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KENNETH B. STOLARSKY

How can the sum of ith powers (0 < 1 < 2) of the Euclidean
distances from the variable unit vector p to N fixed unit
vectors P, -+, Py be maximized or minimized? By means of
an integral transform used in distance geometry, the problem
can be reduced in certain cases to minimizing or maximizing
sums of integer powers of the inner products (p,p;). In
particular, a complete solution is obtained for the vertices
of an m-dimensional octahedron.

1. Introduction. Let |p — g| denote the Euclidean distance
from p to ¢. Various authors [1-3, 7,12, 14, 16, 17] have studied
the problem of placing N points p,, ---, py on the unit sphere U of
m-dimensional Euclidean space E™ so that
(1) SN, m) = 3, |9 — ps* 0<A<2

i<
is maximal. This suggests a second problem: If p, ..., py are
preassigned points of U, for what pe U is

(2) T(r) = 3 Ip — o.f 0<n<2

maximal? One can add to this, when is T(p) minimal? For example,
if N=3 and p, p, »; are the vertices of an equilateral triangle,
then T(p) is maximal if and only if » = —p, for some 7 and minimal
if and only if p = p, for some ¢. This is very easy to show for
0 < N =1, but is rather more difficult for 1 < x < 2.

In §2 we develop a method for attacking this second problem.
Our main tools are (i) an integral transform introduced by Schoenberg
(see [15, pp. 526-527] or [4, pp. 134-136]) to prove certain metric
embedding theorems, and (ii) the concept of uniform power maxima
introduced in §2. The results §§3-6 are applications of the theorem
of §2 to various special cases. In §3 we determine the maxima and
minima for T(p) when the p, are the vertices of a regular m-dimensional
octahedron. In §4 we determine the maxima of T(p) when the p,
are the vertices of an m-dimensional cube. In §5 we investigate the
case where the p, are the vertices of an m-dimesional simplex. We
show that if a certain “elementary” inequality is valid, then T(p) is
minimal if and only if p = p, for some 7. In §6 we determine the
minima of T(p) when the p, are the vertices of a regular N-gon
and U is the unit circle 2* + y* = 1.

563



564 KENNETH B. STOLARSKY

The general conclusion we draw from these results is that if
the points p, are “reasonably” uniformly distributed on U then T(p)
is large or small depending upon whether min, |p, — p| is large or
small. It is interesting to contrast this with Theorem 2 of Bjorck
[3, pp. 256-257]. Also, it can be shown that if » is constrained to
be in the convex hull H of p, ---, py and 1 <\, then T(p) will be
maximal at some p,.

In §7 we show that a modification of our method can be applied
to the problem of minimizing 7'(p) when X is negative. This is related
to the problem of stability configurations of electrons on a sphere;
see [5-6, 8-10, 14, 18].

2. Uniform power maxima. For vectors g and % in E™, we
let (g, ) denote their inner product.

DEFINITION. Let p,, --+, py be a set of points on the unit sphere
U. We say g,€ U is a uniform power maximum (minimum) for p,,
«.., py if for every positive integer k%, the sum

@.1) S @, 9*

achieves its absolute maximum (minimum) on U when ¢ = g,.

For example, let U be the unit circle 2* + y* = 1. If p, = ({1, 0)
and p, = —9p,, then the points p, and p, are themselves the uniform
power maxima, while the points (0, 1) and (0, —1) are the uniform
power minima. In general, uniform power maxima or minima may
fail to exist.

If ¢, is a uniform power maximum, then we easily see that
g, = p; for some 1; let k' — oo through odd values in (2.1). Similarly,
by letting %k — < through even values, we see that max,|(p;, )|
must be minimal if ¢, is a uniform power minimum. For example,
if N is even and p, --., py are the vertices of a regular N-gon
inscribed in the unit cirele U given by 2? + y® =1, then the only
possibilities for uniform power minima are points on U which bisect
the arc between adjacent p,. The only possibilities for uniform
power maxima are the p, themselves.

The following result shows how the concepts of uniform power
maxima and minima can be used.

THEOREM. Let p,, .-+, Dy have at least one uniform power maxi-
mum (minimum). Let pe U. Then

@2) T(o) = 3 v, - P’ 0<n<2
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is minimal (maximal) if and only if p is @ uniform power marimum
(minimum).

Proof. Let pe U. Let g, be a uniform power maximum. Then

(2.3) Z:] (piy P)* = é (D 90)*

for all integers £ = 0. If g and % are arbitrary unit vectors, then
(2.4) 29, h) =2— g — h[*.

Hence

(2.5) S@ - p = pPF S @ Ip— al)

Set

E(p, t) =éexp(—lpf - p|*) .

Multiply both sides of (2.5) by #*/k! and sum over all k. This shows
that

exp (2t°) E(p, t) = g exp (2t* — |p, — p[*t?)

(2.6) = iZ:exp @8 — [p; — q,]%Y
= exp (2t E(q, t) .

Note that here and throughout equality holds if and only if p is a
uniform power maximum. Since 0 < A < 2, we can set

@.7) Lis) = | (1 — ey .

By making the change of variable ¢t —t/s we see that
(2.8) L(s) = ¢(\)s?

where ¢(\) is a positive constant depending only on \; in fact,
() = S:(l — ey
Now replace s by |p, — ¢ in (2.7). From (2.6) and (2.8) we find that
WV T@) = ) 3 |p, — 0,

=3 Lilp — a.)
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2.9) = {17 - B, o1t

= v — B, o1e+ar
= () T(p) ,

with equality if and only if p is a uniform power maximum. The
proof for uniform power minima is obtained simply by reversing all
inequalities.

3. The octahedron. Let «, denote that vector of E™ whose
ith component is 1 and whose other components are 0. Let ay,, =
—a; for 1<47=< N. Then we call a,, -, &,y the vertices of the
standard N-dimensional octahedron.

COROLLARY 1. Let pe U. If @y, -++, Qyy are the vertices of the
standard N-dimensional octahedron, and

2N

(3.1 p=2la —pl 0< <2

4=1
ts minimal, then p = «; for some i. If T(p) is maximal, then
N —
3.2) p= (_z + ai> / VN = p*
for some choice of plus and minus signs.

Before we prove this we need a simple inequality related to
power means (for the basic properties of power means see, for example,
[11, p. 26]).

LEMMA. Let s > 1 and define

N
Fa) = u

for all N-tuples w = (u,, +++, uy) satisfying

and
u;, =0 1<+ N.

Then f(u) is minimal if and only if v = G, a)/N and mazximal
iof and only if uw = &, for some 1+ with 1 < i < N.
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Proof of Lemma. The sth power mean of w, .-, uy is non-
decreasing as a function of s, so by letting s— 1 and s— « we
obtain

1 [1 T/S
—_—=|= =1.
N = Nf (W) | =
The u, must all be equal for equality to hold on the left, while for
equality to hold on the right one of the w, must equal 1.

Proof of Corollary 1. For pe U write p = (x,, --+, y). Thus
>.22 = 1. For every positive integer & we have

2N N
(3.3) 2w (@) =2 (o, p)* =[1+ (=D 2 xi.
Clearly >, () is zero unless k = 2m for some positive integer m.
Apply the above lemma with u, = 22 and s = m. It shows that the
«, are the uniform power maxima and the 2¥ values of p given
by (8.2) are the uniform power minima. Thus Corollary 1 follows
from the theorem.

4. The cube. Let the B, for 1 <7< 2%, be the vectors in
E" whose components are either N7 or — N2 We call 8, -+, Buy
the vertices of the standard N-dimensional cube; this cube is inscribed
in the unit sphere U.

COROLLARY 2. Let pec U. If B, ---, By are the vertices of the
standard N-dimensional cube, where M = 2%, and

@1 T(v) = 3,16 — ol 0<r<2

is maximal, then (in the notation of Corollary 1) we have p = «; for
some 1.

Proof. For pe U write p = (z, ---, zy); thus 3,22 =1. For
every positive integer k we have

S () = 3 (8, 9)F = NS (a, £ oo )P
(4.2) -,
= N+ 5 0t

where the asterisk indicates that the sum is extended over all M
possible choices of plus and minus signs. Clearly >, (p) is zero unless
k = 2m for some positive integer m. Now
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4.3) S0t = S (ay keee k) = MY al = M

=1

since all the mixed terms cancel. Now apply the lemma of §3 with
u; = (v,/V'M)?, with s = m, and with N replaced by M. It follows
that

M = M(l)m =< é ur

M
so
M
(4.4) Mz > o

for every positive integer m. Thus every a, is a uniform power
minimum. For any ¢ = (x,, ---, 2y) € U which is not an «,, it is easy
to verify that

(4.5) v*zémwl.

But since v* = v, for some ¢, this shows that ¢ is not a uniform
power minimum. The result now follows from the theorem.

We have no proof that the B, are the uniform power maxima
here. If they were, then T(p) would be minimal if and only if p =
B; for some 1.

5. The simplex. Let the 7v;, where 0 <7< N, denote the
vertices of a regular simplex inscribed in U. We now propose

Conjecture A. If m and N are integers with m = 0and N> 1,
then for * = 0 we have

e = e ) (1 ) o ()

(5.1)

1 2 m
< 2 = =
= <1 + ~t >(x + N + 1) = R,() .
If we set P,(x) = R,(x) — L,(x), then Py x) = P(x) =0 and for
m = 2 and m = 3 the coefficients of P,(x) are nonnegative. It seems
likely, in fact, that the coefficients of P,(x) are always nonnegative.

COROLLARY 3. Conjecture A implies that the uniform power
maxima for the vertices of the regular stmplex are simply the vertices
themselves, i.e., the ¥, where 0 <1 < N.
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Proof. For N =1 this is trivial. Assume true for all positive
integers less than N. We shall examine

¥
(5.2 S (9) = 33 (%, )"

where pe U. Without loss of generality we may assume that p =
a,+ -+« + ayYy where a, =0 for 0 <47 < N. For any vector gq,
write ¢ = q, + q, where ¢, is parallel to 7, and ¢, is normal to 7,.
In particular, (v,), = 7., = —7,/N. Thus

N
2 (@) = (Yo, V) + ; [(Vias Vo) + (Vi T)]*

=

= (70) 7@)k +

M

[0 7 + (T, ) |

o,
Il
—

(5.3)
t [k 1 k~s N
= (,\/0! 7@)k + Z < )lr_—('ym 7-2)1! Z (7zb’ ’Yb)s
=0 \ § /L N i=1
k N
= (707 ,Ya)k + % C(k, S) ; (7113) /Yb)s
where the coefficients c(k, s) are all positive. By the induction hy-

pothesis the last sum on the right can only become larger if p is
rotated about an axis through 7, so that v, = 7; for some j. Thus

N
(5.4) () =20, p) =
where p’ is a linear combination of 7, and 7, i.e. ' = —xv, + ¥7;
where z, y = 0. Now
_ ’ N 2 2 2
(5.5) 1=@,7)=2 Tt

and

5.6) J= <y + %)' + (—1)k<% + x)k (N - 1)<LNy)k .

It suffices to show that J is maximal when x = 0 and ¥y = 1 (in which
case J =1+ (—1)FN'F)

First we consider the case where % is odd, and write & = 2m + 1.
The vector T, where

3.7) T — (—(% + y> <x + -J%)) :

is a counterclockwise tangent to the ellipse described by (5.5) in
the first quadrant of the xy plane. We have
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(grad J, T)
(5.8 =k(l— N‘z)[w(—% + y)m + y(x + -l%)m — ( + y)(% - %)“‘]
>0

for 0 < z <1, so J achieves its maximal value at the endpoint (0, 1).
Next, let & be even and write & = 2m. Replace = by z/y in (5.1),
and multiply both sides of (5.1) by ¥*». It follows that J <1 + N2
whenever (5.5) holds. Since a uniform power maximum must be one
of the 7v,, this completes the proof.

COROLLARY 4. Let pc U. Let 7, +-+, 7y be the vertices of the
N-dimensional simplex, and assume the sum

N

(5.9) T(p) =% 17— »l 0<r<2

=0

18 minimal. If Conjecture A is true, then p =7, for some .

Proof. This follows from Corollary 3 and the theorem.

It seems reasonable to conjecture here that T(p) is maximal if
and only if p = —7, for some ¢. But (see the comment towards the
end of §6) the —7,; are not always uniform power minima.

We digress here to mention that an inductive procedure similar
to that used in the proof of Corollary 3 shows that for any pec EY
we have

N
(5.10) S = 3000 =220, 0,
where again the 7, are the vertices of a regular simplex inscribed

in U. The famous Selberg inequality [13, pp. 7-8] asserts that

CRED S0, E10 1] = 6,0

for any nonzero vectors v, with 0 £ ¢ < N. For the vertices of a
regular simplex

(5.12) S, ~/-)1=1+N(i)=2
) = N

so in this case the Selberg inequality yields

(5.13) > (p) = 2(p, D)

which is somewhat weaker than (5.10). Also, the equality (5.10) has
as a consequence that

(5.14) g; (7, — p|* = 4N + YN



THE SUM OF THE DISTANCES TO N POINTS ON A SPHERE 571
for pe U.

6. The regular N-gon. Let the p;, where 0 < ¢ < N — 1, denote
the vertices of a regular N-gon inscribed in the unit circle U given
by 2* + y* = 1. We begin by establishing two lemmas; the first is
well known, but we include it for the sake of completeness.

LEMMA 6.1. For k a positive integer,
k
(6.1) cos* x = >, a,, COS ¥
8=0
where a,, = 0 and a,, =0 i¢f s = kmod 2.

Proof. Since cos*x = 1/2 + 1/2 cos 2z, this is true for k¥ =1 and
k = 2. Assume true for integers less than k. For k& > 2 we have

cos® & = (cos* 2 x)(cos® )

= (cos*? x)(% + % cos 290)

and the result follows from the identity
cos Acos B =—;—cos(A+ B) + —;-cos(A — B)
and the induction hypothesis.

LEMMA 6.2. If k is a nonmegative integer, then for any real ¢
we have

©2 St (B o) = e ()

with equality if and only if either ¢ = 2xm/N for some integer m,
or k< N.

Proof. Let d(N,s) be 1 if N divides s, and 0 otherwise. Then
the left hand side of (6.2) is

k N—1

N—1 >
= Z Oy, COS S Z cos —=—— 27 js + Z O, 8in 8¢ >, sin 2rJs
N 3=0 N

(6.3)
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Equality holds only under the conditions stated, so the result is proved.

COROLLARY 5. Let p =e®ec U. Ifp;, =" for0<j<N-1
and

N—1
(6.4) Ttp) = 2. lo; — pI’ 0<r<2
o
is minimal, then p = p; for some j.
Proof. The sum

N—1 N—1 27Tj
(6.5) S 0) =3, (05, )" = 3} eos* (2L — 5)

3=0 3=0 N
is maximal for all k& if and only if ¢ = 27j/Nmod2r for some j
with 0 < j < N — 1. In other words, if and only if » = p; for some
j. The result now follows from the theorem.

Although the author has a proof that 7T(p) is maximal if and
only if p = ¢**® /¥ for some integer j, it is is mot always true that
these points are uniform power minima. The case N=3 and kt =6
provides a counterexample.

Rather more can be proved here by means of certain differential
inequalities associated with Sturm-Liouville problems. Namely, T(p)
is minimal if and only if p is a vertex, and maximal if and only if
p lies half way between two vertices. Moreover, if A\ is allowed to
increase from 0 to 2N, then every time )\ passes through an even
integer the points at which T(p) was maximal will become the points
at which it is minimal, and vice-versa. The present paper omits this
proof.

7. Negative A. For N < 0 define the integral transform
Ay(s) = re—stt—l—Zdt = §' (=) .
]

If ¢, is a uniform power minima, the proof of the theorem can be
trivially modified, with A4,(s) in place of I,(s), to show that T(p) is
minimal when p = ¢,. So for )\ negative, T(p) is minimal for the
octahedron when p = p* and minimal for the cube when p = «a,.

Note added in proof. L. J. Yang has proved Conjecture A. Thus
Corollary 4 is unconditionally valid. His method, essentially, is to
analyze the cases (i) 0 < x < 1/4N, (i) 1/4AN < 2 < 2/N; and (iii)
2/N < x <1 separately. The details are somewhat lengthy, but
require only elementary calculus.



THE SUM OF THE DISTANCES TO N POINTS ON A SPHERE 573

REFERENCES

1. J. Ralph Alexander, On the sum of distances between n points on a sphere, Acta.
Math. Acad. Sci. Hungar., 23 (1972), 443-448.

2. J. Ralph Alexander and K. B. Stolarsky, Extremal problems of distance geometry
related to energy integrals, Trans. Amer. Math. Soc., 193 (1974), 1-31.

3. G. Bjorcek, Distributions of positive mass which maximize a certain generalized
energy integral, Ark. Mat., 3 (1955), 255-269.

4. L. M. Blumenthal, Theory and Applications of Distance Geometry, Clarendon Press,
Oxford. 1953.

5. H. Cohn, Stability configurations of electrons on a sphere, Math. Tables Aids Com-
put., 10 (1956), 117-120; Corrigendum, p. 263.

6. ———, Global equilibrium theory of charges on a circle, Amer. Math. Monthly,
67 (1960), 338-343.

7. L. Fejes Toth, On the sum of distances determined by a point-set, Acta Math.
Acad. Sci. Hungar., 7 (1956), 397-401.

8. L. Foppl, Stabile Anordnungen von Elektronen tm Atom, J. Reine Angew. Math.,
141 (1912), 251-302.

9. M. Goldberg, The isoperimetric problem for polyhedra, ToOhoku Math. J., 40
(1935), 226-236.

10. ————, Stability configurations of electrons on a sphere, Math. Comp., 23 (1969),
785-786.

11. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, 2nd edition, Cambridge
University Press, Cambridge, 1959.

12. E. Hille, Some geometric extremal problems, J. Australian Math. Soc., 6 (1966),
122-128.

13. H. L. Montgomery, Topics in Multiplicative Number Theory, Springer-Verlag,
New York, 1971.

14. G. Polya and G. Szegd, Uber den transifiniten Durchmesser (Kapazitdtskonstante)
von ebenen und raumlichen Punkmengen, J. Reine Angew. Math., 165 (1931), 4-49.
15. 1. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math.
Soc., 44 (1938), 522-536.

16. K. B. Stolarsky, Sums of distances between points on a sphere, Proc. Amer. Math.
Soc., 35 (1972), 547-549.

17. K. B. Stolarsky, Sums of distances between points on a sphere II, Proc. Amer.
Math. Soc., 41 (1973), 575-582.

18. L. L. Whyte, Unique arrangements of points on a sphere, Amer. Math. Monthly,
59 (1952), 606-611.

Received August 2, 1974 and in revised form February 15, 1975.

UNIVERSITY OF ILLINOIS






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RICHARD ARENS (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California
Los Angeles, California 90007
R. A. BEAUMONT D. GILBARG AND J. MILGRAM
University of Washington Stanford University
Seattle, Washington 98105 Stanford, California 94305
ASSOCIATE EDITORS
E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosHIDA
SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY * * *
UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY

OSAKA UNIVERSITY

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two must
be capable of being used separately as a synopsis of the entire paper. Items of the bibliography
should not be cited there unless absolutely necessary, in which case they must be identified by
author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any
one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39.
All other communications should be addressed to the managing editor, or Elaine Barth, University
of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author’s institution to pay page charges,
and reserves the right to delay publication for nonpayment of charges in case of financial
emergency.

100 reprints are provided free for each article, only if page charges have been substantially
paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular sub-
scription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual
members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270,
3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics
Manufactured and first issued in Japan



Pacific Journal of Mathematics

Vol. 57, No. 2 February, 1975

Norman Larrabee Alling, On Cauchy’s theorem for real algebraic curves with boundary . . . . .. 315
Daniel D. Anderson, A remark on the lattice of ideals of a Priifer domain .................... 323
Dennis Neal Barr and Peter D. Miletta, A necessary and sufficient condition for uniqueness of

solutions to two point boundary value problems .. ......... ... ... ... .o i, 325
Ladislav Beran, On solvability of generalized orthomodular lattices . ........................ 331
L. Carlitz, A three-term relation for some sums related to Dedekind sums .................... 339
Arthur Herbert Copeland, Jr. and Albert Oscar Shar, Images and pre-images of localization

THAPS .ottt 349
G. G. Dandapat, John L. Hunsucker and Carl Pomerance, Some new results on odd perfect

TUUIMDETS . oot e e 359
M. Edelstein and L. Keener, Characterizations of infinite-dimensional and nonreflexive

SPUCES . .« v o et ettt e e e e 365
Francis James Flanigan, On Levi factors of derivation algebras and the radical embedding

PFODLEm. . . ..o 371
Harvey Friedman, Provable equality in primitive recursive arithmetic with and without

IMAUCTION . .. ..o 379
Joseph Braucher Fugate and Lee K. Mohler, The fixed point property for tree-like continua with

finitely many arc COMPORENLS. . ..............ooiiuiui i 393
John Norman Ginsburg and Victor Harold Saks, Some applications of ultrafilters in

LOPOLOZY . . o e 403
Arjun K. Gupta, Generalisation of a “square” functional equation .......................... 419
Thomas Lee Hayden and Frank Jones Massey, Nonlinear holomorphic semigroups ........... 423

V. Kannan and Thekkedath Thrivikraman, Lattices of Hausdor{f compactifications of a locally
COMPACT SPACE . . .« oot e e e ettt e

J. E. Kerlin and Wilfred Dennis Pepe, Norm decreasing homomorphism
AlGEDIaS . ...
Young K. Kwon, Behavior of ®-bounded harmonic functions at the Wie
Richard Arthur Levaro, Projective quasi-coherent sheaves of modules . .
Chung Lin, Rearranging Fourier transforms on groups...............
David Lowell Lovelady, An asymptotic analysis of an odd order linear
Jerry Malzan, On groups with a single involution .. ..................,
J. E. McClendon, Metric families . ..............c.ccccoiiieiieninnnn.
Carl Pomerance, On multiply perfect numbers with a special property . .
Mohan S. Putcha and Adil Mohamed Yaqub, Polynomial constraints fo
SEMESITPLE FINGS . . .ottt e
Calvin R. Putnam, Hyponormal contractions and strong power converg
Douglas Conner Ravenel, Multiplicative operations in BP*BP ....... ..
Judith Roitman, Attaining the spread at cardinals which are not strong ||
Kazuyuki Sait6, Groups of *-automorphisms and invariant maps of von
Brian Kirkwood Schmidt, Homotopy invariance of contravariant functo)
Manifolds . ...
Kenneth Barry Stolarsky, The sum of the distances to N points on a sph
Mark Lawrence Teply, Semiprime rings with the singular splitting prop
J. Pelham Thomas, Maximal connected Hausdorf{f spaces.............
Charles Thomas Tucker, 11, Concerning o -homomorphisms of Riesz spa
Rangachari Venkataraman, Compactness in abelian topological groups
William Charles Waterhouse, Basically bounded functors and flat sheav
David Westreich, Bifurcation of operator equations with unbounded lin
William Robin Zame, Extendibility, boundedness and sequential conver,
holomorphic functions. ....... ... ...,



	
	
	

