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One of the present computational difficulties in complex
cobordism theory is the lack of a known algebra splitting of
BP*BP, the algebra of stable cohomology operations for the
Brown-Peterson cohomology theory, analogous to the splitting
isomorphism

MU*MU » MU*(pt) <g) S

where S is the Landweber-Novikov algebra. S has the added
advantage of being a cocommutative Hopf algebra over Z.

This paper does not remove this difficulty, but we will
show that the monoid of multiplicative operations in BP*BP,
(i.e. those operations which induce ring endomorphisms on
BP*X for any space X)9 which we will denote by Γ{BP), has
a submonoid analogous to the monoid of multiplicative opera-
tions in S.

The latter monoid is known (see Morava [3]) to be isomorphic
to the group of formal power series f(x) over Z such that /(0) = 0
and /'(0) = 1 and where the group operation is composition of power
series.

For the basic properties of MU*MU and BP*BP, see Adams [1],
especially §§ 11 and 16.

The main construction of this paper was inspired by the work
of Honda ([3]) although none of his results are needed here. I am
grateful to Jack Morava for bringing Honda's work to my attention.

Before stating our main result we must review the description
of Γ{BP) implicit in [1] § 16. An operation a e Γ(BP) is characterized
by its action on the canonical generator ze BP*(CP°°) = π*BP[[z]].
It is shown that a{z) is a power series f{z) over π*BP where

(1) f ~ \ z ) = z + μ txz* +μ t2z
p2 +μ Uzv% +μ...

where +^ denotes the sum in the formal group defined over π*BP
and Ueπ^BP, (This formula appears on page 96 of [1].)

The action of a on π*BP can be read off from (1). Let lne
π2Pn_2BP<g)Q be defined by log*p x = Σ*=o hxpn (k is the mpn_, of [1]).
Then we have

(2) a(ln)= Σ ktti

and this formula also characterizes a.
In other words Γ(BP) is an infinite dimensional affine space over
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π*BP with coordinates tt with a composition law which can be read
off from (2). The difficulty mentioned above is that the subset of
elements with integer coordinates is not a submonoid.

The main object of this paper is to construct new coordinates
Si of Γ(BP) such that the subset of elements with coordinates in Qp

(the set of rational numbers with denominators prime to p) is a sub-
monoid which will be denoted by Ύ(BP). Moreover this submonoid
is isomorphic to a direct product of countably many copies of Qp,
although this isomorphism is somewhat accidental in a sense to be
described below. The s« are not unique as they depend upon a choice
of generators of π*BP. What's worse, they are not algebraic func-
tions of the ti9 so they do not lead to a splitting of BP*BP.

Let {Vj e π*BP} be a set of generators. Define a ring endomor-
phism σ of π*BP by v°- — v$, extending σ linearly over all of π*BP.
Then our main result is

THEOREM. For every sequence of coordinates [tn e π*BP) there
exists {sn e π*BP) such that

— V
i

for every n > 0, and for every {sn} there exist {tn} satisfying the
same conditions.

COROLLARY. Let a\ a" e Γ(BP) have coordinates s'n, s" e Qp re-
spectively. Then the coordinates s"f of a'" — a!r a" are given by

i.e. if we define power series s'(x), s"(x), s"'(x) by s'(x) = 1 + Σ^>o 8'nx
n,

etc., then s'"(x) = s'(x)s"(x).

The corollary follows from (3) by direct computation, remember-
ing that σ fixes Qpaπ*BP.

To prove the theorem we need an analogue of (1) involving the
new coordinates sn, and some elementary properties of formal groups
beginning with

LeMMA A. For every reQp there is a power series [r](z)e
π*BP[[z]] such that

( a ) [l](z) = z
(b) M(z)+,[rH(z) = [r' +

(c) M([r"](s)) - [r'r"](s)
( d) [r](z) Ξ rz modulo(z2).
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Proof. If r is a positive integer define [r](z) inductively by
[r](z) = z +μ[r — l](z); the existence of [ —1](^) is one of the formal
group axioms; and if r is an integer prime to p, define [l/r](2) to
be the formal inverse of [r](z). Then (c) enables us to define [r](z)
for any r e Qp.

Now let M = (mu m2, m3, ) be a sequence of nonnegative in-
tegers, of which all but a finite number are zero, and let

v* = Π vp e π*BP .

Then the vM<s form a Q^-basis of π*BP and we can write

s — v s- MvM

with si>M e Qp and the sum ranging over all M. With this notation
we have

LEMMA B. Formula (3) is equivalent to

where μΣ denotes the formal group sum.

Proof. Multiplying both sides of (3) by zpn and summing over
all positive n gives

Σ log tnz
pn = Σ sntM log vMzpn

n>0 n,M

which is equivalent to (4).

LEMMA C. For r e Qp, there exist rn e π*BP with rQ — r such
that for any u e BP*CP°°

Proof. We will first show that there exist r{k) e π*BP such that

( a\ M(i A — P^

and then show that r(k) — 0 unless k — pn. The proof of the former
statement is by induction on k. Let r(1) = r and suppose we have
found rω, r(2), ••-, r ( w ) such that

[r](u) = μΣ, r{k)u
k modulo (um+1) .

Then we can take r ( w + 1 ) to be the coefficient of um+1 in
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and the first statement follows. Taking the log of both sides of (6)
we have

r log u = Σ log rik)u
k

k>0

i.e.

%^0 fc>0 w j ' (fe) w

Equating coefficients of ul yields the lemma.

LEMMA D. For af, a" e π*BP, there exist an e π*BP for n ^ 0
with a0 = af + α" ŝ cfe ίfeαί /or any u e BP*CP°°

(7) a'u +μa"u =Y/anu
vn .

The proof of Lemma D is similar to that of Lemma C and is
left to the reader.

We are now ready to prove the theorem via (4). Given {tn} we
will construct {sn} by induction on n, beginning with st = ί1# Suppose
we have found s19 s2y , sm such that

(8) Σ * ί s p w = Σ*μ [Sn>M](vMzpn modulo (z1+pn))
M

By repeated application of Lemmas G and D we can find wn e π*BP
such that the right hand side of (8) is equal to Σ£>o wnz

pn and we
know wn = tn for n ^ m. This allows us to set sm+ι = tm^ — wm+1,
and the first half of the theorem is proved. Similarly if we are
given {sn}, let tx = sL and suppose we have found tn for n ^ m. Then
we can set tm+1 — wm+ι + sw+1, and the theorem is proved.

Now I will describe the sense in which the commutativity of
Ί{BP) is accidental. If this paper were being written for number
theorists rather than topologists, we would replace π*BP by π*BP®Qp

W(k), where W(k) is the Witt ring of a finite field k of characteristic
p. Lemma A would go through only for r e W(F9), the p-adic in-
tegers. The ring endomorphism σ when restricted to W(k) would
be the lifting of the Frobenius automorphism on k. The corollary
(with s'n, s" e W{k)) would then read

The resulting group Ύk(BP) would not be abelian if k has more than
p elements.
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