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The norm decreasing homomorphisms ¢ of LYF') into
M(@) for locally compact groups F' and G have been charac-
terized by F. P. Greenleaf using an integral representation.
In this note the authors improve and unify some of the results
and proofs of structure theorems in the previous literature.
Necessary and sufficient conditions that ¢ have a canonical
factorization of a general type are expressed in terms of the
extensibility of a ¢-associated character on a ¢-related closed
normal subgroup. In particular, an explicit factorization of
¢ can be obtained when either F' or G is Abelian. Also
investigated is the structure of norm decreasing homomor-
phisms ¢ with range in LY(G).

With F and G denoting (throughout this note) locally compact
Hausdorff groups, the norm decreasing homomorphisms of the group
algebra L(F) into the measure algebra M(G) have been characterized
by Glicksberg [2] and Cohen [1] for Abelian groups and in the
general setting by Greenleaf [3]. The characterization obtained for
nonAbelian groups is less tractable than that obtained in the Abelian
case. (Compare Theorem 2.1 of [2] with Theorem 4.2.2 of [3].) In
this note the authors give necessary and sufficient conditions for a
nonzero norm decreasing homomorphism @: L'(F)— M(G) to have
certain factorizations analogous to those obtained by Glicksberg [2,
Theorems 2.1, 2.9] and Greenleaf [3, Theorem 5.1.5]. Furthermore,
those @ with range in L'(G) are investigated, and simpler proofs of
Greenleaf’s characterization of the epimorphisms and monomorphisms
between L'-group algebras (cf., [3, Theorem 5.2.1, Cor. 5.1.6], [4,
Theorem 2.1}) are provided.

In the interest of brevity we adopt the notations and definitions
of [3]. In addition, if X and Y are locally compact Hausdorff
spaces and 0: X — Y is continuous, then #,: M(X)— M(Y) denotes
the canonical norm decreasing linear map defined by {(0.(y), /> =
¢, fo8) for all fin C(Y), or equivalently, by 60.(#)(B) = #(67(B))
for all Borel subsets, B, of Y; if ¢: F— G is a continuous homo-
morphism then ¢, is also multiplicative. If K is a compact sub-
group or closed normal subgroup of G, then mgx denotes the positive
left invariant measure on G/K so that mg mx, and mgx are
canonically related [6, Chaps. 3, 8]. L'(G/K) denotes the usual
Lebesgue space with respect to mgyx. If K is compact, then
7y M(G/K)— M(G) is the norm decreasing linear map defined by
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TR, £ =, (me)«(f)) for all f in 57(G), the space of continuous,
C-valued, compactly supported, functions on G, where under the
identification LYG)cC M(®), (7x)+f(9K) = g flgk)dmg(k) for geQG.
Let G denote the group of con’cmuous homomorphisms of G into the
circle group S:. If ais in G then A, denotes the isometric auto-
morphism of M(G) defined by <{A.(v), /> = {ap, f) = ¢, af) for all
[ in C(G).

Let @: (M(F), (s0)) — (M(G), (6)) denote the unique norm de-
creasing extension of @; let H, = {J {support®(d,): « € F'}, a subgroup
of G; then $(0,) = pmx where K is a compact subgroup of G normal
in Hy, and p is in K[3, §4.2]. Let {: F— H,/K be the mapping
defined by {(x) = 74 (supp #(0,)). The continuity properties of @
show that { is an epimorphism of F onto H,/K and is continuous
as a map of F' into G/K. According to [3, Lemma 5.1.2] there is
a unique topology 7 on H, making H = (H,, ) into a locally compact
group, K a compact subgroup of H, the monomorphic inclusion
Jj: H— G continuous, and the algebraic epimorphism { a continuous
open epimorphism 6: FF— H/K. (Algebraically, { and 6§ are the same
map, but their topological properties differ.) Finally, recall ([3,
§4.2]) that $(9,) = \,,,0,*0mg, Where 7g(g) = {(x) for ¢ in H, and
[Xeo| = 1.

LEMMA 1. Let F, ={xecF:$(0,) = M omg for some |\,| =1},
and let Y,: Fy— S* be defined by 7. (x) = \,. Then F, is a closed
normal subgroup with Ker { = F, and 7, is in F,.

Proof. xzeF, iff @(0,) = N, 0,x0mxr = N, 0,*0mg iff N, =\,, and
{(x) = mx(e) =¢/K. Thus, F, = Ker { and, therefore, it is a closed
normal subgroup. As @ is a homomorphism and is ((so), (9))-
continuous on norm bounded sets, it is easy to see that 7, is in F,.

We now state the main results reserving their proofs till later.

THEOREM 1. (i) 7, has an extension to a character 7 in Fif
@ = J, A0, A, where K is a compact normal subgroup of a locally
compact group H, 6: F— H/K is a continuous open epimorphism,
j: H— G is a continuous monomorphism, and Y€ P, B € H.

(ii) o has an extension to a character o in G of ¢ = AmEC A,
where K 1s a compact subgroup normal im a subgroup H, of G,
¢ F— H,/KC G/K is a continuous epimorphism, and ve F, acG.

THEOREM 2. Let H and G be locally compact groups, let K H
and JC G be compact subgroups, let L be a subgroup of G with J
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normal in L, let v H— L/JC G/J be a continuous epimorphism
with the relative topology on L/[J, and let ge H with Ker g8 D Ker 4.
Then the following are equivalent:

(i) L is an open/closed subgroup of G and + is an open map;

(ii) v(L'(H)) < L(G/T);

(i) YA L(H/K)) < L(G/JT);

(iv) 7' satisfies property Ny, i.e., the +r-inverse tmage of an
Mg ~locally null set in GJJ is my-locally null in H; and,

(v) if H and G are Abelian, then the dual homomorphism
¥: (GIJ)" — H is a proper map, i.e., the J-inverse image of a com-
pact subset is compact.

COROLLARY 1. (1) 7.=14ff @ = 7, Am%0,.

(ii) 20.) 2 0 of ¢ = wil.A,.

(iii) @ is order preserving if ¢ = wil,.

(iv) {p(f), & # 0 for some f in LF) and some a in G iff
P = ATE A,

Proof. (i), (ii) and (ili) are all obvious from Theorem 1. If
(P(f), &) # 0 for some f and «, then the map f— (p(f), @ is a
nonzero multiplicative linear functional on LY(F) and hence ([5,
(23.7)]) there is a 7 in F such that {(p(f), @) = {f, 7> for all f in
L'F). Let f=0 bein L'(F) and ||f||, = 1. Then {A7'@A4;(f),1) =
PAT(F), @ = Tf, 7> = |l = 1. As || ATpA7(f)]l, <1, it must
be that A;'9A;(f) = 0 and hence A;'®A;" is order preserving. Thus
o = An:,A,. Conversely, if ¢ = A,7w3{,A,, then for all ¢ =0 in
LY(F) and with f = 7g, we have {(p(f), @ = {w}l.(g), 1> and this is
clearly nonzero for some g = 0.

COROLLARY 2. (i) If F 4s Abelian, then every mnonzero
@: L'(F) — M(G) is of the form @ = j, A0, A,.

(i) If G is Abelian, then every monzero @: L'(F)— M(G) is of
the form @ = A3l A,.

Proof. This follows immediately from Theorem 1 since it is
well known that characters on closed subgroups of Abelian groups
extend to the whole group.

COROLLARY 3. (i) @ = 7, Ami0.A, maps LF) into LYG) iff
J(H) is open/closed in G and j: H— G is an open map.

(ii) ¢ = A7ml.A, maps L'(F) into LNG) iff H, is an open/closed
subgroup of G and {: F— G/K is an open mapping.

Proof. To prove (i), note that as 6.A(L(F)) = L'(H/K), we
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have j.A;my(LY(H/K))c L(G) if o(LNF))c L(G) and so Theorem 2
applies with + = 5, L = H,, and J = (¢); the converse of (i) is well
known. If ¢ = A, 7%{.A, maps LYF) into LYG), then nil (L{F))c
LY(G). Since (mg)yomy is the identity map, we have C (L'(F))c
(7x)(L(G)) c L'(G/K). Now, Theorem 2 applies with H = F, J = K,
L = H,, and + = {; again, the converse of (ii) is well known.

An immediate corollary to Corollary 3 (i) is

COROLLARY 4 (Greenleaf [4, Theorem 2.1]). @ is @ monomorphism
of LNF) into LNG) if ® = j. A0, where 6: F = H/K and j is a
topological isomorphism of H onto an open/closed subgroup of G.

COROLLARY 5 (Greenleaf [3, Theorem 5.2.1]). ® is an epimorphism
of LYF) onto LG) if ¢ = ATy A, where F, is a closed nmormal
subgroup of F, Tp, = (@p)lrrmy veF, and 4: L\F/F,) = ILNG) is
an isometric tsomorphism.

Proof. If @ is an epimorphism, then {(®(f), 1) = 0 for some f
in L)(F) and so @ = w3i(,A, by Corollary 1 (iv). By Corollary 3 (ii),
¢ is an open map and H, is an open/closed subgroup of G. Since
elements in 7%(L'(G/K)) are constant on the cosets of K in G and
@ is an epimorphism, we must have K = {¢} and @ = {,4,. Since
¢ maps onto the open/closed subgroup H,, it follows immediately
from the definition of (., that (. (L'(F')) is supported on H, in G.
However, ((L'F))=C(A(LF))=p(L'(F))=L"(G) and hence H,=G
and (:F— G is a continuous open epimorphism. Let { =\o7my
where F, =Ker{ and \: F/F, = G. Then ¢ ={ A, = N:Tr A, Where
Mot LNF/F) = LY(G).

The next corollary is an interesting parallel of Corollary 1.2
and Theorem 2.3 of [4].

COROLLARY 6. (i) (Greenleaf) L)F) has a monzero morm de-
creasing homomorphic tmage in M(G) iff F/F,= H/K where F, is
closed normal subgroup of F, K is a compact normal subgroup of
a locally compact group H, and H is continuously isomorphic to a
(not necessarily closed) subgroup of G.

(ii) LYF) has a nonzero norm decreasing homomorphic image
in LN@) of either of the types described in Theorem 1 iff F/F, =
H/K where F, is a closed normal subgroup of F and K is a com-
pact mormal subgroup of a locally compact group H which is
topologically isomorphic to an open/closed subgroup of G.

Proof. Part (i) is immediate from the construction of H = (H,, 7)
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and 6: F— H/K. Part (ii) follows from Corollary 3.

It is clear that if @ = A,7%(.A,, then ¢ = j, A,w%0,A, where
B =a-j, and so j.A;w50,A, is the more general factorization of
the two types. There naturally arises the question of existence of
a @ not of this general form. In light of Theorem 1 and its corollaries,
an example has been difficult to find and has eluded the authors.
The supporting evidence is favorable in view of the well known
fact that in general characters on closed subgroups need not extend
to the whole group.

Proof of Theorem 1. Part (i). If o has the indicated factori-
zation, then @ = j,A,m30, A, and

P(9,) = B(9)7(x)d;i) *(B o J )Mjx) »

where 7x(9) =6(x) for = in F and ¢ in H. It follows that 7 =
(Boj ™ Ymjx is the unit of I' = p({0,: x€ F}), and $H(0,) = N\, for
In, | =1 iff ®(0,) = Y(x)i. Thus, Y(x) =7,(x) on F,. Conversely,
suppose 7, has an extension to a character 7 in F. Let v = Po AL,
a norm decreasing homomorphism of L'(F') into M(G) with ¢ = A"
Since ¥(0,) = Y(x)»(0,) for all & in F, we have that |J {supp ¥ (4,):
xe F} = H,+v(0,) = $0,) = pmx = 1, and & and + determine the same
¢ F— HJ/KcCG/K and 6: F— H/K. Furthermore, if ¥(3,) = M for
some |[\]| =1, then Y(@)Ai = Y(x)¥(0,) = $(0,). Therefore, x€ F, and
Yo(x) = 7Y(x)N. Since 7, is the restriction of ¥ to F,, A = 1. Thus,
v({0,:xe F}) N S = {¢} and by Theorem 5.1.5 of [3], ¥ = J.A%0s;
therefore, @ = VA, = J. A5G A,.

Part (ii). If o has an extension to a character « in G, consider
W = A7'9, a norm decreasing homomorphism of LYF') into M(G)
with ¢ = A;'®. Since a extends p we have for each « in F, (d,)=
A7, ,0,40mEg) = (\,,@(9))0, xmg. Thus, @ and + determine the
same compact K, subgroup H, in G, and maps { and 6. Let n,, =
N.,,2(9) so that ¥(8,) =7, ,0,*msz where mg(g) = {(x). Since 6,+mx
does not depend on the representative g in the coset gK, Y(x) = 7,,,
is a well defined function on F to S'. It follows easily from the
continuity properties of ¥ that 7 e F; moreover, 7 extends 7. Now,
the map 7wi{.A, agrees with v on {\d,:xze€ F, |\| =1} = S%;. As
nil A, and ¥ are ((so), (¢))-continuous on norm bounded sets and as
co [S*;: (so)] is the unit ball in M(F) ([3, Lemma 1.1.3]), we have
¥l A, =¥ and @ = A,w¥{A,. The converse of (ii) is easily seen
from the relation A,7%(,4,00,) = A.(mg) = (a|x)mx.

Proof of TheorAem 2. As the adjoint map of the homomorphism
Py is §:(G/J)" — H when H and G are Abelian, the equivalence of
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(ii) and (v) is due to P. Cohen [1, Theorem 1]. As it is well known
that (i) implies (ii), and clearly (ii) implies (iii), it is necessary only
to prove (iii) implies (iv) and (iv) implies (i).

Assume (iii). We first show v, 7i(L'(H/K)) < LY(G/J). Let f be
in 9% (H/K), and let C = nz'(supp f), a compact subset of H. Let
B~ denote the bounded Borel function on G/J defined by g~ =0
outside of ¥(C) and 8 (x) = B(y) for xe ¥ (C) and v(y) ==, ye H.
Since Ker v Cc Ker B, 8~ is well defined on the compact subset ¢(C)
and it is continuous on (C). Let A,~: L'(G/J) — L'(G/J) denote the
bounded linear map of pointwise multiplication by B~. Now, since
B o =B on C,wif) = fomx is supported on C, and v, A;wx(f)<
LY(G/J), we have {As~v s AmE(f), 99 = {TE(S), B(B™ o¥)(gov)) = {7k (f),
gov) = {¥.mx(f), 9> for all g in C(G/J). Therefore, As~yr A;mi(f) =
VTE(f) and it is in L'(G/J). Since f in 9¥°(H/K) is arbitrary and
P Tk is continuous, we have that 7% maps L'(H/K) into L'(G/J).

To prove (iv), first consider any Borel mg,-null set B in G/J,
and let C be any compact subset of H with C.K = C. Now, as
Xo = Ti(Azgo)s 88 VsTE(Nzgier) is in LY(G/J), and as B is a null set,
we have mz(CN ¥~ (B)) = Xedmu(¥(B)) = ¥4Tx(Ysg)(B) = 0. Thus,
CN+y%(B) is an my-null set. Since every compact subset of H is
contained in a compact set C where C.K = C, it follows that ¥ ~*(B)
is my-locally null and hence v~ '(M) is my-locally null for any mg,-
null set M in G/J. Finally, let N be any mgy-locally null set in
G/J and let C be any compact subset of H. Since CNy '(v(C)NN) =
CN+y~YN), and since ¥ (C)N N is mg-null, we have that CNy~4(N)
is mg-null. Thus, () is my-locally null and (iv) holds.

Agsume (iv). As every locally compact group is the union of
o-compact open subgroups, it suffices (in order to prove (i)) to show
4(S) is open in G/J and +|s is an open map for any o-compact open
subgroup S in H. A theorem of Pontryagin (cf., [5, (5.29)]) shows
that any continuous epimorphism between o-compact locally compact
groups is an open map. Therefore, it suffices to show +(S) is open
in G/J and hence a (o-compact) locally compact group with the
relative topology. It is clear that +(S) is at least o-compact and
therefore measurable. Since the restriction of the Haar measure
my to the open subgroup S is the Haar measure on S, it is clear
that (¢0|s)™! satisfies property Ny.. Thus (S) is not myg-locally
null. Let Lg = 77'(¥(S)), an F,-subgroup of G. By [6, §3.9, p. 66
and §2.2, p. 165] Ls is mglocally null iff 4(S) is mg-locally null.
Therefore Lg is not mg-locally null and thereby contains a Borel
subset A of positive finite measure. Then AA™', a subset of L, is
a neighborhood of the identity of G [5, (20.17)], and so Lg and
w,(Lg) = 4(S) are open in G and G/J, respectively. The proof is
complete.
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