ON MULTIPLY PERFECT NUMBERS WITH A SPECIAL PROPERTY

C AR L P O M E R A N C E
ON MULTIPLY PERFECT NUMBERS WITH A SPECIAL PROPERTY

CARL POMERANCE

If m is a multiply perfect number and $m = p^a n$ where p is prime and $n \mid \sigma(p^a)$, then $m = 120, 672, 523776$, or m is an even perfect number.

1. Introduction. Suppose p is a prime a, n are natural numbers, and

$$p^a \mid \sigma(n), \quad n \mid \sigma(p^a)$$

where σ is the sum of the divisors function. Then $1 = (p^a, \sigma(p^a)) = (p^a, n)$, so that $p^a n \mid \sigma(p^a)\sigma(n) = \sigma(p^a n)$; that is $p^a n$ is a multiply perfect number. In this paper we identify all multiply perfect numbers which arise in this fashion.

Let M be the set of Mersenne exponents, that is, $M = \{k: 2^k - 1$ is prime$.\}$.

We recall that a natural number n is said to be super perfect if $\sigma(\sigma(n)) = 2n$. In [2] and Suryanarayana [8] it is shown that if n is super perfect and if either n or $\sigma(n)$ is a prime power, then $n = 2^{k-1}$ for $k \in M$. Here we will say n is super multiply perfect if $\sigma(\sigma(n))/n$ is an integer.
Corollary 1.2. If \(n \) is super multiply perfect, and if \(n \) or \(\sigma(n) \) is a prime power, then \(n = 8, 21, 512, \) or \(n = 2^k - 1 \) for some \(k \in M \).

If \(p \) is a prime, denote by \(\sigma_p(n) \) the sum of all those divisors of \(n \) which are powers of \(p \). Then \(\sigma_p(n) \mid \sigma(n) \).

Corollary 1.3. If \(n > 1 \) and \(n \mid \sigma_p(\sigma(n)) \) for some prime \(p \), then \(p = 2 \) and \(n = 15, 21, \) or 1023 or \(p = 2^k - 1 \) for some \(k \in M \) and \(n = 2^k - 1 \).

We remark that in general the super multiply perfect numbers appear to be quite intractable. Partly complicating matters is that for every \(K, \sigma(\sigma(n))/n \geq K \) on a set of density 1. Professor David E. Penney of the University of Georgia, in a computer search, found that there are exactly 37 super multiply perfect numbers \(\leq 150000 \). Of these, the only odd ones are 1, 15, 21, 1023, and 29127.

Recently, Guy and Selfridge [4], p. 104, published a proof of a stronger version of Theorem 1.1 for the special case \(p = 2 \).

2. Preliminaries. If \(n \) is a natural number, we let \(\omega(n) \) be the number of distinct prime factors of \(n \), and we let \(\tau(n) \) be the number of natural divisors of \(n \). If \(a, b \) are natural numbers with \((a, b) = 1 \), we let \(\text{ord}_a(b) \) be the least positive integer \(k \) for which \(a \mid b^k - 1 \). If \(p \) is a prime and \(x \) is a natural number, then \(\sigma(p^x) = (p^{x+1} - 1)/(p - 1) < (p/(p - 1))p^x \).

Theorem 2.1 (Bang [1]). If \(p \) is a prime, \(a \) is a natural number, and \(1 < d \mid a + 1 \), then there is a prime \(q \mid \sigma(p^a) \) with \(\text{ord}_q(p) = d \), unless

(i) \(p = 2 \) and \(d = 6 \), or
(ii) \(p \) is a Mersenne prime and \(d = 2 \).

Corollary 2.1.

\[
\omega(\sigma(p^a)) \geq \begin{cases}
\tau(a + 1) - 2, & \text{if } p = 2 \text{ and } 6 \mid a + 1 \\
\tau(a + 1), & \text{if } p > 2 \text{ is not Mersenne and } 2 \mid a + 1 \\
\tau(a + 1) - 1, & \text{otherwise}.
\end{cases}
\]

The following is a weaker from of a lemma from [2].

Lemma 2.1. Suppose \(p, q \) are primes with \(q > 2 \) and \(x, y, b, c \) are natural numbers with \(\sigma(q^x) = p^y \) and \(q^b \mid \sigma(p^c) \). Then \(q^{b-1} \mid c + 1 \).
3. The start of the proof. Suppose \(p, a, n \) is a solution of (1.1) where \(p \) is prime. Then there are integers \(s, t \) with

\[
\sigma(n) = sp^a, \quad \sigma(p^a) = tn.
\]

As we remarked, we have already studied these equations in the case \(s = 1 \) (in [2]), so here we assume \(s > 1 \). We have

\[
(3.1) \quad st = \frac{\sigma(p^a)}{p^a} \cdot \frac{\sigma(n)}{n},
\]

Considering the unique prime factorization of \(n \), we write \(n_i \) for the product of those prime powers \(q^b \) for which \(\sigma(q^b) \) is divisible by a prime \(\neq p \), and we write \(n_2 \) for the product of those prime powers \(q^b \) for which \(\sigma(q^b) \) is a power of \(p \). Then \((n_1, n_2) = 1, n_1n_2 = n \), and \(\sigma(n_2) \) is a power of \(p \). Let \(\omega_i \) be the number of distinct odd prime factors of \(n_i \) for \(i = 1, 2 \). Let \(\omega_3 \) be the number of distinct prime factors of \(t \) which do not divide \(n \). Hence

\[
(3.2) \quad \omega(\sigma(p^a)) = \omega(tn) = \begin{cases} \omega_1 + \omega_2 + \omega_3, & \text{if } n \text{ is odd} \\ 1 + \omega_1 + \omega_2 + \omega_3, & \text{if } n \text{ is even}. \end{cases}
\]

We write

\[
n_1 = 2^{k_1} \prod_{i=1}^{a_1} p_i^{e_i}, \quad n_2 = 2^{k_2} \prod_{i=1}^{a_2} q_i^{e_i}
\]

where \(k_1k_2 = 0 \) and the \(p_i \) and \(q_i \) are distinct odd primes.

4. The case \(p > 2 \). Since each \(\sigma(q_i^{e_i}) \) is a power of \(p \), and since \(p \) is odd, we have each \(b_i \) even. Since also each \(q_i^{e_i} \mid \sigma(p^a) \), Lemma 2.1 implies

\[
\prod_{i=1}^{a_2} q_i \mid a + 1.
\]

Suppose \(n \) is even. Then also \(2 \mid a + 1 \), so that \(\tau(a + 1) \geq 2^{\omega_2 + 1} \). It follows from (3.2) and Corollary 2.1 that

\[
(4.1) \quad \omega_1 + \omega_3 \geq 2^{\omega_2 + 1} - \omega_2 - 2.
\]

Suppose \(k_1 > 0 \). Then \((\sigma(2^{k_1}), s) \geq 3 \) and for

\[
1 \leq i \leq \omega_1, \quad (\sigma(p_i^{e_i}), s) \geq 2.
\]

Then \(s \geq 3 \cdot 2^{a_1} \). Also every prime counted by \(\omega_3 \) is odd, so \(t \geq 3^{a_3} \). Hence from (3.1) we have
3 \cdot \left(\frac{5}{4}\right)^{3\omega_1+4\omega_3} < 3 \cdot 2^{\omega_1} \cdot 3^{\omega_3}

\leq st = \frac{\sigma(p^s)}{p^s} \cdot \frac{\sigma(n)}{n} < \frac{p}{p-1} \cdot 2 \cdot \prod_{i=1}^{\omega_1} \frac{p_i}{p_i - 1} \cdot \prod_{i=1}^{\omega_2} \frac{q_i}{q_i - 1}

\leq 3 \cdot \left(\frac{5}{4}\right)^{\omega_1+\omega_2}

so that

\omega_2 > 2\omega_1 + 4\omega_3 \geq 2(\omega_1 + \omega_3).

Hence (4.1) implies that

\omega_2 > 2^{\omega_2+2} - 2\omega_2 - 4

which fails for all \(\omega_2 \geq 0\). This contradiction shows \(k_1 = 0\).

Suppose \(k_2 > 0\). Then \(\sigma(2^{k_2})\) is a power of \(p\), so that \(\sigma(2^{k_2}) = p\) (Gerono [3]). Now \(2 \mid a + 1\), so \(2^{k_2+1} = \sigma(p) \mid \sigma(p^s)\). Hence \(2 \mid t\), so that \(t \geq 2 \cdot 3^{\omega_2}\). Also \((\sigma(p_{2i}^s), s) \geq 2\), so \(s \geq 2^{\omega_1}\). Hence

\[
\left(\frac{5}{4}\right)^{3\omega_1+4\omega_3} < \frac{1}{2} \cdot \frac{p}{p-1} \cdot \prod_{i=1}^{\omega_1} \frac{p_i}{p_i - 1} \cdot \prod_{i=1}^{\omega_2} \frac{q_i}{q_i - 1} \leq \frac{3}{2} \left(\frac{5}{4}\right)^{\omega_1+\omega_2}
\]

so that

\[
(4.2) \quad \omega_2 > 2\omega_1 + 4\omega_3 - 2 \geq 2(\omega_1 + \omega_3) - 2.
\]

It follows from (4.1) that

\[
\omega_2 > 2^{\omega_2+2} - 2\omega_2 - 6,
\]

which implies \(\omega_2 \leq 1\). Then (4.2) implies \(\omega_1 \leq 1\). Since \(s > 1\) and \(2 \mid t\), we have

\[
4 \leq st < \frac{\sigma(2^{k_2})}{2^{k_2}} \cdot \frac{p}{p-1} \cdot \frac{p_i}{p_i - 1} \cdot \frac{q_i}{q_i - 1} = \frac{2pp_iq_i}{(p-1)(p_i-1)(q_i-1)}
\]

so that \(\max\{p, p_i, q_i\} = 13\). But \(\sigma(2^{k_2}) = p\), so \(k_2 \leq 2\). Then

\[
4 < \frac{\sigma(2^2)}{2^2} \cdot \frac{3}{2} \cdot \frac{5}{4} \cdot \frac{7}{6} < 4,
\]

so \(k_2 = 0\).

Thus we have \(n\) odd, so \(p^s n\) is an odd multiply perfect number. It follows from Hagis [5] and McDaniel [6] that

\[
(4.3) \quad 1 + \omega_1 + \omega_2 = 1 + \omega(n) = \omega(p^s n) \geq 8.
\]
From (3.2) and Corollary 2.1 we have

\[\omega_1 + \omega_3 \geq 2^{\omega_2} - \omega_2 - 1. \]

Now \(s \geq 2^{\omega_1}, t \geq 2^{\omega_3} \) so that

\[
(\frac{5}{4})^{3\omega_1 + 3\omega_2} < st < \frac{p}{p-1} \cdot \prod \frac{p_i}{p_i - 1} \cdot \prod \frac{q_i}{q_i - 1}
\]

\[
\leq \frac{3}{2} \left(\frac{5}{4} \right)^{\omega_1 + \omega_2} < \left(\frac{5}{4} \right)^{\omega_1 + \omega_2 + 2}.
\]

Hence

\[\omega_2 > 2\omega_1 + 3\omega_3 - 2 \geq 2(\omega_1 + \omega_3) - 2, \]

so that (4.4) implies

\[\omega_2 > 2^{\omega_2+1} - 2\omega_2 - 4, \]

which implies \(\omega_2 \leq 2 \). Then (4.5) implies \(\omega_1 \leq 1 \), contradicting (4.3).

5. The case \(p = 2 \). Since \(\sigma(n_2) \) is a power of 2, it follows that \(n_2 \) is a product of distinct Mersenne primes (Sierpiński [7]), say

\[n_2 = \prod_{i=1}^{\omega_2} (2^{c_i} - 1) \]

where each \(c_i \) and \(q_i = 2^{c_i} - 1 \) is prime, and \(c_1 < c_2 < \cdots < c_{\omega_2} \).

Suppose \(n_1 = 1 \). Then \(s \) is a power of 2, say \(s = 2^e \). Then

\[2^{e+a} = \sigma(n) = \sigma(n_2) = 2^{\Sigma c_i} \]

so that \(c + a = \Sigma c_i \). But \(2^{e+1} \mid \sigma(2^e) \), so \(c_i \mid a + 1 \). Since \(c_1, c_2, \ldots, c_2 \) are distinct primes, \(\prod c_i \mid a + 1 \). Since \(1 < s = 2^e \), we have \(c \geq 1 \). Hence \(\prod c_i \leq a + 1 \leq \Sigma c_i \), so

\[\prod_{i=1}^{\omega_2} c_i - \Sigma_{i=1}^{\omega_2} c_i \leq 0. \]

This is only for \(\omega_2 = 1 \), which gives solution (1.3).

We now assume \(n_1 > 1 \). Then \(s \) is divisible by an odd prime; in fact, \(s \geq 3^{n_1} \geq 3 \). Also \(t \) is odd, so \(t \geq 3^{n_2} \). As above, \(\prod c_i \mid a + 1 \), so \(\tau(a+1) \geq 2^{\omega_2} \). Hence from (3.2) and Corollary 2.1 we have

\[\omega_1 + \omega_3 \geq 2^{\omega_2} - \omega_2 - 2. \]

Also from (3.1) we have
\[
\left(\frac{5}{4}\right)^{4\omega_1+4\omega_3} < 3^{\omega_1+1} \cdot 3^{\omega_3} \leq \frac{1}{3} \cdot \frac{\sigma(2^e)}{2^e} \cdot \frac{\sigma(n)}{n} < \frac{1}{3} \cdot 2 \cdot \prod \frac{p_i}{p_i-1} \cdot \prod \frac{q_i}{q_i-1} \leq \left(\frac{5}{4}\right)^{\omega_1+\omega_3},
\]
so that

\[
(5.2) \quad \omega_2 > 3\omega_1 + 4\omega_3 - 3 \geq 3(\omega_1 + \omega_3) - 3.
\]

Then (5.1) implies

\[
\omega_2 > 3 \cdot 2^{\omega_2} - 3\omega_2 - 9
\]
so that \(\omega_2 \leq 2\). Then from (5.2) and the fact that \(\omega_1 \geq 1\), we have \(\omega_1 = 1, \omega_3 = 0, \text{ and } \omega_2 > 0\). Hence we have two choices for \(\omega_1, \omega_2, \omega_3: 1, 1, 0 \text{ and } 1, 2, 0\). Also since

\[
5 > \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{5}{4} \cdot \frac{7}{6} > \frac{\sigma(2^e)}{2^e} \cdot \frac{\sigma(n)}{n} = st
\]
and since \(s \geq 3, s \neq 4\), we have \(s = 3, t = 1\).

Suppose \(\omega_2 = 1\). Then \(\sigma(2^e) = p_1^{\omega_1}(2^{\omega_1} - 1)\). Then \(c_1\) is a proper divisor of \(a + 1\). But \(\omega(\sigma(2^e)) = 2\), so Corollary 2.1 implies \(a + 1 = 6\) or \(a + 1 = c_1^2\). The first choice gives \(n = 63\), but \(\sigma(63) \neq 3 \cdot 2^e\). Hence \(a + 1 = c_1^2\). Then Theorem 2.1 implies \(\text{ord}_{p_1}(2) = c_1^2\), so that \(p_1 \equiv 1 (\text{mod } c_1^2)\). If \(c_1 \geq 3\), then \(p_1 \geq 19, q_i = 2^{c_1} - 1 \geq 7, \text{ so that}

\[
3 = st < \frac{2}{1} \cdot \frac{7}{6} \cdot \frac{19}{18} < 3,
\]
a contradiction. Hence \(c_1 = 2, a + 1 = 4, n = 15\), and we have solution (1.4).

Our last case is \(\omega_2 = 2\). Then \(\sigma(2^e) = p_1^{\omega_1}(2^{\omega_1} - 1)(2^{\omega_2} - 1)\), so that \(c_1c_2 | a + 1\). Now \(\omega(\sigma(2^e)) = 3\), so that Corollary 2.1 implies \(c_1c_2 = a + 1, \text{ where } c_1c_2 \neq 6\). We also have \(\sigma(p_1^{\omega_1}(2^{\omega_1} - 1)(2^{\omega_2} - 1)) = 3 \cdot 2^e\). Then \(\sigma(p_1^{\omega_1})\) is 3 times a power of 2. Now \(\sigma(p_1^{\omega_1}) \neq 3\), so \(\sigma(p_1^{\omega_1})\) is even. Hence \(2 | a + 1\). Now Theorem 2.1 implies \(\text{ord}_{p_1}(2) = c_1c_2, \text{ a composite number}\). Hence \(p_1\) is not Mersenne. Also, \(p_1 \equiv 1 (\text{mod } c_1c_2)\). From Corollary 2.1 and the fact that \(\omega(\sigma(p_1^{\omega_1})) = 2\) we have \(a_1 = 1\). Hence for some \(d\) we have \(p_1 = 3 \cdot 2^d - 1\). If \(c_1 > 2\), then \(q_i = 2^{c_1} - 1 \geq 7, q_2 = 2^{c_2} - 1 \geq 31, p_1 \geq 2c_1c_2 + 1 \geq 31\). Then

\[
3 = st < \frac{2}{1} \cdot \frac{31}{30} \cdot \frac{31}{30} \cdot \frac{7}{6} < 3,
\]
so that we must have \(c_1 = 2\). Then

\[
2^{c_2} - 1 = (3 \cdot 2^d - 1)(2^e - 1)(2^{c_2} - 1)
\]
where \(c_2 \geq 3 \). Looking at this equation mod 8, we obtain \(3 \cdot 2^d - 1 \equiv 2^d - 1 \pmod{8} \). Hence \(d = 2 \), \(p_4 = 11 \). Then \(a + 1 = 2c_2 = \text{ord}_{p_4}(2) = 10 \). This gives solution (1.6).

References

5. P. Hagis, Jr., *Every odd perfect number has at least eight prime factors* (preliminary report), Not. Amer. Math. Soc. 22 (1975), A-60.

Received February 7, 1975.

University of Georgia
EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY
UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA
WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY
AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Norman Larrabee Alling, *On Cauchy's theorem for real algebraic curves with boundary* .. 315
Daniel D. Anderson, *A remark on the lattice of ideals of a Prüfer domain* .. 323
Dennis Neal Barr and Peter D. Miletta, *A necessary and sufficient condition for uniqueness of solutions to two point boundary value problems* .. 325
Ladislav Beran, *On solvability of generalized orthomodular lattices* .. 331
L. Carlitz, *A three-term relation for some sums related to Dedekind sums* .. 339
Arthur Herbert Copeland, Jr. and Albert Oscar Shar, *Images and pre-images of localization maps* 349
G. G. Dandapat, John L. Hunsucker and Carl Pomerance, *Some new results on odd perfect numbers* 359
M. Edelstein and L. Keener, *Characterizations of infinite-dimensional and nonreflexive spaces* 365
Francis James Flanigan, *On Levi factors of derivation algebras and the radical embedding problem* 371
Harvey Friedman, *Provable equality in primitive recursive arithmetic with and without induction* 379
Joseph Braucher Fugate and Lee K. Mohler, *The fixed point property for tree-like continua with finitely many arc components* .. 393
John Norman Ginsburg and Victor Harold Saks, *Some applications of ultrafilters in topology* 403
Arjun K. Gupta, *Generalisation of a “square” functional equation* ... 419
Thomas Lee Hayden and Frank Jones Massey, *Nonlinear holomorphic semigroups* ... 423
V. Kannan and Thekkedath Thrivikraman, *Lattices of Hausdorff compactifications of a locally compact space* 441
J. E. Kerlin and Wilfred Dennis Pepe, *Norm decreasing homomorphisms between group algebras* 445
Young K. Kwon, *Behavior of Φ-bounded harmonic functions at the Wiener boundary* 453
Richard Arthur Levaro, *Projective quasi-coherent sheaves of modules* ... 457
Chung Lin, *Rearranging Fourier transforms on groups* ... 463
David Lowell Lovelady, *An asymptotic analysis of an odd order linear differential equation* 475
Jerry Malzan, *On groups with a single involution* ... 481
J. F. McClendon, *Metric families* ... 491
Carl Pomerance, *On multiply perfect numbers with a special property* ... 511
Mohan S. Putcha and Adil Mohamed Yaqub, *Polynomial constraints for finiteness of semisimple rings* 519
Calvin R. Putnam, *Hyponormal contractions and strong power convergence* .. 531
Douglas Conner Ravenel, *Multiplicative operations in BP*BP ... 539
Judith Roitman, *Attaining the spread at cardinals which are not strong limits* .. 545
Kazuyuki Saitô, *Groups of *-automorphisms and invariant maps of von Neumann algebras* 553
Brian Kirkwood Schmidt, *Homotopy invariance of contravariant functors acting on smooth manifolds* 559
Kenneth Barry Stolarsky, *The sum of the distances to N points on a sphere* ... 563
Mark Lawrence Teply, *Semiprime rings with the singular splitting property* .. 575
J. Pelham Thomas, *Maximal connected Hausdorff spaces* ... 581
Charles Thomas Tucker, II, *Concerning σ-homomorphisms of Riesz spaces* ... 585
Rangachari Venkataraman, *Compactness in abelian topological groups* .. 591
William Charles Waterhouse, *Basically bounded functors and flat sheaves* ... 597
David Westreich, *Bifurcation of operator equations with unbounded linearized part* 611
William Robin Zame, *Extendibility, boundedness and sequential convergence in spaces of holomorphic functions* .. 619