COVERING THEOREMS FOR FINITE NONABELIAN SIMPLE GROUPS. V

J. L. Brenner, Robert Myrl Cranwell and James Riddell
COVERING THEOREMS FOR FINITE NONABELIAN
SIMPLE GROUPS. V.

J. L. Brenner, R. M. Cranwell, and J. Riddell

In the alternating group A_n, $n = 4k + 1 > 5$, the class C of
the cycle $(12\cdots n)$ has the property that CC covers the
group. For $n = 16k$ there is a class C of period $n/4$ in A_n such
that CC covers A_n; C is the class of type $(4k)^4$.

1. Introduction. It was shown by E. Bertram [1] that for
$n \geq 5$ every permutation in A_n is the product of two l-cycles, for any l
satisfying $[3n/4] \leq l \leq n$. Hence A_n can be covered by products of two
n-cycles and also by products of two $(n-1)$-cycles. But if n is odd the
n-cycles in A_n fall into two conjugate classes C, C', and similarly for the
$(n-1)$-cycles if n is even, so that the quoted result does not decide
whether

$$CC = A_n.$$

The question was decided affirmatively for $n = 4k + 2$ and negatively
for $n = 4k, 4k - 1$ in [2]. The question is now decided affirmatively in
the remaining case $n = 4k + 1, n \neq 5$.

Theorem 1. For $n = 4k + 1 > 5$, the class C of the cycle $(12\cdots n)$
has property (1).

The proof is in §§2–4.

Regarding the product CC', it was shown in [2] that CC' covers
$A_n (n \geq 5)$ if $n = 4k, 4k - 1$, while if $n = 4k + 1, 4k + 2$, CC' contains all
of A_n but the identity.

By an argument quite similar to the proof of Theorem 1, we have proved

Theorem 2. For $n = 16k$, the class C of type $(4k)^4$ in A_n has
property (1).

The proof and some related matters are discussed in §5. Note that
the class in Theorem 2 has period $n/4$.

2. The case $n = 9$. Let $a = (123456789)$. For every class in
A_9, a conjugate b of a can be found such that ab represents (lies in) that
class. This assertion is the substance of the table below.
3. A lemma. In §3 and §4, C will denote the class of the cycle $a = (12\cdots n)$ in A_n.

Lemma. If $n = 4k + 1 > 5$, then CC contains the type $2^{2k}1^1$.

Proof. If $n = 1 \pmod{8}$, then $x = (nn-3 n-2 n-1, n-4 n-7 n-6 n-5; \cdots; 9678, 5234; 1)$
is conjugate to a and

$$ax = (1 3)(2 4)(5 7)(6 8) \cdots (n-4 n-2)(n-3 n-1).$$

If $n = 5 \pmod{8}$, $n > 13$, then $y = (nn-3 n-2 n-1, n-4 n-7 n-6 n-5; \cdots; 21 18 19 20, 17 14 15 16; 13 96 10, 12 78 11; 5 23 4, 1)$
is conjugate to a and

If \(n = 13 \) use the last 13 letters of the above \(y \). (The pattern of \(y \) differs from that of \(x \) only in the last block of 8 letters between semi-colons, 13 9 \(\cdots \) 11, in which the number of reversals is odd, whereas in every other such block of 8 letters in either \(x \) or \(y \), the number of reversals is even.)

4. The induction. The induction proceeds from \(n - 4 \) to \(n = 4k + 1 \). The induction hypothesis is: For every permutation \(T \) in \(A_{n-4} \), there are two \((n-4)\)-cycles \(d_1 \) and \(d_2 \), both in the class of the \((n-4)\)-cycle \((1 2 \cdots n - 6 n - 5 n - 4)\), and also two other \((n-4)\)-cycles \(d'_1 \) and \(d'_2 \), both in the class of \((1 2 \cdots n - 6 n - 4 n - 5)\), such that \(T = d_1d_2 = d'_1d'_2 \).

Let \(S \neq 1 \) be a permutation in \(A_n \). To show that \(CC \) contains \(S \) we consider several cases. In each case we find a conjugate \(S_i \) of \(S \), and a certain permutation \(g \) in \(A_n \), such that \(T = S_i g^{-1} \) fixes the letters \(n, n - 1, n - 2, n - 3 \) and thus its restriction to \(1, 2, \cdots, n - 4 \) lies in \(A_{n-4} \).

Case 1. \(S \) contains a cycle with 5 or more letters: take

\[
g = (n n - 1 n - 2 n - 3 n - 4).
\]

Case 2. \(S \) contains no cycle with 5 or more letters, but \(S \) contains at least one cycle with 4 letters: take

\[
g = (n n - 1 n - 2 n - 3)(n - 4 n - 5).
\]

Case 3. \(S \) contains no cycle with more than 3 letters, but \(S \) does contain two 3-cycles: take

\[
g = (n n - 1 n - 2)(n - 3 n - 4 n - 5).
\]

Case 4. \(S \) is of type \(3^1 2^{2k-2} 1^2 \): take

\[
g = (n n - 1 n - 2).
\]

Now, if \(S \) contains no cycle longer than a transposition, either \(S \) is of type \(2^{2k} 1^1 \), whence \(CC \) contains \(S \) by the lemma, or we have

Case 5. \(S \) fixes 5 or more letters: take \(g = 1 \).

The argument in Case 5 is quite simple. Since \(S \) fixes 5 or more letters, \(S \) has a conjugate \(S_i \) that fixes \(n, n - 1, n - 2, n - 3 \). Hence by the induction hypothesis \(S_i = d_1d_2 \), where \(d_1 \) and \(d_2 \) both fix \(n, n - 1, n - 2, n - 3 \), and can be expressed...
where the permutation $a_i \rightarrow b_i$ is an even permutation of the letters $1, 2, \ldots, n - 5$. Then $S_1 = d_3 d_4$, with

$$d_3 = (a_1 a_2 \cdots a_{n-5} n n - 1 n - 2 n - 3 n - 4),$$
$$d_4 = (b_1 b_2 \cdots b_{n-5} n - 4 n - 3 n - 2 n - 1 n),$$

and d_3, d_4 belong to the same class, be it C or C'. If the other part of the induction hypothesis is used in a similar fashion, the assertion that CC contains S follows.

The details for Case 1 are as follows. Since $T = S_1 g^{-1}$ moves at most the first $n - 4$ letters, we have by the induction hypothesis $T = d_1 d_2 = d'_1 d'_2$ where $d_1, d_2 \ [d'_1, d'_2]$ are from the same class in A_{n-4}. Writing

$$d_1 = (a_1 a_2 \cdots a_{n-5} n - 4), \quad d_2 = (b_1 b_2 \cdots b_{n-5} n - 4),$$

the permutation $a_i \rightarrow b_i$ is an even permutation of $1, 2, \ldots, n - 5$. Now $S_1 = T g = d_3 d_4$, with $g = (n n - 1 n - 2 n - 3 n - 4)$ and

$$d_3 = (a_1 \cdots a_{n-5} n - 2 n n - 3 n - 1 n - 4),$$
$$d_4 = (b_1 \cdots b_{n-5} n - 3 n - 1 n - 4 n - 2).$$

Note that d_3 and d_4 are in the same class, be it C or C', in A_n. By again using d'_1 and d'_2 in place of d_1 and d_3, the proof is completed in this case.

In Case 2, S has a conjugate S_1 such that $T = S_1 g^{-1}$ fixes at least 5 letters. Hence without loss of generality the factors $d_1, d_2 \ [d'_1, d'_2]$ can be chosen so that $T = d_1 d_2 = d'_1 d'_2$ with

$$d_1 = (a_1 \cdots a_{n-6} n - 5 n - 4), \quad d'_1 = (a'_1 \cdots a'_{n-6} n - 5 n - 4)$$
$$d_2 = (b_1 \cdots b_{n-6} n - 4 n - 5), \quad d'_2 = (b'_1 \cdots b'_{n-6} n - 4 n - 5)$$

and where $a_i \rightarrow b_i \ [a'_i \rightarrow b'_i]$ is an odd permutation of the letters $1, 2, \ldots, n - 6$. Now $S_1 = T g = d_3 d_4$, where

$$d_3 = (a_1 \cdots a_{n-6} n - 1 n - 5 n - 3 n - 2 n n - 4),$$
$$d_4 = (b_1 \cdots b_{n-6} n - 5 n - 2 n n - 3 n - 4 n - 1).$$

The permutations d_3 and d_4 belong to the same class in A_n. Priming the a_i and b_i completes the proof in this case.
In Case 3, S has at least two 3-cycles, and has a conjugate S_1 such that $T = S_1g^{-1}$ fixes the letters $n, n-1, n-2, n-3, n-4, n-5$. By the induction hypothesis permutations d_1 and d_2 exist such that $T = d_1 d_2$ with

$$d_1 = (n - 4 \ a_1 \cdots a_k n - 5 a_{k+1} \cdots a_{n-6}),$$
$$d_2 = (n - 4 \ b_1 \cdots b_l n - 5 b_{l+1} \cdots b_{n-6}),$$

and where d_1 and d_2 are in the same class in A_n. (We cannot assume that $n - 4$ and $n - 5$, which are fixed by T, are neighbors in d_1 and d_2, but it is possible that $k = 0$ and $l = n - 6$ or that $k = n - 6$ and $l = 0$.) Now $S_1 = Tg = d_3 d_4$, where

$$d_3 = d_1 h, \quad d_4 = h^{-1} d_2 g,$$

with $h = (n - 5 \ n - 3 \ n - 2)(n - 4 \ n - 1 \ n)$. Then d_3 and d_4 are both n-cycles. It has only to be checked that they are in the same class in A_n; to do this is tedious, but straightforward. To complete the proof in this case we observe that since S contains two 3-cycles and $S_1 = d_3 d_4$, the decomposition $S_1 = d_1 d_2$ can be obtained by applying a certain outer automorphism of A_n.

In the only remaining case, S fixes 2 letters, and therefore has a conjugate S_1 such that $T = S_1g^{-1}$ fixes

$$n, n - 1, n - 2, n - 3, n - 4.$$

Again we have $T = d_1 d_2$, where we can write

$$d_1 = (a_1 \cdots a_{n-6} n - 4 n - 5), \quad d_2 = (b_1 \cdots b_{n-6} n - 5 n - 4),$$

and where the permutation $a_i \to b_i$ is an odd permutation of the letters $1, 2, \cdots, n - 6$. Then $S_1 = Tg = d_3 d_4$, with

$$d_3 = (a_1 \cdots a_{n-6} n - 1 n n - 3 n - 2 n - 4 n - 5),$$
$$d_4 = (b_1 \cdots b_{n-6} n - 5 n - 4 n n - 2 n - 3 n - 1),$$

and these belong to the same class. By priming we again conclude CC contains S, and the proof is complete in all cases. Hence Theorem 1.

5. Covering A_{16k}. By means of an almost identical argument we have shown that the class C of type $4l_1 \ 4l_2 \ 4l_3 \ 4l_4$ ($l_i \geq 1$) in A_n ($n = 4 \Sigma l_i$) has the covering property (1). The lemma required is simpler: Let $m = 4l, b = (12 \cdots m)$. Taking $x =$
\[(m m - 3 m - 2 m - 1, m - 4 m - 7 m - 6 m - 5, \ldots, 8567, 4123)\]
gives
\[bx = (1 3)(2 m)(4 6)(5 7) \cdots (m - 4 m - 2)(m - 3 m - 1).\]

Hence if \(D\) is the class of type \(4l_1, 4l_2 \cdots 4l_r\) (\(r\) even) in \(A_n\), then \(DD\) contains the type \(2^{n/2}\).

In order to start the induction we had to prove that the class \(C\) of type \(4^r\) has the property \(CC = A_{16}\). The calculations are too lengthy to be included. (A copy can be had from any of the authors.) This yields Theorem 2.

One can ask how small a period is possible for a class \(C\) with property (1). The first result in this direction was that of Xu [4] who found such a class with period \(n - 3\) if \(n\) is odd and period \(n - 2\) if \(n\) is even. From the result of Bertram quoted in the introduction, it follows that the smallest period of such \(C\) is \(\leq \frac{3n}{4}\). While Theorem 2 does not give covering for all \(n\), it nevertheless yields, among classes \(C\) in \(A_n\) satisfying (1),

\[
\lim \inf_{n \to \infty} \frac{\text{period of } C}{n} \leq \frac{1}{4}
\]
as opposed to Bertram's \(3/4\).

From the other direction we have shown [3] that for \(n > 6\) there is no class \(C\) in \(A_n\) having property (1) and period 2, and if \(n = 12k + 10\) there is no such class of period 3. There may be such a class of period 4, however. More precisely, we conjecture that for \(n = 8k\), the class \(C = 4^{2k}\) has the covering property (1).

REFERENCES

Received August 20, 1973 and in revised form May 21, 1974. The first author was supported by NSF grant GP-32527. The third author was supported in part by NRC A-5208.
CONTENTS

Zvi Artstein and John A. Burns, Integration of compact set-valued functions ...297
J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful ... 1
Mark Benard, Characters and Schur indices of the unitary reflection group [321]3 ... 309
H. L. Bentley and B. J. Taylor, Wallman rings ... 15
E. Berman, Matrix rings over polynomial identity rings II 37
Simeon M. Berman, A new characterization of characteristic functions of absolutely continuous distributions 323
Monte B. Boisen, Jr. and Philip B. Sheldon, Pre-Prüfer rings 331
A. K. Boyle and K. R. Goodearl, Rings over which certain modules are injective .. 43
J. L. Brenner, R. M. Crabwell and J. Riddell, Covering theorems for finite nonabelian simple groups. V 55
H. H. Brungs, Three questions on duo rings .. 345
Iracema M. Bund, Birnbaum-Orlicz spaces of functions on groups 351
John D. Elwin and Donald R. Short, Branched immersions between 2-manifolds of higher topological type 361
J. K. Finch, The single valued extension property on a Banach space .. 61
J. R. Fisher, A Goldie theorem for differentiably prime rings 71
Eric M. Friedlander, Extension functions for rank 2, torsion free abelian groups ... 371
J. Froemke and R. Quackenbusch, The spectrum of an equational class of groupoids .. 381
B. J. Gardner, Radicals of supplementary semilattice sums of associative rings ... 387
Shmuel Glasner, Relatively invariant measures .. 393
G. R. Gordh, Jr. and Sibe Mardešić, Characterizing local connectedness in inverse limits .. 411
S. Graf, On the existence of strong liftings in second countable topological spaces .. 419
S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces 427
F. Hansen, On one-sided prime ideals .. 79
D. J. Hartfiel and C. J. Maxson, A characterization of the maximal monoids and maximal groups in βx 437
Robert E. Hartwig and S. Brent Morris, The universal flip matrix and the generalized faro-shuffle 445
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Allen Beachy and William David Blair</td>
<td>Rings whose faithful left ideals are cofaithful</td>
<td>1</td>
</tr>
<tr>
<td>Herschel Lamar Bentley and Barbara June Taylor</td>
<td>Wallman rings</td>
<td>15</td>
</tr>
<tr>
<td>Elizabeth Berman</td>
<td>Matrix rings over polynomial identity rings. II</td>
<td>37</td>
</tr>
<tr>
<td>Ann K. Boyle and Kenneth R. Goodearl</td>
<td>Rings over which certain modules are injective</td>
<td>43</td>
</tr>
<tr>
<td>J. L. Brenner, Robert Myrl Cranwell and James Riddell</td>
<td>Covering theorems for finite nonabelian simple groups. V</td>
<td>55</td>
</tr>
<tr>
<td>James Kenneth Finch</td>
<td>The single valued extension property on a Banach space</td>
<td>61</td>
</tr>
<tr>
<td>John Robert Fisher</td>
<td>A Goldie theorem for differentiably prime rings</td>
<td>71</td>
</tr>
<tr>
<td>Friedhelm Hansen</td>
<td>On one-sided prime ideals</td>
<td>79</td>
</tr>
<tr>
<td>Jon Craig Helton</td>
<td>Product integrals and the solution of integral equations</td>
<td>87</td>
</tr>
<tr>
<td>Barry E. Johnson and James Patrick Williams</td>
<td>The range of a normal derivation</td>
<td>105</td>
</tr>
<tr>
<td>Kurt Kreith</td>
<td>A dynamical criterion for conjugate points</td>
<td>123</td>
</tr>
<tr>
<td>Robert Allen McCoy</td>
<td>Baire spaces and hyperspaces</td>
<td>133</td>
</tr>
<tr>
<td>John McDonald</td>
<td>Isometries of the disk algebra</td>
<td>143</td>
</tr>
<tr>
<td>H. Minc</td>
<td>Doubly stochastic matrices with minimal permanents</td>
<td>155</td>
</tr>
<tr>
<td>Shahbaz Noorvash</td>
<td>Covering the vertices of a graph by vertex-disjoint paths</td>
<td>159</td>
</tr>
<tr>
<td>Theodore Windle Palmer</td>
<td>Jordan *-homomorphisms between reduced Banach *-algebras</td>
<td>169</td>
</tr>
<tr>
<td>Donald Steven Passman</td>
<td>On the semisimplicity of group rings of some locally finite groups</td>
<td>179</td>
</tr>
<tr>
<td>Mario Petrich</td>
<td>Varieties of orthodox bands of groups</td>
<td>209</td>
</tr>
<tr>
<td>Robert Horace Redfield</td>
<td>The generalized interval topology on distributive lattices</td>
<td>219</td>
</tr>
<tr>
<td>James Wilson Stepp</td>
<td>Algebraic maximal semilattices</td>
<td>243</td>
</tr>
<tr>
<td>Patrick Noble Stewart</td>
<td>A sheaf theoretic representation of rings with Boolean orthogonalities</td>
<td>249</td>
</tr>
<tr>
<td>Ting-On To and Kai Wing Yip</td>
<td>A generalized Jensen’s inequality</td>
<td>255</td>
</tr>
<tr>
<td>Arnold Lewis Villone</td>
<td>Second order differential operators with self-adjoint extensions</td>
<td>261</td>
</tr>
<tr>
<td>Martin E. Walter</td>
<td>On the structure of the Fourier-Stieltjes algebra</td>
<td>267</td>
</tr>
<tr>
<td>John Wermer</td>
<td>Subharmonicity and hulls</td>
<td>283</td>
</tr>
<tr>
<td>Edythe Parker Woodruff</td>
<td>A map of E^3 onto E^3 taking no disk onto a disk</td>
<td>291</td>
</tr>
</tbody>
</table>