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If m is a multiply perfect number and m = pan where p
is prime and n | σ(pa), then m = 120, 672, 523776, or m is an
even perfect number.

l Introduction* Suppose p is a prime α, n are natural numbers,
and

(1.1) pa I σ(n) , n \ σ(pa)

where σ is the sum of the divisors function. Then 1 = (pa, σ(pa)) =
(pa, n), so that pan \ σ(pa)σ(n) = σ(pan); that is pan is a multiply-
perfect number. In this paper we identify all multiply perfect numbers
which arise in this fashion.

Let M be the set of Mersenne exponents, that is, M = {k: 2k — 1
is prime}. We shall prove

THEOREM 1.1. // p, a, n is a solution of (1.1) where p is prime,
then either

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

p = 2* - 1 ,

p = 2*"1 ,

p* = 23 ,

pa = 25 ,

p α = 2 β ,

ίί

TO

TO

TO

TO

= 2*-1

= 2 * - 1

= 15

= 21

= 1023 .

for some

for some

keM

keM

COROLLARY 1.1. If m is a multiply perfect number and m = pan
where p is prime and n | σ(pa), then m — 120, 672, 523776, or m is
an even perfect number.

Note that in [2] all solutions of (1.1) with pa = σ(n) are enumer-
ated: they are (1.2) and (1.5). Hence in the proof of Theorem 1.1,
we may assume pa < σ(n).

We recall that a natural number n is said to be super perfect
it σ(σ(n)) = 2n. In [2] and Suryanarayana [8] it is shown that if
n is super perfect and if either n or σ(n) is a prime power, then
n = 2fc~1 for keM. Here we will say n is swper multiply perfect if
σ(σ(n))jn is an integer.
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COROLLARY 1.2. If n is super multiply perfect, and if n or
σ(n) is a prime power, then n — 8, 21, 512, or n — 2k~1 for some
ksM.

If p is a prime, denote by σp(n) the sum of all those divisors
of n which are powers of p. Then σp(n) \ σ(n).

COROLLARY 1.3. If n > 1 and n \ op{σ(n)) for some prime p,
then p = 2 and n = 15, 21, or 1023 or p = 2k — 1 for some keM
and n = 2k~\

We remark that in general the super multiply perfect numbers
appear to be quite intractable. Partly complicating matters is that
for every K, σ(σ(n))/n ^ K on a set of density 1. Professor David
E. Penney of the University of Georgia, in a computer search, found
that there are exactly 37 super multiply perfect numbers ^ 150000.
Of these, the only odd ones are 1, 15, 21, 1023, and 29127.

Recently, Guy and Self ridge [4], p. 104, published a proof of a
stronger version of Theorem 1.1 for the special case p — 2.

2* Preliminaries* If ft is a natural number, we let ω(n) be
the number of distinct prime factors of n, and we let τ(n) be the
number of natural divisors of n. If a, b are natural numbers with
(a, b) = 1, we let ordtt (6) be the least positive integer k for which
a I bk — 1. If p is a prime and x is a natural number, then σ(px) =

THEOREM 2.1 (Bang [1]). If p is a prime, a is a natural number,
and 1 < d \ a + 1, then there is a prime q \ σ{pa) with ordg (p) = d,
unless

( i ) p = 2 and d = 6, or
(ii) p is a Mersenne prime and d = 2.

COROLLARY 2.1.

f τ(α + 1) — 2 , if p — 2 and 6 | α + 1

τ(α + 1) , if p > 2 is not Mersenne and

2\a + 1

τ(α + 1) — 1 , otherwise .

The following is a weaker from of a lemma from [2].

LEMMA 2.1. Suppose p, q are primes with q > 2 and x, y, b, c
are natural numbers with σ(qx) = py and qb \ σ(pc). Then qh~ι \ c + 1.
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3* The start of the proof* Suppose p, a, n is a solution of (1.1)
where p is prime. Then there are integers s, t with

σ(n) = spa , σ(pa) = tn .

As we remarked, we have already studied these equations in the
case 8 = 1 (in [2]), so here we assume s > 1. We have

(3.1) βt
f

pa n
Considering the unique prime factorization of nf we write nγ for the
product of those prime powers qb for which σ(qb) is divisible by a
prime Φ p, and we write n2 for the product of those prime powers
qb for which σ(qb) is a power of p. Then (nl9 n2) = 1, n^ = n, and
σ(n2) is a power of p. Let ω, be the number of distinct odd prime
factors of nt for i = 1, 2. Let &>3 be the number of distinct prime
factors of t which do not divide n. Hence

/ o Λ. . . .λ . . [ωt + α>2 + ω3 , if n is odd
(3.2) ω(σ(pa)) = ω(ίw) = .

11 + o>! + ω2 + (θs , if -̂  is even .

We write

i

where fc^g = 0 and the p έ and #, are distinct odd primes.

4. The case p > 2. Since each σ(g^) is a power of p, and since
p is odd, we have each bt even. Since also each q\* \ σ(pa), Lemma
2.1 implies

Π

Suppose n is even. Then also 2 | α + 1, so that τ(a + 1) ;> 2ω 2 + ι.
It follows from (3.2) and Corollary 2.1 that

(4.1) ωx + ωz ^ 2ω2+1 - >̂2 - 2 .

Suppose A?x > 0. Then (σ(2k^)f s) ^ 3 and for

Then s ^ 3 2ωi. Also every prime counted by ω3 is odd, so ί ^ 3ω3.
Hence from (3.1) we have
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/ i 3

3 . {±\ < 3 . 2-i. 3ω3
a) , Φ ) <

w p
P τ o A1 P< , ff gj
- 1 i=ipt — l *=i g, —

s 8.(lp
so that

Hence (4.1) implies that

ω2 > 2ω2+2 - 2 ω 2 - 4

which fails for all ω2 ^ 0. This contradiction shows &x = 0.
Suppose &2 > 0. Then σ(2kή is a power of p, so that σ(2kή — p

(Gerono [3]). Now 2 | a + 1, so 2**+1 = σ(p) | σ(pα). Hence 2 | ί, so
that t ^ 2 3ω3. Also (σ(p?*), s) έ 2, so s ^ 2*\ Hence

/ 5 \ ω1+ω2+2
<vT/

so that

(4.2) ω2 > 2ωx + 4ω3 - 2 ^ 2(ω1 + ω3) - 2 .

It follows from (4.1) that

ω2 > 2ω2+2 - 2ω2 - 6 ,

which implies ω2 ^ 1. Then (4.2) implies ωλ ^ 1. Since s > 1 and
2 I ί, we have

<
2 p - 1 A - 1 q ^ l (p-

so that max {p, pu g j = 13. But <τ(2&2) = p, so k2 ^ 2. Then

4 < ^ ! . A . . < 4 ,
22 2 4 6

so k% = 0.
Thus we have w odd, so pan is an odd multiply perfect number.

It follows from Hagis [5] and McDaniel [6] that

(4.3) 1 + ωx + ω2 = 1 + ω(n) = ω(pan) ^ 8 .
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From (3.2) and Corollary 2.1 we have

(4.4) ω1 + ωz ^ 2ω* - ω2 - 1 .

Now 8 ^ 2% t ^ 2ω* so that

4 / p — 1 Pi — 1 Qi — 1

^ 3 / 5 \ ω i + ω 2 / 5 \ ω i + ω 2 + 2

- 2ΛΪ7 < VΪ7

Hence

(4.5) ω2 > 2ωι + 3ω3 - 2 ^ 2(ωx + α>8) - 2 ,

so that (4.4) implies

ω2 > 2ω2+1 ~ 2ω2 - 4 ,

which implies ω2 ^ 2. Then (4.5) implies wx ^ 1, contradicting (4.3).

5* The case p = 2. Since σ(w2) is a power of 2, it follows
that n2 is a product of distinct Mersenne primes (Sίerpiήski [7]),
say

nz = Π (2^ - 1)

where each ^ and qt = 2Cί — 1 is prime, and ct < c2 < . . . < cω2.
Suppose T̂ i = 1. Then s is a power of 2, say s = 2C. Then

2C+* = σ{n) = σ(^2) = 2Σc*

so that c + α = Σ <*<• But 2β* — 11 σ(2a), so c, | α + 1. Since cu c2,
• , c2 are distinct primes, Π ct \ a + 1. Since 1 < s = 2% we have
c ^ 1. Hence Π ^ ^ a + 1 ^ Σ c» so

Is only for ω2 = 1, which gives solution (1.3).
We now assume nx > 1. Then s is divisible by an odd prime;

in fact, s :> 3ω i ^ 3. Also £ is odd, so ί ^ 3ωκ As above, Π ^ I α + 1,
so τ(a + 1) ^ 2ω2. Hence from (3.2) and Corollary 2.1 we have

(5.1) ωx + ω3 >̂ 2ω2 — ω2 — 2 .

Also from (3.1) we have
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ir

so that

(5.2) ω2 > 3ωx + 4ω3 - 3 ^ 3(ω1 + α>8) - 3 .

Then (5.1) implies

ω2 > 3 . 2ω2 - 3ω2 - 9

so that ω2 <; 2. Then from (5.2) and the fact that ωx *> 1, we have
ωt = 1, ω3 = 0, and ω2 > 0. Hence we have two choices for ωlf ω2, ωz:
1, 1, 0 and 1, 2, 0. Also since

5 > 1.1.A.1 > ^Ά σM - ct

1 2 4 6 2α n

and since s ^ 3, s ^ 4, we have s = 3, t = 1.
Suppose ω2 = 1. Then σ(2α) = p?1(2Cl — 1). Then ct is a proper

divisor of a + 1. But ω(σ(2α)) = 2, so Corollary 2.1 implies a + 1 = 6
or α + 1 = c\. The first choice gives n = 63, but σ(63) ^ 3 . 25.
Hence α + 1 = c{. Then Theorem 2.1 implies ordPl (2) = c\f so that
ftsl (mod cϊ). If ct ^ 3, then p, ^ 19, ^ = 2ci - 1 ^ 7, so that

a contradiction. Hence cλ — 2, a + 1 = 4, n = 15, and we have so-
lution (1.4).

Our last case is α>2 = 2. Then σ(2α) = ί)?K2ci - 1)(2C* - 1), so that
CiC21 α + 1. Now α>(σ(2α)) = 3, so that Corollary 2.1 implies c ^ =
α + 1, where cxc2 Φ 6. We also have σ(pa^(2c^ - 1)(2C2 - 1)) = 3 2\
Then σ(pΐή is 3 times a power of 2. Now σ{pV) Φ 3, so σ(pp) is
even. Hence 2 | αx + 1. Now Theorem 2.1 implies ord^ (2) = C&, a
composite number. Hence pt is not Mersenne. Also, ^ Ξ I (modc^).
From Corollary 2.1 and the fact that coiσipΐ1)) = 2 we have ax — 1.
Hence for some d we have p1 = 3 2d — 1. If ^ > 2, then gx = 2Cl —
1 ^ 7, #2 = 2C2 - 1 ^ 31, p t ^ 2cLc2 + 1 ^ 31. Then

8 = β ί < . § . .
1 30 30 6

so that we must have cx = 2. Then

22C2 _ 1 = (3. 2d - 1)(22 -
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where c2 ^ 3. Looking at this equation mod 8, we obtain 3 2d — 1 =
22 - l(mod 8). Hence d = 2fpί = 11. Then a + 1 = 2c2 = ordPl(2) = 10.
This gives solution (1.6).
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