THE SUM OF THE DISTANCES TO N POINTS ON A SPHERE

KENNETH BARRY STOLARSKY
THE SUM OF THE DISTANCES TO N POINTS ON A SPHERE

KENNETH B. STOLARSKY

How can the sum of λth powers (0 < λ < 2) of the Euclidean distances from the variable unit vector p to N fixed unit vectors p₁, ⋯, pₙ be maximized or minimized? By means of an integral transform used in distance geometry, the problem can be reduced in certain cases to minimizing or maximizing sums of integer powers of the inner products (p, pᵢ). In particular, a complete solution is obtained for the vertices of an m-dimensional octahedron.

1. Introduction. Let |p − q| denote the Euclidean distance from p to q. Various authors [1–3, 7, 12, 14, 16, 17] have studied the problem of placing N points p₁, ⋯, pₙ on the unit sphere U of m-dimensional Euclidean space Eᵐ so that

(1) \[S(N, m) = \sum_{i<j} |p_i - p_j|^\lambda \quad 0 < \lambda < 2 \]

is maximal. This suggests a second problem: If p₁, ⋯, pₙ are preassigned points of U, for what p ∈ U is

(2) \[T(p) = \sum_{i=1}^{N} |p - p_i|^\lambda \quad 0 < \lambda < 2 \]

maximal? One can add to this, when is T(p) minimal? For example, if N = 3 and p₁, p₂, p₃ are the vertices of an equilateral triangle, then T(p) is maximal if and only if p = −pᵢ for some i and minimal if and only if p = pᵢ for some i. This is very easy to show for 0 < λ ≤ 1, but is rather more difficult for 1 < λ < 2.

In §2 we develop a method for attacking this second problem. Our main tools are (i) an integral transform introduced by Schoenberg (see [15, pp. 526–527] or [4, pp. 134–136]) to prove certain metric embedding theorems, and (ii) the concept of uniform power maxima introduced in §2. The results §§3–6 are applications of the theorem of §2 to various special cases. In §3 we determine the maxima and minima for T(p) when the pᵢ are the vertices of a regular m-dimensional octahedron. In §4 we determine the maxima of T(p) when the pᵢ are the vertices of an m-dimensional cube. In §5 we investigate the case where the pᵢ are the vertices of an m-dimensional simplex. We show that if a certain "elementary" inequality is valid, then T(p) is minimal if and only if p = pᵢ for some i. In §6 we determine the minima of T(p) when the pᵢ are the vertices of a regular N-gon and U is the unit circle x² + y² = 1.
The general conclusion we draw from these results is that if the points \(p_i \) are "reasonably" uniformly distributed on \(U \) then \(T(p) \) is large or small depending upon whether \(\min_i |p_i - p| \) is large or small. It is interesting to contrast this with Theorem 2 of Björck [3, pp. 256-257]. Also, it can be shown that if \(p \) is constrained to be in the convex hull \(H \) of \(p_1, \ldots, p_N \) and \(1 \leq \lambda \), then \(T(p) \) will be maximal at some \(p_t \).

In §7 we show that a modification of our method can be applied to the problem of minimizing \(T(p) \) when \(\lambda \) is negative. This is related to the problem of stability configurations of electrons on a sphere; see [5-6, 8-10, 14, 18].

2. Uniform power maxima. For vectors \(g \) and \(h \) in \(E^m \), we let \((g, h)\) denote their inner product.

DEFINITION. Let \(p_1, \ldots, p_N \) be a set of points on the unit sphere \(U \). We say \(q_0 \in U \) is a uniform power maximum (minimum) for \(p_1, \ldots, p_N \) if for every positive integer \(k \), the sum

\[
\sum_{i=1}^{N} (p_i, q)^k
\]

achieves its absolute maximum (minimum) on \(U \) when \(q = q_0 \).

For example, let \(U \) be the unit circle \(x^2 + y^2 = 1 \). If \(p_1 = (1, 0) \) and \(p_2 = -p_1 \), then the points \(p_1 \) and \(p_2 \) are themselves the uniform power maxima, while the points \((0, 1) \) and \((0, -1) \) are the uniform power minima. In general, uniform power maxima or minima may fail to exist.

If \(q_0 \) is a uniform power maximum, then we easily see that \(q_0 = p_i \) for some \(i \); let \(k \to \infty \) through odd values in (2.1). Similarly, by letting \(k \to \infty \) through even values, we see that \(\max_i |(p_i, q_0)| \) must be minimal if \(q_0 \) is a uniform power minimum. For example, if \(N \) is even and \(p_1, \ldots, p_N \) are the vertices of a regular \(N \)-gon inscribed in the unit circle \(U \) given by \(x^2 + y^2 = 1 \), then the only possibilities for uniform power minima are points on \(U \) which bisect the arc between adjacent \(p_i \). The only possibilities for uniform power maxima are the \(p_i \) themselves.

The following result shows how the concepts of uniform power maxima and minima can be used.

THEOREM. Let \(p_1, \ldots, p_N \) have at least one uniform power maximum (minimum). Let \(p \in U \). Then

\[
T(p) = \sum_{i=1}^{N} |p_i - p|^2
\]

\[0 < \lambda < 2\]
is minimal (maximal) if and only if \(p \) is a uniform power maximum (minimum).

Proof. Let \(p \in U \). Let \(q_0 \) be a uniform power maximum. Then

(2.3) \[
\sum_{i=1}^{N} (p_i, p)^k \leq \sum_{i=1}^{N} (p_i, q_0)^k
\]

for all integers \(k \geq 0 \). If \(g \) and \(h \) are arbitrary unit vectors, then

(2.4) \[
2(g, h) = 2 - |g - h|^2.
\]

Hence

(2.5) \[
\sum_{i=1}^{N} (2 - |p_i - p|^2)^k \leq \sum_{i=1}^{N} (2 - |p_i - q_0|^2)^k.
\]

Set

\[
E(p, t) = \sum_{i=1}^{N} \exp \left(-\frac{|p_i - p|^2 t}{2} \right).
\]

Multiply both sides of (2.5) by \(t^k/k! \) and sum over all \(k \). This shows that

\[
\exp (2t^2)E(p, t) = \sum_{i=1}^{N} \exp \left(2t^2 - \frac{|p_i - p|^2 t}{2} \right)
\]

(2.6) \[
\leq \sum_{i=1}^{N} \exp \left(2t^2 - \frac{|p_i - q_0|^2 t}{2} \right)
= \exp (2t^2)E(q_0, t).
\]

Note that here and throughout equality holds if and only if \(p \) is a uniform power maximum. Since \(0 < \lambda < 2 \), we can set

(2.7) \[
I_\lambda(s) = \int_{0}^{\infty} (1 - e^{-st})t^{\lambda-1}dt.
\]

By making the change of variable \(t \to t/s \) we see that

(2.8) \[
I_\lambda(s) = c(\lambda)s^\lambda
\]

where \(c(\lambda) \) is a positive constant depending only on \(\lambda \); in fact,

\[
c(\lambda) = \int_{0}^{\infty} (1 - e^{-\alpha})t^{\lambda-1}dt.
\]

Now replace \(s \) by \(|p_i - q_0| \) in (2.7). From (2.6) and (2.8) we find that

\[
c(\lambda)T(q_0) = c(\lambda) \sum_{i=1}^{N} |p_i - q_0|^i
= \sum_{i=1}^{N} I_\lambda(|p_i - q_0|)
\]
with equality if and only if p is a uniform power maximum. The proof for uniform power minima is obtained simply by reversing all inequalities.

3. The octahedron. Let α_i denote that vector of E^n whose ith component is 1 and whose other components are 0. Let $\alpha_{N+i} = -\alpha_i$ for $1 \leq i \leq N$. Then we call $\alpha_1, \ldots, \alpha_{2N}$ the vertices of the standard N-dimensional octahedron.

COROLLARY 1. Let $p \in U$. If $\alpha_i, \ldots, \alpha_{2N}$ are the vertices of the standard N-dimensional octahedron, and

\[(3.1) \quad p = \sum_{i=1}^{2N} |\alpha_i - p|^2 \quad 0 < \lambda < 2 \]

is minimal, then $p = \alpha_i$ for some i. If $T(p)$ is maximal, then

\[(3.2) \quad p = \left(\sum_{i=1}^{N} \pm \alpha_i\right) \sqrt{N} \equiv p^* \]

for some choice of plus and minus signs.

Before we prove this we need a simple inequality related to power means (for the basic properties of power means see, for example, [11, p. 26]).

LEMMA. Let $s > 1$ and define

\[f(u) = \sum_{i=1}^{N} u_i^s \]

for all N-tuples $u = (u_1, \ldots, u_N)$ satisfying

\[\sum_{i=1}^{N} u_i = 1 \]

and

\[u_i \geq 0 \quad 1 \leq i \leq N. \]

Then $f(u)$ is minimal if and only if $u = (\sum_{i=1}^{N} \alpha_i)/N$ and maximal if and only if $u = \alpha_i$ for some i with $1 \leq i \leq N$.
Proof of Lemma. The sth power mean of \(u_1, \ldots, u_N \) is non-decreasing as a function of \(s \), so by letting \(s \to 1 \) and \(s \to \infty \) we obtain

\[
\frac{1}{N} \leq \left[\frac{1}{N} f(u) \right]^{1/s} \leq 1.
\]

The \(u_i \) must all be equal for equality to hold on the left, while for equality to hold on the right one of the \(u_i \) must equal 1.

Proof of Corollary 1. For \(p \in U \) write \(p = (x_1, \ldots, x_N) \). Thus \(\sum x_i^2 = 1 \). For every positive integer \(k \) we have

\[
(3.3) \quad \sum_k (p) = \sum_{i=1}^{2N} (\alpha_i, p)^k = [1 + (-1)^k] \sum_{i=1}^N x_i^k.
\]

Clearly \(\sum_k (p) \) is zero unless \(k = 2m \) for some positive integer \(m \). Apply the above lemma with \(u_i = x_i^2 \) and \(s = m \). It shows that the \(\alpha_i \) are the uniform power maxima and the \(2^N \) values of \(p \) given by (3.2) are the uniform power minima. Thus Corollary 1 follows from the theorem.

4. The cube. Let the \(\beta_i, \) for \(1 \leq i \leq 2^N \), be the vectors in \(E^N \) whose components are either \(N^{-1/2} \) or \(-N^{-1/2} \). We call \(\beta_1, \ldots, \beta_{2^N} \) the vertices of the standard \(N \)-dimensional cube; this cube is inscribed in the unit sphere \(U \).

COROLLARY 2. Let \(p \in U \). If \(\beta_1, \ldots, \beta_M \) are the vertices of the standard \(N \)-dimensional cube, where \(M = 2^N \), and

\[
(4.1) \quad T(p) = \sum_{i=1}^M |\beta_i - p|^2 \quad 0 < \lambda < 2
\]

is maximal, then (in the notation of Corollary 1) we have \(p = \alpha_i \) for some \(i \).

Proof. For \(p \in U \) write \(p = (x_1, \ldots, x_N) \); thus \(\sum x_i^2 = 1 \). For every positive integer \(k \) we have

\[
(4.2) \quad \sum_k (p) = \sum_{i=1}^M (\beta_i, p)^k = N^{-k/2} \sum^* (\pm x_1 \pm \cdots \pm x_N)^k
\]

where the asterisk indicates that the sum is extended over all \(M \) possible choices of plus and minus signs. Clearly \(\sum_k (p) \) is zero unless \(k = 2m \) for some positive integer \(m \). Now
\begin{align*}
\sum_{i=1}^{M} v_i^2 &= \sum^* (\pm x_1 \pm \cdots \pm x_N)^2 = M \sum_{i=1}^{N} x_i^2 = M \\
\end{align*}

since all the mixed terms cancel. Now apply the lemma of §3 with \(u_i = (v_i/\sqrt{M})^2 \), with \(s = m \), and with \(N \) replaced by \(M \). It follows that

\begin{align*}
M^{1-m} = M \left(\frac{1}{M} \right)^m &\leq \sum_{i=1}^{M} u_i^m \\
\end{align*}

so

\begin{align*}
M &\leq \sum_{i=1}^{M} v_i^{2m} \\
\end{align*}

for every positive integer \(m \). Thus every \(\alpha_i \) is a uniform power minimum. For any \(q = (x_1, \ldots, x_N) \in U \) which is not an \(\alpha_i \), it is easy to verify that

\begin{align*}
v^* &= \sum_{i=1}^{N} |x_i| > 1 \\
\end{align*}

But since \(v^* = v_i \) for some \(i \), this shows that \(q \) is not a uniform power minimum. The result now follows from the theorem.

We have no proof that the \(\beta_i \) are the uniform power maxima here. If they were, then \(T(p) \) would be minimal if and only if \(p = \beta_i \) for some \(i \).

5. The simplex. Let the \(\gamma_i \), where \(0 \leq i \leq N \), denote the vertices of a regular simplex inscribed in \(U \). We now propose

Conjecture A. If \(m \) and \(N \) are integers with \(m \geq 0 \) and \(N \geq 1 \), then for \(x \geq 0 \) we have

\begin{align*}
L_m(x) &= (x + \frac{1}{N})^{2m} + (1 + \frac{x}{N})^{2m} + (N - 1)(\frac{x - 1}{N})^{2m} \\
&\leq (1 + \frac{1}{N^{1+m-1}})(x^2 + \frac{2}{N} x + 1)^m = R_m(x) \\
\end{align*}

(5.1)

If we set \(P_m(x) = R_m(x) - L_m(x) \), then \(P_0(x) = P_1(x) = 0 \) and for \(m = 2 \) and \(m = 3 \) the coefficients of \(P_m(x) \) are nonnegative. It seems likely, in fact, that the coefficients of \(P_m(x) \) are always nonnegative.

Corollary 3. *Conjecture A* implies that the uniform power maxima for the vertices of the regular simplex are simply the vertices themselves, i.e., the \(\gamma_i \) where \(0 \leq i \leq N \).
Proof. For $N = 1$ this is trivial. Assume true for all positive integers less than N. We shall examine

\begin{equation}
\sum_k (p) = \sum_{i=0}^{N} (\gamma_i, p)^k
\end{equation}

where $p \in U$. Without loss of generality we may assume that $p = a_1 \gamma_1 + \cdots + a_N \gamma_N$ where $a_i \geq 0$ for $0 \leq i \leq N$. For any vector q, write $q = q_a + q_b$ where q_a is parallel to γ_0 and q_b is normal to γ_0. In particular, $(\gamma_i)_a = -\gamma_i/N$. Thus

\begin{equation}
\sum_k (p) = (\gamma_0, \gamma_a)^k + \sum_{i=1}^{N} [(\gamma_i, \gamma_a) + (\gamma_i, \gamma_b)]^k
\end{equation}

\begin{align*}
= (\gamma_0, \gamma_a)^k + \sum_{i=1}^{N} \left[-\frac{1}{N} (\gamma_0, \gamma_a) + (\gamma_i, \gamma_b) \right]^k \\
= (\gamma_0, \gamma_a)^k + \sum_{i=1}^{N} \left[-\frac{1}{N} (\gamma_0, \gamma_a) \right]^{k-i} \sum_{i=1}^{N} (\gamma_i, \gamma_b)^{i}
\end{align*}

where the coefficients $c(k, s)$ are all positive. By the induction hypothesis the last sum on the right can only become larger if p is rotated about an axis through γ_0 so that $\gamma_b = \gamma_j$ for some j. Thus

\begin{equation}
\sum_k (p) \leq \sum_{i=0}^{N} (\gamma_i, p')^k \equiv J
\end{equation}

where p' is a linear combination of γ_0 and γ_j, i.e. $p' = -x\gamma_0 + y\gamma_j$ where $x, y \geq 0$. Now

\begin{equation}
1 = (p', p') = x^2 + \frac{2}{N}xy + y^2
\end{equation}

and

\begin{equation}
J = \left(y + \frac{x}{N}\right)^k + (-1)^k \left(\frac{y}{N} + x\right)^k + (N - 1) \left(\frac{x - y}{N}\right)^k.
\end{equation}

It suffices to show that J is maximal when $x = 0$ and $y = 1$ (in which case $J = 1 + (-1)^k N^{k-1}$).

First we consider the case where k is odd, and write $k = 2m + 1$. The vector T, where

\begin{equation}
T = \left(-\frac{x}{N} + y, \frac{x + y}{N}\right)
\end{equation}

is a counterclockwise tangent to the ellipse described by (5.5) in the first quadrant of the xy plane. We have
(grad J, T)

\[
(5.8) \quad (x, y) = k(1 - N^{-\delta}) \left[x \left(\frac{x}{N} + y \right)^{2m} + y \left(x + \frac{y}{N} \right)^{2m} - (x + y) \left(\frac{x}{N} - \frac{y}{N} \right)^{2m} \right] > 0
\]

for $0 < x < 1$, so J achieves its maximal value at the endpoint $(0, 1)$. Next, let k be even and write $k = 2m$. Replace x by x/y in (5.1), and multiply both sides of (5.1) by y^{2m}. It follows that $J \leq 1 + N^{1-2m}$ whenever (5.5) holds. Since a uniform power maximum must be one of the γ_i, this completes the proof.

Corollary 4. Let $p \in U$. Let $\gamma_0, \ldots, \gamma_N$ be the vertices of the N-dimensional simplex, and assume the sum

\[
(5.9) \quad T(p) = \sum_{i=0}^{N} |\gamma_i - p|^\lambda
\]

is minimal. If Conjecture A is true, then $p = \gamma_i$ for some i.

Proof. This follows from Corollary 3 and the theorem.

It seems reasonable to conjecture here that $T(p)$ is maximal if and only if $p = -\gamma_i$ for some i. But (see the comment towards the end of §6) the $-\gamma_i$ are not always uniform power minima.

We digress here to mention that an inductive procedure similar to that used in the proof of Corollary 3 shows that for any $p \in \mathbb{E}^N$ we have

\[
(5.10) \quad \sum_a (p) \equiv \sum_{i=0}^{N} (\gamma_i, p)^2 = \frac{N + 1}{N} (p, p)
\]

where again the γ_i are the vertices of a regular simplex inscribed in U. The famous Selberg inequality [13, pp. 7-8] asserts that

\[
(5.11) \quad \sum_{i=0}^{N} (\gamma_i, p)^2 \left[\sum_{j=0}^{N} |(\gamma_i, \gamma_j)| \right]^{-1} \leq (p, p)
\]

for any nonzero vectors γ_i with $0 \leq i \leq N$. For the vertices of a regular simplex

\[
(5.12) \quad \sum_{i=0}^{N} |(\gamma_i, \gamma_j)| = 1 + N \left(\frac{1}{N} \right) = 2
\]

so in this case the Selberg inequality yields

\[
(5.13) \quad \sum_a (p) \leq 2(p, p)
\]

which is somewhat weaker than (5.10). Also, the equality (5.10) has as a consequence that

\[
(5.14) \quad \sum_{i=0}^{N} |\gamma_i - p|^4 = 4(N + 1)^2/N
\]
for \(p \in U \).

6. The regular \(N \)-gon. Let the \(\rho_i \), where \(0 \leq i \leq N - 1 \), denote the vertices of a regular \(N \)-gon inscribed in the unit circle \(U \) given by \(x^2 + y^2 = 1 \). We begin by establishing two lemmas; the first is well known, but we include it for the sake of completeness.

Lemma 6.1. For \(k \) a positive integer,

\[
\cos^k x = \sum_{s=0}^{k} a_{sk} \cos sx
\]

where \(a_{sk} \geq 0 \) and \(a_{sk} = 0 \) if \(s \equiv k \mod 2 \).

Proof. Since \(\cos^2 x = 1/2 + 1/2 \cos 2x \), this is true for \(k = 1 \) and \(k = 2 \). Assume true for integers less than \(k \). For \(k > 2 \) we have

\[
\cos^k x = (\cos^{k-2} x)(\cos^2 x) = (\cos^{k-2} x)\left(\frac{1}{2} + \frac{1}{2} \cos 2x\right)
\]

and the result follows from the identity

\[
\cos A \cos B = \frac{1}{2} \cos (A + B) + \frac{1}{2} \cos (A - B)
\]

and the induction hypothesis.

Lemma 6.2. If \(k \) is a nonnegative integer, then for any real \(\phi \) we have

\[
\sum_{j=0}^{N-1} \cos^k \left(\frac{2\pi j}{N} - \phi\right) \leq \sum_{j=0}^{N-1} \cos^k \left(\frac{2\pi j}{N}\right)
\]

with equality if and only if either \(\phi = 2\pi m/N \) for some integer \(m \), or \(k < N \).

Proof. Let \(d(N, s) \) be 1 if \(N \) divides \(s \), and 0 otherwise. Then the left hand side of (6.2) is

\[
\sum_{j=0}^{N-1} \sum_{s=0}^{k} a_{sk} \cos \left(\frac{2\pi js}{N} - s\phi\right)
\]

\[
= \sum_{s=0}^{k} a_{sk} \cos s\phi \sum_{j=0}^{N-1} \cos \frac{2\pi js}{N} + \sum_{s=0}^{k} a_{sk} \sin s\phi \sum_{j=0}^{N-1} \sin \frac{2\pi js}{N}
\]

\[
= N \sum_{s=0}^{k} d(N, s) a_{sk} \cos s\phi \leq N \sum_{s=0}^{k} d(N, s) a_{sk}
\]

\[
= \sum_{j=0}^{N-1} \cos^k \frac{2\pi j}{N} .
\]
Equality holds only under the conditions stated, so the result is proved.

Corollary 5. Let $p = e^{i\phi} \in U$. If $\rho_j = e^{2\pi i j/N}$ for $0 \leq j \leq N - 1$ and

$$T(p) = \sum_{j=0}^{N-1} |\rho_j - p|^2$$

(6.4) is minimal, then $p = \rho_j$ for some j.

Proof. The sum

$$\sum_{k} (p) = \sum_{j=0}^{N-1} (\rho_j, p)^k = \sum_{j=0}^{N-1} \cos^k \left(\frac{2\pi j}{N} - \phi \right)$$

(6.5) is maximal for all k if and only if $\phi = 2\pi j/N \mod 2\pi$ for some j with $0 \leq j \leq N - 1$. In other words, if and only if $p = \rho_j$ for some j. The result now follows from the theorem.

Although the author has a proof that $T(p)$ is maximal if and only if $p = e^{2\pi i (j+1)/N}$ for some integer j, it is is not always true that these points are uniform power minima. The case $N = 3$ and $k = 6$ provides a counterexample.

Rather more can be proved here by means of certain differential inequalities associated with Sturm-Liouville problems. Namely, $T(p)$ is minimal if and only if p is a vertex, and maximal if and only if p lies half way between two vertices. Moreover, if λ is allowed to increase from 0 to $2N$, then every time λ passes through an even integer the points at which $T(p)$ was maximal will become the points at which it is minimal, and vice-versa. The present paper omits this proof.

7. Negative λ. For $\lambda < 0$ define the integral transform

$$A_\lambda(s) = \int_0^\infty e^{-st} t^{\alpha-1} \, dt = s^\alpha I(-\lambda).$$

If q_α is a uniform power minima, the proof of the theorem can be trivially modified, with $A_\lambda(s)$ in place of $I(s)$, to show that $T(p)$ is minimal when $p = q_\alpha$. So for λ negative, $T(p)$ is minimal for the octahedron when $p = p^*$ and minimal for the cube when $p = \alpha_\lambda$.

Note added in proof. L. J. Yang has proved Conjecture A. Thus Corollary 4 is unconditionally valid. His method, essentially, is to analyze the cases (i) $0 < x < 1/4N$, (ii) $1/4N \leq x < 2/N$; and (iii) $2/N \leq x < 1$ separately. The details are somewhat lengthy, but require only elementary calculus.
REFERENCES

Received August 2, 1974 and in revised form February 15, 1975.

UNIVERSITY OF ILLINOIS
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenneth Barry Stolarsky, Brian Kirkwood Schmidt, Judith Roitman,</td>
<td></td>
</tr>
<tr>
<td>Douglas Conner Ravenel, M. Edelstein and L. Keener, G. G. Dandapat,</td>
<td></td>
</tr>
<tr>
<td>John L. Hunsucker and Carl Pomerance, Arthur Herbert Copeland, Jr.</td>
<td></td>
</tr>
<tr>
<td>and Albert Oscar Shar, Images and pre-images of localization maps</td>
<td></td>
</tr>
<tr>
<td>maps</td>
<td>349</td>
</tr>
<tr>
<td>G. G. Dandapat, John L. Hunsucker and Carl Pomerance, Some new</td>
<td></td>
</tr>
<tr>
<td>results on odd perfect numbers</td>
<td>359</td>
</tr>
<tr>
<td>M. Edelstein and L. Keener, Characterizations of infinite-dimensional</td>
<td></td>
</tr>
<tr>
<td>and nonreflexive spaces</td>
<td>365</td>
</tr>
<tr>
<td>Francis James Flanigan, On Levi factors of derivation algebras and</td>
<td></td>
</tr>
<tr>
<td>the radical embedding problem</td>
<td>371</td>
</tr>
<tr>
<td>Harvey Friedman, Provable equality in primitive recursive arithmetic</td>
<td></td>
</tr>
<tr>
<td>with and without induction</td>
<td>379</td>
</tr>
<tr>
<td>Joseph Braucher Fugate and Lee K. Mohler, The fixed point property</td>
<td></td>
</tr>
<tr>
<td>for tree-like continua with finitely many arc components</td>
<td>393</td>
</tr>
<tr>
<td>John Norman Ginsburg and Victor Harold Saks, Some applications of</td>
<td></td>
</tr>
<tr>
<td>ultrafilters in topology</td>
<td>403</td>
</tr>
<tr>
<td>Arjun K. Gupta, Generalisation of a “square” functional equation</td>
<td>419</td>
</tr>
<tr>
<td>Thomas Lee Hayden and Frank Jones Massey, Nonlinear holomorphic</td>
<td></td>
</tr>
<tr>
<td>semigroups</td>
<td>423</td>
</tr>
<tr>
<td>V. Kannan and Thekkedath Thrivikraman, Lattices of Hausdorff</td>
<td></td>
</tr>
<tr>
<td>compactifications of a locally compact space</td>
<td>441</td>
</tr>
<tr>
<td>J. E. Kerlin and Wilfred Dennis Pepe, Norm decreasing homomorphisms</td>
<td></td>
</tr>
<tr>
<td>between group algebras</td>
<td>445</td>
</tr>
<tr>
<td>Young K. Kwon, Behavior of Φ-bounded harmonic functions at the</td>
<td></td>
</tr>
<tr>
<td>Wiener boundary</td>
<td>453</td>
</tr>
<tr>
<td>Richard Arthur Levaro, Projective quasi-coherent sheaves of modules</td>
<td></td>
</tr>
<tr>
<td>Chung Lin, Rearranging Fourier transforms on groups</td>
<td>457</td>
</tr>
<tr>
<td>David Lowell Lovelady, An asymptotic analysis of an odd order linear</td>
<td></td>
</tr>
<tr>
<td>differential equation</td>
<td>475</td>
</tr>
<tr>
<td>Jerry Malzan, On groups with a single involution</td>
<td>481</td>
</tr>
<tr>
<td>J. F. McClendon, Metric families</td>
<td>491</td>
</tr>
<tr>
<td>Carl Pomerance, On multiply perfect numbers with a special property</td>
<td>511</td>
</tr>
<tr>
<td>Mohan S. Putcha and Adil Mohamed Yaqub, Polynomial constraints for</td>
<td></td>
</tr>
<tr>
<td>finiteness of semisimple rings</td>
<td>519</td>
</tr>
<tr>
<td>Calvin R. Putnam, Hyponormal contractions and strong power</td>
<td></td>
</tr>
<tr>
<td>convergence</td>
<td>531</td>
</tr>
<tr>
<td>Douglas Conner Ravenel, Multiplicative operations in BP*BP</td>
<td>539</td>
</tr>
<tr>
<td>Judith Roitman, Attaining the spread at cardinals which are not</td>
<td></td>
</tr>
<tr>
<td>strong limits</td>
<td>545</td>
</tr>
<tr>
<td>Kazuyuki Saitō, Groups of *-automorphisms and invariant maps of von</td>
<td></td>
</tr>
<tr>
<td>Neumann algebras</td>
<td>553</td>
</tr>
<tr>
<td>Brian Kirkwood Schmidt, Homotopy invariance of contravariant</td>
<td></td>
</tr>
<tr>
<td>functors acting on smooth manifolds</td>
<td>559</td>
</tr>
<tr>
<td>Kenneth Barry Stolarsky, The sum of the distances to N points on a</td>
<td></td>
</tr>
<tr>
<td>sphere</td>
<td>563</td>
</tr>
<tr>
<td>Mark Lawrence Teply, Semiprime rings with the singular splitting</td>
<td></td>
</tr>
<tr>
<td>property</td>
<td>575</td>
</tr>
<tr>
<td>J. Pelham Thomas, Maximal connected Hausdorff spaces</td>
<td>581</td>
</tr>
<tr>
<td>Charles Thomas Tucker, II, Concerning σ-homomorphisms of Riesz</td>
<td></td>
</tr>
<tr>
<td>spaces</td>
<td>585</td>
</tr>
<tr>
<td>Rangachari Venkataraman, Compactness in abelian topological groups</td>
<td>591</td>
</tr>
<tr>
<td>William Charles Waterhouse, Basically bounded functors and flat</td>
<td></td>
</tr>
<tr>
<td>sheaves</td>
<td>597</td>
</tr>
<tr>
<td>David Westreich, Bifurcation of operator equations with unbounded</td>
<td></td>
</tr>
<tr>
<td>linearized part</td>
<td>611</td>
</tr>
<tr>
<td>William Robin Zame, Extendibility, boundedness and sequential</td>
<td></td>
</tr>
<tr>
<td>convergence in spaces of holomorphic functions</td>
<td>619</td>
</tr>
</tbody>
</table>