin R. Putnam, *Hyponormal contractions and strong power convergence* ... 531
Douglas Conner Ravenel, *Multiplicative operations in BP*BP* ... 539
Judith Roitman, *Attaining the spread at cardinals which are not strong limits* ... 545
Kazuyuki Saitô, *Groups of *-automorphisms and invariant maps of von Neumann algebras* ... 553
Brian Kirkwood Schmidt, *Homotopy invariance of contravariant functors acting on smooth manifolds* ... 559
Kenneth Barry Stolarsky, *The sum of the distances to N points on a sphere* ... 563
Mark Lawrence Teply, *Semiprime rings with the singular splitting property* ... 575
J. Pelham Thomas, *Maximal connected Hausdorff spaces* ... 581
Charles Thomas Tucker, II, *Concerning σ-homomorphisms of Riesz spaces* ... 585
Rangachari Venkataraman, *Compactness in abelian topological groups* ... 591
William Charles Waterhouse, *Basically bounded functors and flat sheaves* ... 597
David Westreich, *Bifurcation of operator equations with unbounded linearized part* ... 611
William Robin Zame, *Extendibility, boundedness and sequential convergence in spaces of holomorphic functions* ... 619