BIFURCATION OF OPERATOR EQUATIONS WITH UNBOUNDED LINEARIZED PART

DAVID WESTREICH
The bifurcation problem for the operator equation

\[x = \lambda Lx + G(\lambda, x) \]

is considered, where \(L \) is a closed linear operator with characteristic value \(\lambda_0 \), and \(G(\lambda, x) \) is a continuous higher order term. If \(I - \lambda_0 L \) is a closed Fredholm operator and either \(L \) is self-adjoint and \(G \) is a continuously differentiable gradient operator or \(\lambda_0 \) is of odd algebraic multiplicity, then \(\lambda_0 \) is shown to be a bifurcation point.

Introduction. Several authors have considered the bifurcation problem for nonlinear operator equations with closed linearized part. J. MacBain [7] considered the case where the nonlinear term is compact and obtained global results, similar to those gotten by P. H. Rabinowitz [8] for compact operator equations. Other results in specialized instances were obtained, among others, by M. G. Grandall and P. H. Rabinowitz [3], M. Reeken [10], and R. Böhme [2] who also considered gradient operator equations.

In this note we extend known local bifurcation results, to nonlinear operator equations with linearized parts closed Fredholm operators and continuous higher order terms, dependent on \(\lambda \), and where characteristic value is of odd algebraic multiplicity.

Bifurcation results are also obtained for variational equations, though except for the dependence of the higher order term on \(\lambda \) they are not as strong as those of Böhme in [2].

1. Preliminary lemmas and definitions. To solve the bifurcation problem for a large class of nonlinear operators with noncontinuous linearized part we must introduce several preliminary definitions and technical lemmas.

The domain of a closed linear operator \(T \) of a Banach space \(X \to X \) will be denoted \(D(T) \). If \(T \) and \(B \) are two closed linear operators of \(X \to X \) by \(TB \) we will mean the operator defined by \(T(Bx) \) for \(x \in D(TB) = \{ x \mid x \in D(B) \text{ and } Bx \in D(T) \} \). The null space and range of \(T \) will be denoted \(N(T) \) and \(R(T) \) respectively. For convenience we write \(D(T^k) = D(T^k) \), \(N(T^k) = N_k(T) \), \(R(T^k) = R_k(T) \) and \(\bigcup_{k=1}^{\infty} N_k(T) = N_\infty(T) \). The smallest integer \(k > 0 \) such that \(N_k(T) = N_{k+1}(T) \) is called the ascent of \(T \) and is denoted by \(\alpha(T) \). If there is no such \(k \) we say that \(\alpha(T) = \infty \). Similarly the smallest integer \(k \) such that \(R_k(T) = R_{k+1}(T) \) is called the descent of \(T \) and
is denoted by $\delta(T)$ and we say $\delta(T) = \infty$ if there is no such k.

For the ascent and descent of an operator one can show

Lemma 1. $N_a(T) \equiv N_{a+1}(T), n = 0, 1, \ldots$. If $N_k(T) = N_{k+1}(T)$ for some k then $N_{k+n}(T) = N_k(T)$. If $R_{k+n}(T) \subseteq R_k(T), n = 0, 1, \ldots$. If $R_{k+1}(T) = R_k(T)$ then $R_{k+n}(T) = R_k(T)$. If $\alpha(T) = p < \infty$ and $\delta(T) < \infty$ then $\alpha(T) = \delta(T)$, $R_p(T) \cap N_p(T) = \{0\}$ and $D_p(T) = N_p(T) \oplus \{R_p(T) \cap D_p(T)\}$.

Proof. See [12, pp. 271-273].

For any Banach space X, we denote its conjugate by X^* and the conjugate of a linear operator T by T^*. A closed linear operator T of a real or complex Banach space X into itself is said to be a Fredholm operator if $\overline{D(T)} = X$, $R(T)$ is closed and both $N(T)$ and $N(T^*)$ are finite. The index of a Fredholm operator T, written $\kappa(T)$, is $\dim N(T) - \dim N(T^*)$.

Theorem 2. Let T and B be two closed Fredholm operators of X into X, then TB is a closed Fredholm operator and $\kappa(TB) = \kappa(T) + \kappa(B)$.

Proof. See [5, p. 103].

Theorem 3. Let T be a closed Fredholm operator of a real or complex Banach space X into X, T^* its conjugate and suppose $\dim N_a(T) < \infty$ and $\dim N_a(T^*) < \infty$. Then

(i) $\alpha(T) < \infty$ and $\delta(T) < \infty$,

(ii) $R_p(T)$ is closed and $X = N_p(T) \oplus R_p(T)$ where $p = \alpha(T)$,

(iii) T is a one-one map of $R_p(T)$ onto $R_p(T)$ with bounded inverse,

(iv) $\dim N_a(T) = \dim N_a(T^*)$ and $N_p(T^*) = N_a(T^*)$ and

(v) $\kappa(T) = 0$.

Proof. The proof of $\alpha(T) < \infty$ is immediate. That $R_p(T)$ is closed follows from Theorem 2 by an induction. To complete the proof of statements (i) and (ii) we first show $\delta(T) < \infty$. Suppose $\delta(T)$ is not finite. Then $R_{i+1}(T)$ is a proper subset of $R_i(T)$ for $i = 0, 1, \ldots$. For each $i > 0$, choose an $x_i \in R_{i+1}(T) - R_i(T)$ and a $y_i \in X^*$ such that, $y_i(x_i) = 1$, $y_i(x_j) = 0$ for $j < i$ and $y_i(R_i(T)) = 0$. Each $y_i \in N_i(T^*)$ [5, p. 59] and as the x_i are linearly independent so are the y_i. Hence $\dim N_a(T^*) = \infty$, contradicting our hypothesis and so $\delta(T) < \infty$.

As both the ascent and descent of T are finite, if $p = \alpha(T)$ then $N_p(T) \cap R_p(T) = \{0\}$. Therefore as $\dim N_p(T) < \infty$, $N_p(T) \oplus R_p(T)$
is closed [5, p. 16]. Suppose \(X \neq N_p(T) \oplus R_p(T) \). Then, since \(\text{codim} \, R_p(T) = \dim N_p(T^*) < \infty \), there exists a finite dimensional subspace \(M \) such that \(X = N_p(T) \oplus R_p(T) \oplus M \), [5, p. 103]. Moreover, as \(T^* \) is the product of closed Fredholm operators

\[
D_p(T) = X.
\]

Thus

\[
D_p(T) = N_p(T) \oplus \{ R_p(T) \cap D_p(T) \} \oplus M.
\]

On the other hand by Lemma 1

\[
D_p(T) = N_p(T) \oplus \{ R_p(T) \cap D_p(T) \}.
\]

Clearly

\[
N_p(T) \oplus \{ R_p(T) \cap D_p(T) \} \subseteq N_p(T) \oplus \{ R_p(T) \cap D_p(T) \}.
\]

Thus Eqs. (1), (2), (3) and (4) imply \(M = \{0\} \) and we have \(X = N_p(T) \oplus R_p(T) \). Statement (iii) is now immediate from statement (ii), Lemma 1 and the bounded inverse theorem [12, p. 179].

Lastly, we show statement (iv). From statement (ii) it follows that \(X^* = R_p(T)^\perp \oplus N_p(T)^\perp \) [5, p. 100] where for \(U \subseteq X, U^\perp = \{ y \in X^* \mid \langle y(x) = 0, x \in U \} \). The \(\dim R_p(T)^\perp = \dim N_p(T), R_p(T)^\perp = N_p(T^*) \) [5, p. 51] and \(N_p(T)^\perp = R_p(T^*) \) [5 p. 95]. Thus \(X^* = N_p(T^*) \oplus R_p(T^*) \) and so \(N_p(T^*) = N_p(T_\alpha(T^*)) \), which in turn implies

\[
\dim N_p(T) = \dim N_p(T) = \dim N_p(T^*) = \dim N_p(T^*).
\]

To show statement (v) we note that statement \((\text{iv})\) implies \(\kappa(T^*) = 0 \). But by an induction it follows from Theorem 2 that \(\kappa(T^*) = p \kappa(T) \). Hence \(\kappa(T) = 0 \).

2. Odd multiplicity results. Let \(X \) be a real Banach space and suppose \(L \) is a densely defined closed linear map of \(X \) into \(X \) with a real characteristic value \(\lambda_0 \), that is there exists a nonzero \(x_0 \in X \) such that \(\lambda_0 Lx_0 = x_0 \). The algebraic multiplicity of \(\lambda_0 \) is defined to be \(\dim N_{\lambda_0}(I - \lambda_0 L) \). Suppose further \(G(\lambda, x) \) is a continuous map of a neighborhood of \((\lambda_0, 0) \in R \times X \) into \(X \) satisfying

\[
\| G(\lambda, x_1) - G(\lambda, x_2) \| = h(x_1, x_2) \| x_1 - x_2 \|
\]

for \((\lambda, x) \) near \((\lambda_0, 0) \) and where \(h(a, b) \) is a function independent of \(\lambda \) tending to zero as both \(a \) and \(b \) tend to zero. We shall be concerned with finding nontrivial solutions, that is points \((\lambda, x) \in R \times X, x \neq 0 \), satisfying the equation

\[
x = \lambda Lx + G(\lambda, x).
\]
The closure of the set of nontrivial solutions of (6) will be denoted by \(S \). We will call \(\lambda_0 \) a bifurcation point of Eq. (6) if every neighborhood of \((\lambda_0, 0)\) contains a nontrivial solution of (6). Using a topological degree argument, P. H. Rabinowitz [8] proved the following bifurcation result:

Theorem 4. If \(L \) is completely continuous, \(\Omega \) is a bounded open set in \(R \times X \) containing \((\lambda_0, 0)\), \(G(\lambda, x) \) is completely continuous on \(\bar{\Omega} \) and \(\lambda_0 \) is a characteristic value of odd algebraic multiplicity, then there is a maximal closed connected subset \(C \) of \(S \) such that \(C \) meets the boundary of \(\bar{\Omega} \) or meets \((\lambda, 0)\), where \(\lambda \) is another characteristic value of \(L \).

By methods somewhat similar to those of [7] we can obtain a partial extension of Theorem 4 to those instances where Eq. (6) is not completely continuous and indeed \(L \) is not even bounded.

Theorem 5. Let \(L \) and \(G \) be as described above. Suppose \(I - \lambda_0 L \) is a closed Fredholm operator and \(\lambda_0 \) is a characteristic value of odd algebraic multiplicity of \(L \) and a characteristic value of finite algebraic multiplicity of \(L^* \). Then there exists a maximal closed connected subset of \(S \) meeting \((\lambda_0, 0)\) and \(\lambda_0 \) is a bifurcation point.

Proof. By Theorem 3, \(X = N \oplus R \) where \(N = N_0(I - \lambda_0 L) \) and \(R = R_0(I - \lambda_0 L) \). Thus \(x \in X \) can be uniquely expressed as \(x = u + v \) where \(u \in N \) and \(v \in R \). Moreover for all \(\lambda \in R \), \(I - \lambda L: N \to N \), \(R \to R \) and \(G(\lambda, x) = G_N(\lambda, x) + G_R(\lambda, x) \) where \(G_N(\lambda, x) \in N \) and \(G_R(\lambda, x) \in R \). Thus our problem is equivalent to that of finding solutions \((\lambda, u, v) \in R \times N \times R \) of the system of equations

\[
\begin{align*}
(6a) \quad u - \lambda Lu &= G_N(\lambda, u + v) \\
(6b) \quad v - \lambda Lv &= G_R(\lambda, u + v).
\end{align*}
\]

Since \(I - \lambda L \) has a bounded inverse on \(R \) for \(\lambda \) near \(\lambda_0 \) and \((I - \lambda L)^{-1}\) is continuous in \(\lambda \) for all \(1/\lambda \) in the resolvent of \(L \) (as a mapping of \(R \to R \)) [12, p. 257], \((\lambda, u, v)\) is a solution of (6a), (6b) if and only if \((\lambda, u, v)\) is a solution of the system

\[
\begin{align*}
(7a) \quad u &= \lambda Lu + G_N(\lambda, u + v) \\
(7b) \quad v &= (I - \lambda L)^{-1}G_R(\lambda, u + v).
\end{align*}
\]

An application of the contraction mapping principle [4, p. 260] to Eq. (7b) shows the existence of a uniquely determined continuous
function, \(v(\lambda, u) = v\) such that \(v(\lambda, u) = (I - \lambda L)^{-1}G_{n}(\lambda, u + v(\lambda, u))\) for all \((\lambda, u)\) in a neighborhood of \((\lambda_0, 0)\). Consequently it suffices to find solutions in \(R \times N\) of the equation

\[
(8) \quad u = \lambda Lu + G_{n}(\lambda, u + v(\lambda, u)).
\]

By continuity Eq. (8) satisfies the hypothesis of Theorem 4 near \((\lambda_0, 0)\) thus there exists a closed connected subset \(C'\) of \(S\) meeting \((\lambda_0, 0)\) and \(\lambda_0\) is a bifurcation point. As the union of connected sets containing a common point is connected an application of Zorn's lemma [6, p. 62] will show that \(S\) contains a unique maximal closed connected subset \(C\) meeting \((\lambda_0, 0)\). Thus \(C' \subseteq C\) and our theorem is proven.

Remark. Rabinowitz [9, p. 17] has proven a result similar to Theorem 5 for \(L\) bounded.

3. Gradient operators. Let \(X\) be a real Hilbert space and suppose \(L\) is a densely defined closed self-adjoint linear operator of \(X\) into \(X\) with a characteristic value \(\lambda_0\). Suppose further \(G(\lambda, x)\) is a twice continuously differentiable map of a neighborhood of \((\lambda_0, 0)\) in \(R \times X\) into \(X\) such that for fixed \(\lambda, G(\lambda, x)\) is a gradient map [13, p. 54] and \(G(\lambda_0, 0) = 0\) and \(G_{n}(\lambda, 0) = 0\) for all \(\lambda\) near \(\lambda_0\). We shall be concerned with solving the bifurcation problem for the equation

\[
(9) \quad x = \lambda Lx + G(\lambda, x).
\]

For \(L\) bounded, M. S. Berger [1] has shown

Theorem 6. If \(L\) is bounded and \(I - \lambda_0 L\) is a Fredholm operator then \(\lambda_0\) is a bifurcation point of Eq. (9).

The same result may be obtained for \(L\) unbounded but closed.

Theorem 7. If \(I - \lambda_0 L\) is a Fredholm operator then \(\lambda_0\) is a bifurcation point of Eq. (9).

Proof. As in the proof of Theorem 5 it suffices to solve the bifurcation problem for the system of equations

\[
\begin{align*}
u &= \lambda Lu + G_{n}(\lambda, u + v) \\
v &= (I - \lambda L)^{-1}G_{n}(\lambda, u + v)
\end{align*}
\]

for \((\lambda, u, v)\) in \(R \times N \times R\), \(G_{n} \in N\) and \(G_{n} \in R\), where \(N = N(I - \lambda_0 L)\) and \(R = R(I - \lambda_0 L)\). By the implicit function theorem [4, p. 265] there exists a uniquely determined, twice continuously differentiable
function $v(\lambda, u)$ such that
\[v(\lambda, u) = (I - \lambda L)^{-1}G_B(\lambda, u + v(\lambda, u)) \]
for all (λ, u) near $(\lambda_0, 0)$. Thus our problem is reduced to solving the operator equation
\[u = \lambda Lu + G_N(\lambda, u + v(\lambda, u)) \]
for $(\lambda, u) \in \mathbf{R} \times N$. Moreover, if for fixed λ, $\mathcal{G}(\lambda, x)$ is the potential of $G(\lambda, x)$ (that is $\mathcal{G}(\lambda, x) = G(\lambda, x)$) then arguing as in the proof of Theorem 1 in [14] one can readily verify that for fixed λ
\[\frac{1}{2} \langle (I - \lambda L)(u + v(\lambda, u)), u + v(\lambda, u) \rangle - \mathcal{G}(\lambda, u + v(\lambda, u)) \]
is a potential for $(I - \lambda L)u - G_N(\lambda, u + v(\lambda, u))$. ($\langle , \rangle$ is the inner product on X.)

Therefore Eq. (10) is a gradient operator equation. Hence, as (10) satisfies the hypothesis of Theorem 6, λ_0 must be a bifurcation point of Eq. (9).

4. Remarks and two counterexamples. By Theorem 3 we could have replaced the hypothesis on the multiplicity of λ_0 of Theorem 5 by the equivalent hypothesis λ_0 is a characteristic value of the same odd algebraic multiplicity of both L and L^*. Moreover we could have alternately assumed λ_0 a characteristic value of odd algebraic multiplicity and $I - \lambda_0 L$ is a Fredholm operator of index zero since we can show

THEOREM 8. Suppose T is a closed linear Fredholm operator of X into X. If $\dim N_\omega(T) < \infty$ and $\kappa(T) = 0$ then $\dim N_\omega(T^*) = \dim N_\omega(T)$.

Proof. Let $p = \alpha(T)$. Then by Theorem 2, $\kappa(T^*) = p\kappa(T) = 0$. As in the proof of Theorem 3, $N_p(T) \oplus R_p(T) \oplus M = X$. If $M \neq \{0\}$ then $\dim N_p(T^*) > \dim N_p(T)$ which is impossible as $\kappa(T^*) = 0$. Hence $X = N_p(T) \oplus R_p(T)$ which implies $X^* = N_p(T^*) \oplus R_p(T^*)$ and so $\dim N_\omega(T^*) = \dim N_\omega(T^*) = \dim N_\omega(T)$.

We give an example to show that if λ_0 is a characteristic value of odd algebraic multiplicity of L but $\kappa(I - \lambda_0 L) < 0$ then λ_0 may fail to be a bifurcation point.

Let $H = \mathbb{C}_2 \times \mathbf{R}$ and let S be the shift operator on \mathbb{C}_2, that is $S: (a_1, a_2, \ldots) \rightarrow (0, a_1, a_2, \ldots)$ and consider the equations
\[x = \lambda[(S + I)x + (y^2, 0, \ldots)] \]
\[y = \lambda y \]
BIFURCATION OF OPERATOR EQUATIONS

for \((\lambda, x, y) \in \mathbb{R} \times H = \mathbb{R} \times (\mathcal{L} \times \mathbb{R})\). \(\lambda_0 = 1\) is a characteristic value of linear part of odd multiplicity and as

\[
\begin{pmatrix}
I - \lambda_0(S + I) & 0 \\
0 & I - \lambda_0 I
\end{pmatrix} = -\begin{pmatrix}
S & 0 \\
0 & 0
\end{pmatrix} = L
\]

we see \(\kappa(L) < 0\). Moreover a simple examination of cases for \(y = 0\) or \(y \neq 0\) shows that \(\lambda_0 = 1\) is not a bifurcation point of the system.

Lastly we show that if \(\lambda_0\) is a characteristic value of odd geometric multiplicity (that is \(\dim N(I - \lambda_0 L)\) is odd) but \(\kappa(I - \lambda_0 L) > 0\) then \(\lambda_0\) may fail to be a bifurcation point.

Let \(x, y \in \mathcal{L}\) and consider the system of equations

\[
\begin{align*}
x &= \lambda(S^* + I)x + \lambda(||x||^2 + ||y||^2, 0, \cdots) \\
y &= \lambda(S^{*3} + I)y
\end{align*}
\]

where \(S^*\) is the adjoint of \(S\), that is the left shift operator \(S^*: (y_1, y_2, \cdots) \rightarrow (y_2, y_3, \cdots)\).

If \(\lambda_0 = 1\) then the dimension of the null space of the linearized part of the system, \(I - \lambda_0 L\), is equal to 3 and \(\dim N(I - \lambda_0 L^*) = 2\). Thus \(\kappa(I - \lambda_0 L) = 3 - 2 > 0\). Moreover for \(\lambda\) near \(\lambda_0\) the system has no solutions other than trivial ones. Indeed, suppose \((\lambda, x, y)\) is a nontrivial solution and \(x = (x_1, x_2, \cdots)\). Then we have the equality

\[
(I - \lambda)(x_1, x_2, \cdots) = \lambda(0, 0, x_1, x_2, \cdots) + \lambda(||x||^2 + ||y||^2, 0, \cdots).
\]

Thus \(x_1 = \lambda(1 - \lambda)^{-1}||x||^2 + ||y||^2\) and for \(n = 1, \cdots, x_n = 0\) and \(x_{2n+1} = \lambda(1 - \lambda)^{-1}x_{2n-1}\). Therefore

\[
x = (||x||^2 + ||y||^2)(\lambda(1 - \lambda)^{-1}, 0, \lambda^2(1 - \lambda)^{-2}, \cdots).
\]

However as \(\lambda^n(1 - \lambda)^{-n} \rightarrow 0\) as \(n \rightarrow \infty\) for \(1/2 \leq \lambda, x \in \mathcal{L}\). Hence the system does not have any nontrivial solutions for \(\lambda\) near \(\lambda_0 = 1\).

REFERENCES

Received April 12, 1974 and in revised form February 21, 1975.

BEN-GURION UNIVERSITY OF THE NEGEV
BEER-SHEVA, ISRAEL
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF SOUTHERN CALIFORNIA

CALIFORNIA INSTITUTE OF TECHNOLOGY
STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF TOKYO

MONTANA STATE UNIVERSITY
UNIVERSITY OF UTAH

UNIVERSITY OF NEVADA
WASHINGTON STATE UNIVERSITY

NEW MEXICO STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

OREGON STATE UNIVERSITY *

UNIVERSITY OF OREGON *

OSAKA UNIVERSITY

* * *

AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics

Manufactured and first issued in Japan
Norman Larrabee Alling, *On Cauchy's theorem for real algebraic curves with boundary* 315
Daniel D. Anderson, *A remark on the lattice of ideals of a Prüfer domain* 323
Dennis Neal Barr and Peter D. Miletta, *A necessary and sufficient condition for uniqueness of solutions to two point boundary value problems* ... 325
Ladislav Beran, *On solvability of generalized orthomodular lattices* 331
L. Carlitz, *A three-term relation for some sums related to Dedekind sums* 339
Arthur Herbert Copeland, Jr. and Albert Oscar Shar, *Images and pre-images of localization maps* ... 349
G. G. Dandapat, John L. Hunsucker and Carl Pomerance, *Some new results on odd perfect numbers* ... 359
M. Edelstein and L. Keener, *Characterizations of infinite-dimensional and nonreflexive spaces* ... 365
Francis James Flanigan, *On Levi factors of derivation algebras and the radical embedding problem* ... 371
Harvey Friedman, *Provable equality in primitive recursive arithmetic with and without induction* .. 379
Joseph Braucher Fugate and Lee K. Mohler, *The fixed point property for tree-like continua with finitely many arc components* ... 393
John Norman Ginsburg and Victor Harold Saks, *Some applications of ultrafilters in topology* ... 403
Arjun K. Gupta, *Generalisation of a “square” functional equation* .. 419
Thomas Lee Hayden and Frank Jones Massey, *Nonlinear holomorphic semigroups* 423
V. Kannan and Thekkedath Thrivikraman, *Lattices of Hausdorff compactifications of a locally compact space* ... 441
J. E. Kerlin and Wilfred Dennis Pepe, *Norm decreasing homomorphisms between group algebras* ... 445
Young K. Kwon, *Behavior of Φ-bounded harmonic functions at the Wiener boundary* 453
Richard Arthur Levaro, *Projective quasi-coherent sheaves of modules* 457
Chung Lin, *Rearranging Fourier transforms on groups* .. 463
David Lowell Lovelady, *An asymptotic analysis of an odd order linear differential equation* 475
Jerry Malzan, *On groups with a single involution* ... 481
J. F. McClendon, *Metric families* .. 491
Carl Pomerance, *On multiply perfect numbers with a special property* 511
Mohan S. Putcha and Adil Mohamed Yaqub, *Polynomial constraints for finiteness of semisimple rings* ... 519
Calvin R. Putnam, *Hyponormal contractions and strong power convergence* 531
Douglas Conner Ravenel, *Multiplicative operations in BP*BP ... 539
Judith Roitman, *Attaining the spread at cardinals which are not strong limits* 545
Kazuyuki Saitô, *Groups of *-automorphisms and invariant maps of von Neumann algebras* 553
Brian Kirkwood Schmidt, *Homotopy invariance of contravariant functors acting on smooth manifolds* ... 559
Kenneth Barry Stolarsky, *The sum of the distances to N points on a sphere* 563
Mark Lawrence Teply, *Semiprime rings with the singular splitting property* 575
J. Pelham Thomas, *Maximal connected Hausdorff spaces* .. 581
Charles Thomas Tucker, II, *Concerning σ-homomorphisms of Riesz spaces* 585
Rangachari Venkataraman, *Compactness in abelian topological groups* 591
William Charles Waterhouse, *Basically bounded functors and flat sheaves* 597
David Westreich, *Bifurcation of operator equations with unbounded linearized part* 611
William Robin Zame, *Extendibility, boundedness and sequential convergence in spaces of holomorphic functions* ... 619