GROUPS OF *-AUTOMORPHISMS AND INVARIANT MAPS OF VON NEUMANN ALGEBRAS

Kazuyuki Saitō
GROUPS OF *-AUTOMORPHISMS AND INVARIANT MAPS OF VON NEUMANN ALGEBRAS

Kazuyuki Saitō

Let M be a von Neumann algebra and let G be a group acting on M by *-automorphisms of M. M is G-finite if for every nonnegative element a in M with $a \neq 0$, there exists a G-invariant normal state ϕ such that $\phi(a) \neq 0$. The main result in this paper asserts that M is G-finite if and only if for every weakly relatively compact subset K of the predual of M, the orbit of K under G is also weakly relatively compact.

Given a noncommutative dynamical system, that is, pairs (M, G) where M is a von Neumann algebra and G is a group of *-automorphisms of M, one can ask whether or not there are sufficiently many G-invariant normal states (we call such a case that (M, G) is G-finite [9])?

First result along these lines is due to I. Kovacs and J. Szücs [9] who obtained that (M, G) is G-finite if and only if there is a G-invariant faithful normal projection of norm one from M onto the fixed subalgebra M^G under G (see also [11, 14]).

Recently, using results of Akemann [1] and Takesaki [15] concerning the predual of a von Neumann algebra, together with the Ryll-Nardzewski fixed point theorem ([5, 10]), F. J. Yeadon gave an elegant proof of the existence of a trace in a finite von Neumann algebra [16].

In this paper, we will give a Banach space like characterization of the G-finiteness of (M, G) using weakly relatively compact subsets of the predual M_* of M which is a noncommutative extension of a theorem of Hajian and Kakutani ([7, 8]) and in case where G is the inner automorphisms of M, includes the result of F. J. Yeadon (see also [16]). The result in this paper can be easily extended to groups of identity preserving isometries of M.

2. Notations and a statement of a theorem. Let (M, G) be a noncommutative dynamical system and M_* be the predual of M, that is, the Banach space of all bounded normal (or σ-weakly continuous) linear functionals on $M([3, 12])$. Let $(T_g \varphi)(a) = \varphi(a^g)$, $a \in M$, $g \in G$ and $\varphi \in M_*$, then T_g is a linear isometry of M_* onto M_*. We say that (M, G) is G-finite if M has sufficiently many normal states in the sense that for every nonnegative element a in M with $a \neq 0$, there exists a G-invariant normal state ϕ (that is, $T_g \phi = \phi$, $g \in G$) such that $\phi(a) \neq 0$.
Now we state our main theorem.

THEOREM. Let \((M, G)\) be a noncommutative dynamical system, then \((M, G)\) is \(G\)-finite if and only if for every weakly relatively compact (w.r.c.) subset \(K\) of \(M^*_\ast\), the orbit of \(K\) under \(G\), that is, the set \(\{T_g\phi; g \in G, \phi \in K\}\) is also w.r.c.

3. Proof of Theorem. "If" part of Theorem is valid under a weaker assumption, more precisely to say that if for every \(\phi\) in \(M^*_\ast\) with \(\phi \not\equiv 0\), \(\{T_g\phi; g \in G\}\) is w.r.c., then \((M, G)\) is \(G\)-finite. However, this is an easy consequence of lemma in [14] (see also [11]). To prove the converse, we need the following lemma which concerns with the continuity of the map \((\Phi, \omega) \mapsto \omega \cdot \Phi\) from \(L_\ast(M) \times M_\ast \to M_\ast\) where \(L_\ast(M)\) is the \(\sigma\)-weakly continuous bounded linear maps of \(M\) into \(M\) equipped with the weak operator topology and \(M_\ast\) has the \(W^\ast\)-topology. For the later discussions, we state it in the following form.

LEMMA 1. Let \(N\) be a von Neumann algebra with a set \(H\) of normal \(*\)-homomorphisms of \(N\) into \(N\). Suppose that for every \(\phi\) \(N_\ast\) (the predual of \(N\)) with \(\phi \not\equiv 0\), and every sequence \(\{b_n\}\) in the nonnegative part of the unit sphere \(S\) of \(N\) such that \(b_n \to 0\) \((\sigma\)-weakly\), \(\phi(\Phi(b_n)) \to 0 (n \to \infty)\) uniformly for \(\Phi \in H\). Let \(\{\phi_n\}\) be a sequence in \(N_\ast\) which converges weakly to some \(\phi_0\) in \(N_\ast\) and \(\{a_n\}\) be a sequence of self-adjoint element in \(S\) which converges strongly to 0, then \(\phi_j(\Phi(a_n)) \to 0 (n \to \infty)\) uniformly not only for \(\Phi \in H\) but also for \(j\).

Proof. Observe first that the \(\sigma\)-weak topology restricted on \(S\) is a compact Hausdorff topology with the neighborhood basis which consists of all possible sets \(\{a; a \in S, |\psi_i(a) - \psi_i(a_0)| < \varepsilon, i = 1, 2, \ldots, n\}\) with \(a_0 \in S, \varepsilon > 0\) (real number) and \(\psi_i \in N_\ast(\psi_i \geq 0)\). Let \(H_i = \{a \in S; |(\phi_j - \phi_0)(a)| \leq \varepsilon\ \text{for all} \ j \geq i\}, \text{then} \ H_i \text{is \(\sigma\)-weakly closed subset of} \ S \text{for each} \ i \text{and} \ S = \bigcup_{i=1}^\infty H_i\). Now Baire's category theorem says that there are a natural numbers \(i(0), m, \) an element \(a_0\) in \(S\) and \(\psi_i(i = 1, 2, \ldots, m)\) in \(N_\ast\) with \(\psi_i \geq 0\) for all \(i\) such that

\[
\bigcap_{i=1}^m \{a; a \in S, |\psi_i(a) - \psi_i(a_0)| < 1\} \subset H_{i(0)}.
\]

Since \(a_n \to 0(n \to \infty)\) strongly, by the spectral theorem, for any given positive number \(\varepsilon\), there is a sequence \(\{e_n\}\) of projections in \(M\) such that \(e_n \to 1\) (strongly) and \(\|a_n e_n\| \leq \varepsilon/6\) for each \(n\). By the uniform boundedness theorem, we may assume that \(\sup_{j} (||\phi_j||, ||\phi_0||) = 1\) without loss of generality. For each \(\Phi \in H\), we have \(\|\Phi(e_n a_n e_n)\| \leq \|a_n e_n\| \leq \varepsilon/6\), \(\|\Phi((1-e_n) a_n e_n)\| \leq \|a_n e_n\| \leq \varepsilon/6\) and \(\|\Phi((1-e_n) a_n e_n)\| \leq \varepsilon/6\) for each \(n\).
\|a_n e_n\| \leq \varepsilon/6 for each n. Thus we have
\[
| (\phi_j - \phi_0)(\phi(a_n)) | \leq \varepsilon
+ | (\phi_j - \phi_0)(\phi(e_n a_n(1 - e_n))) |
+ | (\phi_j - \phi_0)(\phi((1 - e_n)a_n(1 - e_n))) |
\leq \varepsilon + | (\phi_j - \phi_0)(\phi((1 - e_n)a_n(1 - e_n))) |.
\]

Put \(b_n(\phi) = \phi((1 - e_n)a_n(1 - e_n)) + \phi(e_n)a_n\phi(e_n)\), then, since \(b_n(\phi) - a_0 = (1 - \phi(e_n))\phi(a_n)(1 - \phi(e_n)) - (1 - \phi(e_n))\phi(a_n) - \phi(a_n(1 - \phi(e_n)))\), we have, by Schwarz' inequality,
\[
|\psi_i(b_n(\phi) - a_0)| \leq \psi_i(\phi(1 - e_n)) + 3 \psi_i(\phi(1 - e_n))^{1/2}.
\]

Similarly, we have
\[
|\psi_j(\phi(e_n)a_n \phi(e_n) - a_0)| \leq \psi_i(\phi(1 - e_n)) + 2 \psi_i(\phi(1 - e_n))^{1/2}.
\]

Since, by the assumption, \(\psi_j(\phi(1 - e_n)) \to 0(n \to \infty)\) uniformly for \(\phi \in H\) and \(i = 1, 2, \ldots, m\), we can choose a natural number \(n(\varepsilon)\) (depends only on \(\varepsilon\)) such that \(b_n(\phi), \phi(e_n)a_n\phi(e_n) \in H_{(0)}\) for all \(n \geq n(\varepsilon)\). Thus, we have
\[
| (\phi_j - \phi_0)(\phi((1 - e_n)a_n(1 - e_n))) | < 2\varepsilon
\]
for all \(j \geq i(0), \phi \in H\) and all \(n \geq n(\varepsilon)\). Since, for each \(j(= 1, 2, \ldots, i(0) - 1)\)
\[
| (\phi_j - \phi_0)(\phi(a_n)) | = | (\phi_j - \phi_0)(\phi(a_n) v_j) |
\leq \sqrt{| (\phi_j - \phi_0)(\phi(a_n)) |^2} \sqrt{| (\phi_j - \phi_0) |^2}
\leq 2^{1/2} | (\phi_j - \phi_0) | (\phi(a_n))^{1/2}
\]
and
\[
| \phi_0(\phi(a_n)) | = | \phi_0(\phi(a_n) v) | \leq | \phi_0(\phi(a_n)) |^{1/2}
\]
where \(\phi_j - \phi_0 = R v_j, \phi_j - \phi_0 \) (resp. \(\phi_0 = R v_0 \)) is the polar decomposition of \(\phi_j - \phi_0\) (resp. \(\phi_0\)) ([12]), \(a_n^* \to 0\) weakly implies, by the assumption, that there is a positive integer \(n(\varepsilon)'\) (depending only on \(\varepsilon\)) such that
\[
| (\phi_j - \phi_0)(\phi(a_n)) | < \varepsilon \text{ and } | \phi_0(\phi(a_n)) | < \varepsilon \text{ for all } \phi \in H, j = 1, 2, \ldots, i(0) - 1 \text{ and all } n \geq n(\varepsilon)'.
\]
Combining the above estimations, we have
\[
| \phi_j(\phi(a_n)) | < 4\varepsilon \text{ for all } n \geq \max(n(\varepsilon), n(\varepsilon)') , \text{ all } j
\]
and all \(\phi \in H\). This completes the proof of Lemma 1.

Before going into the proof of theorem, we prepare the following:
LEMMA 2. Keep the notations in theorem. If \((M, G)\) is \(G\)-finite, then, for every sequence \(\{a_n\}\) of nonnegative elements in the unit sphere \(S\) of \(M\) which converges weakly to 0, and every \(\phi\) in \(M^*\), \((T_\phi)(a_n) \to 0\) uniformly for \(g \in G\).

Proof. If not, there exists a positive number \(\varepsilon_0\) such that for each positive integer \(n\), we can choose a positive integer \(k(k(n) \uparrow \infty)\) and \(g(n) \in G\) such that

\[
|T_{g(n)} \phi(a_{k(n)})| \geq \varepsilon_0.
\]

Put \(a_{k(n)} = b(n)\) then since \(\{(b(n))^{\varphi(n)}\}\) is a \(\sigma\)-weakly relatively compact subset of \(S \cap M^+\) (where \(M^+\) is the positive portion of \(M\)), there is a \(\sigma\)-weakly cluster point \(a(a \geq 0)\) of \(\{(b(n))^{\varphi(n)}\}\). Thus for every positive number \(\delta\), every \(G\)-invariant normal state \(\rho\) and every positive integer \(n\), there is a natural number \(i(n)(i(n) > n)\) such that

\[
|\rho(a) - \rho(b(n))^{\varphi(i(n))}| < \delta \quad n = 1, 2, \ldots.
\]

Since \(\rho\) is \(G\)-invariant, \(\rho((b(i(n)))^{\varphi(i(n))}) = \rho(b(i(n))) \to 0(i(n) \to \infty)\). Thus \(\rho(a) \leq \delta\) for every \(\delta\) and the \(G\)-finiteness of \((M, G)\) implies \(a = 0\). Hence this contradicts with the inequality (\(*\)). Thus \((T_\phi)(a_n) \to 0(n \to \infty)\) uniformly for \(g \in G\) and the proof is completed.

Proof of Theorem. Suppose \((M, G)\) is \(G\)-finite. We will prove that for every w.r.c. subset \(K\) of \(M^*\), \(\{T_\phi; \phi \in Kg \in G\}\) is also w.r.c. To prove this, we have only to show that for every orthogonal sequence \(\{e(n)\}\) of projections, \(\lim_{n \to \infty} T_{\phi}(e(n)) = 0\) uniformly for \(g \in G\) and \(\phi \in K\). If not, there is a positive number \(\varepsilon\) such that for each positive integer \(k\), there are a natural number \(n(k)(n(k) \uparrow \infty)\), \(g(k) \in G\) and \(\phi_k \in K\) such that

\[
|T_{g(k)} \phi(k)(e(n(k)))| \geq \varepsilon.
\]

By Eberlein-Šmulian’s theorem ([4]), there is a subsequence \(\{\phi_{p(n)}\}\) of \(\{\phi_k\}(k(\uparrow \infty)\) such that \(\phi_{p(n)} \to \phi_0\) weakly \((p \to \infty)\) for some \(\phi_0\) in \(M^*\). Now \(e(n(k(p))) \to 0(p \to \infty)\) strongly, which implies by Lemma 2 and Lemma 1, that \(|T_{g(k(p))} \phi_{k(p)}(e(n(k(p))))| \to 0(p \to \infty)\) and this contradicts with the inequality (\(\ast\)). This completes the proof of theorem.

4. Remarks. Theorem is a generalization of [11]. We should remark that the result of theorem can be easily extended to groups of Jordan Automorphisms of \(M\). [13] When \(G\) is a semi-group of normal Jordan homomorphisms ([13]) of \(M\) into \(M\), by an easy modification of Lemma 1 and Lemma 2, "only if" part of theorem is valid,
however, as the following example shows, the converse assertion does not hold in general, even if G is a semi group of $*$-isomorphisms of M into M.

Let $M = L^\infty([0, 1))$ be the abelian von Neumann algebra of essentially bounded complex-valued functions on $[0, 1)$ with respect to Lebesgue measure μ. Let us consider two measurable transformations g_1 and g_2 defined as follows ([2, 8]): $g_1(\omega) = 3\omega(\text{mod } 1)$, $\omega \in [0, 1)$, $g_2(\omega) = 2\omega + 1/3(\text{resp. } = (\omega - 1/3)/2)$, $\omega \in [0, 1/3)$ (resp. $\omega \in [1/3, 1)$). For each $f \in M$, let $(\Phi_1 f)(\omega) = f(g_1(\omega))$, $\omega \in [0, 1)$ and $(\Phi_2 f)(\omega) = f(g_2(\omega))$, $\omega \in [0, 1)$. Let H be the semi-group of normal $*$-homomorphisms of M into M generated by Φ_1 and Φ_2. Then by [2] and [8], we can easily check that for each $\phi \in M_*$ = $L^\infty([0, 1))$, $\{\phi \circ \Phi, \Phi \in H\}$ is w. r. c. Thus by [6] and Lemma 1, for every w. r. c. subset K of M_*, $\{\phi \circ \Phi, \Phi \in H, \phi \in K\}$ is also w. r. c. However, since g_1 is ergodic with respect to μ and μ is not invariant under g_2, (M, H) has no H-invariant functional in M_*. The above example implies that the Ryll-Nardzewski fixed point theorem is not valid in general without the assumption of distal action of H.

References

Received March 4, 1974 and in revised form March 3, 1975. The author is partially supported by The Sakkokai Foundation.

TÔHOKU UNIVERSITY
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT D. GILBARG AND J. MILGRAM
University of Washington Stanford University
Seattle, Washington 98105 Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY *
UNIVERSITY OF OREGON *
OSAKA UNIVERSITY AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Pacific Journal of Mathematics
Vol. 57, No. 2 February, 1975

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Cauchy’s theorem for real algebraic curves with boundary</td>
<td>315</td>
</tr>
<tr>
<td>A remark on the lattice of ideals of a Prüfer domain</td>
<td>323</td>
</tr>
<tr>
<td>A necessary and sufficient condition for uniqueness of solutions to two point boundary value problems</td>
<td>325</td>
</tr>
<tr>
<td>On solvability of generalized orthomodular lattices</td>
<td>331</td>
</tr>
<tr>
<td>A three-term relation for some sums related to Dedekind sums</td>
<td>339</td>
</tr>
<tr>
<td>Images and pre-images of localization maps</td>
<td>349</td>
</tr>
<tr>
<td>Some new results on odd perfect numbers</td>
<td>359</td>
</tr>
<tr>
<td>Characterizations of infinite-dimensional and nonreflexive spaces</td>
<td>365</td>
</tr>
<tr>
<td>On Levi factors of derivation algebras and the radical embedding problem</td>
<td>371</td>
</tr>
<tr>
<td>Provable equality in primitive recursive arithmetic with and without induction</td>
<td>379</td>
</tr>
<tr>
<td>The fixed point property for tree-like continua with finitely many arc components</td>
<td>393</td>
</tr>
<tr>
<td>Some applications of ultrafilters in topology</td>
<td>403</td>
</tr>
<tr>
<td>Generalisation of a “square” functional equation</td>
<td>419</td>
</tr>
<tr>
<td>Nonlinear holomorphic semigroups</td>
<td>423</td>
</tr>
<tr>
<td>Lattices of Hausdorff compactifications of a locally compact space</td>
<td>441</td>
</tr>
<tr>
<td>Norm decreasing homomorphisms between group algebras</td>
<td>445</td>
</tr>
<tr>
<td>Behavior of Φ-bounded harmonic functions at the Wiener boundary</td>
<td>453</td>
</tr>
<tr>
<td>Projective quasi-coherent sheaves of modules</td>
<td>457</td>
</tr>
<tr>
<td>Rearranging Fourier transforms on groups</td>
<td>463</td>
</tr>
<tr>
<td>An asymptotic analysis of an odd order linear differential equation</td>
<td>475</td>
</tr>
<tr>
<td>On groups with a single involution</td>
<td>481</td>
</tr>
<tr>
<td>Metric families</td>
<td>491</td>
</tr>
<tr>
<td>On multiply perfect numbers with a special property</td>
<td>511</td>
</tr>
<tr>
<td>Polynomial constraints for finiteness of semisimple rings</td>
<td>519</td>
</tr>
<tr>
<td>Hyponormal contractions and strong power convergence</td>
<td>531</td>
</tr>
<tr>
<td>Multiplicative operations in BP^*BP</td>
<td>539</td>
</tr>
<tr>
<td>Attaining the spread at cardinals which are not strong limits</td>
<td>545</td>
</tr>
<tr>
<td>Groups of $*$-automorphisms and invariant maps of von Neumann algebras</td>
<td>553</td>
</tr>
<tr>
<td>Homotopy invariance of contravariant functors acting on smooth manifolds</td>
<td>559</td>
</tr>
<tr>
<td>The sum of the distances to N points on a sphere</td>
<td>563</td>
</tr>
<tr>
<td>Semiprime rings with the singular splitting property</td>
<td>575</td>
</tr>
<tr>
<td>Maximal connected Hausdorff spaces</td>
<td>581</td>
</tr>
<tr>
<td>Concerning σ-homomorphisms of Riesz spaces</td>
<td>585</td>
</tr>
<tr>
<td>Compactness in abelian topological groups</td>
<td>591</td>
</tr>
<tr>
<td>Attaining the spread at cardinals which are not strong limits</td>
<td>597</td>
</tr>
<tr>
<td>Basically bounded functors and flat sheaves</td>
<td>599</td>
</tr>
<tr>
<td>Bifurcation of operator equations with unbounded linearized part</td>
<td>611</td>
</tr>
<tr>
<td>Extendiblity, boundedness and sequential convergence in spaces of holomorphic functions</td>
<td>619</td>
</tr>
</tbody>
</table>