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It is shown to be consistent with set theory that there
is a cardinal £ and a Hausdorff space X such that cf(x) > o
and sp(X) =« and X contains no discrete subspace of cardi-
nality «; also, if X is a Hausdorfl space such that cf (sp (X) =
@ and X does not attain its spread, then X contains a sub-
space of a certain canonical form with the same spread.

1. Preliminaries. The spread of a topological space X,
abbreviated as sp(X) is defined as a supremum of cardinalities of
certain subspaces:

sp(X) =sup{| Y|: Y is a discrete subspace of X}

where | Y| is the cardinality of Y. For brevity, we say that
spread must be attained at £ iff every Hausdorff space X for which
sp(X) =« has a discrete subspace of cardinality £. A natural
question to ask, then, is whether spread must be attained at every
cardinal k. The answer is clearly yes if k& is a successor cardinal.
If £ is a limit cardinal, it is trivial to construct spaces which are,
say, T, but not T, which have a spread of £ but no discrete sub-
space of cardinality &£, thus necessitating the word “Hausdorff” in
our definition of attaining the spread. Juhasz and Hajnal have
found classes of limit cardinals at which spread is attained; they
also have a class of spaces for which, if the spread has cofinality
w, then the space has a discrete subspace of the cardinality of the
spread (we say that the space attains its spread). Here we look
for counterexamples: it is found consistent with the axioms of set
theory to have Hausdorff spaces of uncountable cofinality which do
not attain their spread; in the case of countable cofinality, it is
shown that a Hausdorff space which does not attain its spread
contains a space of a certain canonical form which has the same
spread.

Notation and conventions. Lower case Greek letters are reserved
for ordinals, which may or may not be cardinals; £ is reserved for
cardinals, which are assumed to be initial ordinals.

We remind the reader of some basic concepts about ordinals.

DEFINITION 1. cf(a) =g iff 8 is the least ordinal such that

545



546 JUDITH ROITMAN

for some function f: 88— «a, f is increasing and sup (range f) = a.
cf (a) is the cofinality of a.

DEFINITION 2. « is regular iff a = cf (a). « is singular other-
wise. We note that regular ordinals are always cardinals.

DEFINITION 3. k£ is a limit cardinal iff for every cardinal
T, K#7T". Kk is a strong limit cardinal iff for every cardinal
T< Kk, <K,

DEFINITION 4. £ is weakly inaccessible iff k is a regular limit
cardinal. £ is strongly inaccessible iff £ is a regular strong limit
cardinal.

Since our purpose is to find counterexamples or describe what
they must look like if we could find them, it would be useful to
know where not to look. The following result of Hajnal and Juhasz
tells us, and also insures that a counterexample must be a consistency
result, i.e. it cannot exist in all models of set theory.

THEOREM 5. (Juhasz, Hajnal [2 and 3]) If £ s a weakly compact
or a singular strong limit cardinal, and X ts a Hausdorff space of
cardinality k, then X has a discrete subspace of cardinality k.

Thus in model of GCH spread is attained at singular cardinals.
In fact in the constructible universe L all our questions about spread
are settled, since a cardinal £ of L which is a regular limit cardinal
and not weakly compact has a £-Suslin line, and this line has spread
£ which is not attained (see Juhasz [6]). Weakly compact cardinals
play no further role in this paper, and the curious reader is referred
to Juhasz [6] for a definition.

The results in this paper were originally proved in longer proofs
using combinatorics in an inelegant fashion. The author is grateful
to Ken Kunen and Istvan Juhasz for pointing out how they could
be shortened; she also thanks the referee for helpful comments on
organization.

2. The case cf (k) > w. Theorem 5 tells us that in order to
not attain the spread at k¥, GCH must be violated below £ in a
strong fashion. Theorem 6 will set up machinery for constructing
spaces which do not attain their spread from spaces of small spread
and large cardinality. Corollary 7 will show that there is a class
of cardinals for which this construction works which is large in the
sense that Easton forcing makes it easy for us to find models of
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set theory in which this class is cofinal in the class of all ordinals.
Corollary 8 will point to a subclass of the class of Corollary 7 whose
consistency follows from any large cardinal axiom. Corollary 9
will connect the machinery to the existence of large spaces with
small width, which has been shown to be consistent by Hajnal and
Juhasz [5].

THEOREM 6. Let £ be a limit cardinal of uncountable cofinality,
and suppose there exists a Hausdorff space (X, 7 ), | X| = &, such
that the spread of (X, .7 ) 1is less than the cofinality of £. Then
there is a finer topology 7' on X such that (X, 7 ') has a spread
of £ which is not attained.

Proof. Let & =cf (k). We may write the set X then as the
disjoint sum X = >,,.. X,, where | X,| =k, for every a<§, k=
sup {£k,.a < &}, and if a< B <é& then £k, < £;. Let 7' be the
topology on X derived from sub-basic sets of the following form:

Suppose x€ X. Then for some unique @, z¢ X,.

Let ue 9, z€u. Then {2} U(u — X,)€.Z7’. Since each (W,
"y is discrete, (X, ') has spread k. (X, 7’ is Hausdorff
because (X, .7 ) is. We need to show that (X, .77'> does not attain
its spread.

Proceeding by contradiction, suppose Y is a discrete subspace
of (X, 77> of cardinality £. Then since cf (k) = &, there is some
Yc¥Y with |Y'|=¢ and for every a <&, | YN X,|=1. If Yis
discrete, so is Y'. Let U= {u,xe€ Y’} be a subset of ' where
xcu, and if ¥y #+ 2 then v, Nu,N Y = @. We may assume each
u, is a basic open set, hence of the form

U, = Zat:U<u:—— U Xa)
aeAz
where A, is a finite subset of &, Z, a finite subset of U.ecs, Xo
xe Z,Nuf, and ufe 7. Hence Y Cu*N Z, for every z€ Y’

But then each u} N Y’ is finite, and since Y’ has a cover by
sets in .9~ which are finite when relativized to Y, it is easily seen
that Y’ is a discrete subspace of (X, 77> of cardinality, £. But
this contradicts the hypothesis that & > sp (X, ) and the proof
of Theorem 6 is complete.

COROLLARY 7. Let £ be alimit cardinal of uncountable cofinality,
and suppose there ts some T < cf (k) such that 2° > k. Then spread
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28 not attained at k.

Proof. The set of functions 2° under the product topology has
a basis of cardinality 7, since the set of functions into 2 whose
domains are finite subsets of 7 is isomorphic to a basis. But the
spread of a space cannot be larger than the cardinality of some
basis, so any subspace of 2° has spread = . In particular, any
X2 where | X| = £ can be used in the hypothesis of Theorem 6.

Now Easton forcing (1) gives us a technique for the following:
let M be a transitive model of ZFC 4+ GCH and let F be a non-
decreasing function whose domain is the cardinals of M such that
if £ is a regular cardinal of M then cf (F(k))>k. Then there is a
model of set theory, N, which has the same cardinals as M, where
cardinals have the same cofinalities they had in M, and in which
if £ is regular they 2 = F'(x¥). Using this technique it is easy to
get models of set theory in which the class of cardinals satisfying
Corollary 7 is cofinal in the class of cardinals of the model.

COROLLARY 8. Let k be weakly inaccessible but mnot stromgly
inaccesstble. Then the spread need not be atiained at k.

Proof. Then the hypothesis of Corollary 7 is satisfied.

For a last example of cardinals to which Theorem 6 applies, we
look at a model of set theory due to Juhasz and Hajnal and found
in [5]. Here a forcing argument is used over a model M in which
2* = £7 to make a model with the same cardinals and cofinalities in
which 2¢ is still £* but 2" is now “as large as you want” and
there is a hereditarily x-separable Hausdorff space (equivalently a
space of width £) of cardinality 2“". In particular, we may make
267 > @,.. Since a width of & implies a spread which is < «, this
model justifies the conclusion of

COROLLARY 9. It is comsistent with the axtoms of set theory to
have a cardinel k& such that 2° = kT and spread 1s mot attained
at @,+.

An explicit examination, not performed here, of each of the
spaces of Corollaries 7 and 9 shows that none of them is regular.
It will also be noted that in these corollaries a cardinal bounded
by the cofinality of £ has the large power set necessary to avoid
Theorem 5. So the following open questions remain:

Must spread be attained in the class of regular spaces?
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What happens when £ is not a strong limit but 2° < £ for all
T < cf (k)?

3. The case cf (k) = w. Here we do not have a counter-
example, but if one exists we know what it must look like.

THEOREM 10. Suppose X ts a Hausdorff space whose spread
has cofinality w. Then X contains a downward subspace with the
same spread.

Theorem 10 tells us that if we want a counterexample to attaining
a spread of countable cofinality we need only look at the class of
downward spaces, which we define forthwith.

DEFINITION 11. Let X be a topological space. Then X is
downward iff X is set-theoretically the disjoint sum 3),., X, where
each X, is a discrete subspace and for every mew®, U,cn X, is
open.

The proof of Theorem 10 relies on a combinatorial theorem of
Hajnal, which we state as

THEOREM 12. (Hajnal) Let f be a function mapping o set X
mto its power set and such that for some cardinal T <|X|,
|f(x)| < T for every x€ X. Then there is a set YS X, |Y|=|X|,
such that if x, y are elements of Y then x¢ f(y). Then set Y 1is
called a free set for f.

It is clear that if f is a function taking each element of X into
an open neighborhood, then the set Y which is free for f is also
discrete in the topology for X. The proof of Theorem 12 can be
found in Juhasz [6].

Proof of Theorem 10. Let X be a Hausdorff space whose spread
has cofinality w, sp(X) =&k, and suppose £ is the limit of the
strictly increasing sequence k,, n€®. Then X contains disjoint
discrete subspaces X, where each X, has cardinality «,, so without
loss of generality we assume X is the union of these X,’s. There
are three cases to consider.

Case 1. Every open set in X has cardinality £. Then since X
is Hausdorff it has a countable infinite family of disjoint open sets,
call them u,, new. Then each u,, having cardinality &, contains
at least «, elements from some X, , say #.N X,, = Y,. Then
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Y = U.co Y, is discrete, and hence trivially downward.

Case 2. For some 7 < k, every point in X has a neighborhood
of cardinality strictly less than z. Then we let f be the map taking
each point in X into such a small neighborhood. By Theorem 12
we then have a free set Y for f of cardinality &, which as we
have noted is a discrete subspace and hence downward.

Case 3. For every n < w|{reX:x has a neighborhood of
cardinality = «,}| = £. By Case 1 we may without loss of generality
assume that no point in X has a neighborhood of cardinality «.
We now may proceed to construct a downward space by induction.

Assume for ¢ < n we have discrete spaces Y, X such that if
1< j <mn then each point of Y, has a neighborhood whose inter-
section with Y; is empty, that each Y, has cardinality «,, and for
each 7 < m there is some m, such that each point of Y, has a
neighborhood in X of cardinality < «,,, say to the point y we have
assigned the small neighborhood %,. Let Z, = Uicx Uyer, %, Since
| Z,] < k& there is some m, such that {re X — Z,:x has a neighbor-
hood of cardinality <k, } = B, has cardinality = x,. But then for
some k,, B, N X;, = £,. Let Y, B, N X, of the required cardinality,
and to each y € Y, associate a neighborhood u, of cardinality < «,,.
By construction, the space Y = U,.. Y. is a downward subspace
of X.

Theorem 10 is proved. But in the proof we actually learn
more, since if X has a subspace X’ of cardinality £ in which either
Case 1 or 2 holds, spread is attained. Thus a counterexample must
contain a space which is not only downward, but in which every
subspace of cardinality & satisfies Case 3 of the proof of the theorem.

In fact a theorem of Juhasz and Hajnal’s tells us more.

THEOREM 13. If X is a strongly Hausdor(f space whose spread
has countable cofinality, X attains its spread. (A strongly Hausdorfl
space s a Hausdorff space in which every infinite subset has an
mfinite subset which can be separated by a disjoint open family
i the original space.)

The proof of Theorem 13 is given in Juhasz [6] and in its light
the question of attaining a spread of countable cofinality reduces to
the question: does every space whose spread has countable cofinality
have a strongly Hausdorff subspace with the same spread? Actually,
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since every known example of a Hausdorff space which is not
strongly Hausdorff is essentially countable (i.e. a countable space
tacked on to any other space which is strongly Hausdorff) an open
question of considerable interest is the following: for any cardinal
£ is there a Hausdorff space of cardinality £ such that no subspace
of cardinality £ is strongly Hausdorft?
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