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An operator T which maps a Banach space X into itself has
the single valued extension property if the only analytic function
/ which satisfies (λl - Γ)/(λ) = 0 is / = 0. Clearly the point
spectrum of any operator which does not have the single valued
extension property must have nonempty interior. The converse
does not hold. However, it is shown below that if λol -T is
semi-Fredholm and λ0 is an interior point of the point spectrum
of Γ, then T does not have the single valued extension property.

It will be convenient to use the following definition.

1. DEFINITION. Let T.X-+X be a closed linear operator map-
ping a Banach space X into itself, and let λ0 be a complex number. The
operator T has the single valued extension property at λ0 if / = 0 is the
only solution to ( λ l - T)f(λ) = 0 that is analytic in a neighborhood of
λ0. Also, T has the single valued extension property if it has this
property at every point λ0 in the complex plane.

2. THEOREM. Let T be a closed linear operator mapping the
Banach space X into itself. If T is onto but not one-one, then T does
not have the single valued extension property at λ = 0.

Proof. First we produce a candidate for /. Choose any x0 in X
with | | jco | |=l and Γxo = O, which is possible since T is not one-
one. Since T is a closed operator and is onto, it is an open
mapping. The open mapping theorem implies there exists a k > 0 such
that for any element x EX there is a y GX with Ty = x and | | y | | ^
k\\x\\. Now choose xn inductively so that Txn = xn-x and (|jCn|| =
k \\xn-i\\. Define /(λ) = Xxnλ

n. Since ||jcn \\ = kn, the sum converges for
|λ I < k~\ and / is analytic in this neighborhood of zero.

Now to show that (AJ- Γ)/(λ) = 0. Since T is a closed linear
operator, so is λ l - Γ . Each of the partial sums Σ£U*nλπ is in the
domain of λl - Γ, since each xn was chosen from the domain of
T. Furthermore

( λ l - Γ ) Σ x»λn
 = * N A N + 1

n=0

and
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But as N goes to infinity, fcN|λ|N+1 converges to zero for | λ | <
k'\ Since λl-T is a closed map, f(λ) = \imNΣn=oXnλ

n is in the
domain of λl - T and (A/ - Γ)/(λ) = limNxNλN+1 = 0.

The function /(A) obtained in the proof of Theorem 2 is certainly
not unique. However, it is typical of any function g satisfying
(λ/-Γ)g(λ) = 0 in the following sense: Suppose T is any closed
operator not having the single valued extension property at A = 0, and
that g is any analytic function defined near A = 0 satisfying
(A/-Γ)g(λ) = 0. Expand g in a Taylor series around 0:g(λ) =
2,xnλ

n. It can be shown that: (i) each xn is in the domain of T; (ii)
Txn+ί = xn for n = 0,1,2, •; and (iii) Tx0 = 0.

The above discussion holds also at points A 0 ^ 0 if we replace every
T by Γ-λ 0/, and every A by A -λ 0 .

There are more interesting ways to express Theorem 2: If T has the
single valued extension property, then T is invertible whenever it is
onto. Or again, if T has the single valued extension property, then λ0 is
in the spectrum of T if and only if λ0 - T is not onto. In particular this
is true for normal operators, spectral operators, etc.

3. COROLLARY. Let T be a closed linear operator on a Banach
space X and suppose Y is a cb sed invariant subspace. If TY = Y but
T is not one-one on Y, then T does not have the single valued extension
property at 0.

Actually, in Corollary 3, Y could be a linear manifold that is not
closed, provided that it can be given a new norm, larger than the
original, for which Y is complete (and hence becomes a Banach space).

4, COROLLARY. Let Y be the domain of a closed linear operator
S:X-^>Z, where Z is a Banach space. If TY = Ybut Tis not one-one
on Y then T does not have the single valued extension property.

5. COROLLARY. // there is a bounded linear operator on X which
is onto but not one-one, then the set of bounded operators that do not
have the single valued extension property at 0 has nonempty interior (in
the norm topology). And thus the set of operators without the single
valued extension property has nonempty interior.

A special case of the following result appears in Colojoara and
Foia§, Chapter 1.
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6. COROLLARY. Let T be a closed linear operator mapping the
Banach space X into itself, and assume that the domain of T is dense in
X so that the adjoint Γ* exists. If T is bounded below but is not onto,
then Γ* does not have the single valued extension property. Or
alternately, if the range of T is closed and T is one-one but not onto, then
Γ* does not have the single valued extension property.

Proof. If T is bounded below, its range is closed, and T is
one-one. Thus the range of Γ* is the orthogonal set to {0}, which is all
of X*; that is, Γ* is onto. Since T is not onto and the range of T is
closed, the null space of Γ* is not just {0}. Thus Γ* is onto but not
one-one, and so does not have the single valued extension property by
Theorem 2.

A point λ is in the limit spectrum of T if and only if there is a
sequence xn with ||xn || = 1 and (λJ - T)xn converging to 0.

7. COROLLARY. If the closed linear operator T has the single
valued extension property, then the limit spectrum of Γ* is the entire
spectrum of T*. Similarly, if Γ* has the single valued extension
property, then the limit spectrum of T is the entire spectrum of T.

A closed linear operator is semi-Fredholm if the range is closed,
and the dimension n(T) of the null space or the codimension d(T) of
the range is finite (or both). First we investigate the case where the null
space is finite dimensional, after a preliminary lemma needed in both
proofs.

8. LEMMA. Let T be a closed linear operator with closed range
mapping a Banach space X into itself, and let N be its null space. For
an arbitrary linear manifold M in X, if M + N is closed, then the image
T(M) of M is closed.

9. THEOREM. Let T be a semi-Fredholm operator mapping a
Banach space X into itself with n(T) finite. If the point spectrum of T
contains a neighborhood of zero, then T does not have the single valued
extension property at λ = 0.

Proof. Let Y be the subset of X given by the intersection of the
ranges of Tn for all n, that is,

y= n τnx.
n = \
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The proof consists of showing that Y is a closed invariant subspace of
X, that T maps Y onto itself, and that T is not one-one on Y. Then,
applying Corollary 3, we see that T does not have the single valued
extension property.

It is obvious that Y is a linear manifold in X and that it is invariant
under T. To show that Y is closed, we need only show that TnX is
closed for all n. Applying Lemma 9 to M = TΠX, it follows that
Tn+ι(X) = T(TnX) is closed if and only if TnX + N is closed. Now by
hypothesis N is a finite dimensional closed subspace of X, and ΓXis
closed. Since the sum of a closed subspace with a finite dimensional
subspace is always closed, T2X is closed. By induction TnX is closed,
and hence Y = Π (TnX) is also closed.

The next step is to show that T maps Y onto itself. Let
Rn = TΠX. For any y in y there is an xn in Rn with 7xn = y. Also,
xn - jcm is in N. Now K n Π N is a decreasing sequence of
subspaces. Since N is finite dimensional, this sequence is eventually
-constant. That is, for some m,RmΓ\N = RkΠN for all fcg
m. Thus xm - xk, which is in Rm Π N, is also in Rk. Since x̂  was
chosen in Rk, it follows that xm = JCΛ + (xm — jck) is in Jf?fc as well. That is,
xm is in i?k for all k ^ m therefore xm is in y = ΓΊ jRk. Thus Γ does
map y onto itself.

It remains to show that the restriction of T to Y is not one-one. It
is clear that if Tx = λx for some λ ^ 0, then x is in y. Thus any λ ^ 0
that is in the point spectrum of T is also in the point spectrum of
TI y. Hence by our hypothesis, for some r > 0, every A with 0 < | λ | <
r is in the spectrum of T\Y. Since the spectrum of Γ| Y is closed, it
also contains 0. But then since Γ| Y is onto, it cannot be one-one.

In summary, the resriction of T to Y maps Y onto itself but is not
one-one. Hence T does not have the single valued extension property.

Taylor (1966) has shown the following: Let T be an arbitrary linear
operator on a vector space (no topological properties are
necessary). If n(T) is finite, then Y = Π TnX satisfies TY =
y. This result can fail if n(T) is infinite.

A slight extension of this theorem is possible. We may replace the
assumption that the range of T is closed by: the range of Tk is closed
for some k. Since n(Tk)^kn(T) (see Taylor, 1966), we have that
n(Tk) is also finite. Then (using the notation of the proof of Theorem
9) y = (Ί TnX is also equal to Π (Tk)nX. The argument of the proof
applied to Tk shows that Y is closed and that TkY = Y, but Tk is not
one-one on Y. But of course this means that TY = Y and T is not
one-one on Y. Hence, by Corollary 3, T does not have the single
valued extension property.
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10. THEOREM. Let T be a closed linear operator mapping a
Banach space X into itself, and suppose that the codimension of the
range d(T) is finite. If the point spectrum of T contains a neighborhood
of zero, then T does not have the single valued extension property at
λ = 0 .

Note that if Γ is a closed operator and the codimension (the
dimension of X/R) of the range is finite, then the range is closed and so
T is automatically a semi-Fredholm operator. (See Kato, 1966, p. 233,
problem 5.7.)

Proof. The idea of this proof is similar to that of Theorem 9. Let
Y = Π TnX; it will be shown that Y is a closed subspace invariant
under Γ, and that T maps Y onto itself but is not one-one.

First we show that Y is closed; it is obviously a linear manifold that
is invariant under T. Let Rn = TnX. Since d(T) is finite, then
d(Tn) ^ nd(T) is also finite. It follows that Rn + ΛΓ = Rn 0 F Π where
Fn is a finite dimensional space. We now show that Rn is closed by an
induction argument: Rn+ι = T(Rn) = T(Rn + N). From Lemma 8, Rn+]

is closed if Rn+N is. But Rn+ N = Rn@Fn is closed since Rn is
closed and Fn is finite dimensional. Thus Y = Π Rn is closed.

Next it will be shown that T maps Y onto itself. It will be
sufficient to show that for some m,Rk Π N = Rm Π N for k ^ m for
then we complete the proof as in Theorem 9. For a proof of the
contrapositive, suppose that for an infinite number of n there is a zn in
Rn Π N but not in Rn+ι Π N. Then zn = Tnun, where un is not in
Rlm But the un are linearly independent. For if Σk=ιakuk = 0, then
taking Tκ and recalling that zk is in N, we get aκ = 0. Then recusively
we get ak = 0 for k = K - 1, , 1. Thus the un form an infinite linearly
independent set not in JR,. This contradicts the assumption that the
condimension of Rι is finite. Thus T maps Y onto itself as in the proof
of Theorem 9.

Finally, we show that T is not one-one on Y exactly.as in the proof
of Theorem 9.

In conclusion, Y is a closed subspace of X which is invariant under
T, and T maps Y onto itself but is not one-one on Y. Thus T does not
have the single valued extension property.

The two theorems above can be summarized to say that: // T is a
semi-Fredholm operator and the point spectrum of T contains a neigh-
borhood of zero, then T does not have the single valued extension
property at λ = 0.
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The requirement that T be semi-Fredholm in the above theorems
seems to be crucial. Even though the range is closed and the point
spectrum contains a neighborhood of zero, if n(T) = d(T) = «>, T may
still have the single valued extension property. (Certain normal
operators on a nonseparable Hubert space will work). An attempt to
extend the proofs of Theorems 9 and 10 to operators which are not
semi-Fredholm must encounter the following two difficulties: The
subspace Y = Π TnX may fail to be closed, or T may not map Y onto
itself.

In Theorem 2 it was shown that an operator T which is onto but not
one-one does not have the single valued extension property. Such
operators are semi-Fredholm operators with n(T) g 1 and d(T) = 0. A
rather natural extension of this theorem is now possible.

11. COROLLARY. Let T be a closed linear operator with closed
range mapping a Banach space X into itself. If the dimension n(T) of
the null space is strictly greater than the codimension d(T) of the range,
then T does not have the single valued extension property.

Proof. From the theory of semi-Fredholm operators, for suffi-
ciently small perturbations S,n(T + S)-d(T + S) = n(T)-d(T) (see
Kato, Theorem 5.22). Thus for small A,

n(λl -T) = n(T)- d(T) + d(λl - T)

That is, λl - T is not one-one for λ sufficiently small. Thus T is a
semi-Fredholm operator with point spectrum containing a neighborhood
of zero. By Theorem 10, T does not have the single valued extension
property.

One would like to show that if n(T) < d(Γ), then T does have the
single valued extension property (at least at 0). Unfortunately, this is
not true. For, if S is the right shift on Hubert space, then n(S) = 0 and
d(S)= 1; if T is any operator, then n(TφS) = n(T) and d ( Γ 0 S ) =
d(T)+l. In this way we may extend T to a new operator
Γ © S φ φ 5 with d arbitrarily large and n fixed, without affecting
the single valued extendibility (or lack of it).

For a closed linear operator T having a dense domain on a Banach
space X there is a unique adjoint operator Γ* defined on a total subset
of the dual space X*.
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12. COROLLARY. Let T be a semi-Fredholm operator on X with
domain dense in X. If n(T)<d(T)^™, then Γ* does not have the
single valued extension property at λ = 0.

Proof. For semi-Fredholm operators,

n(Γ*) = d(T), and d(T*) = n(T).

Hence d(T*) < n(Γ*), and by Theorem 11, Γ* does not have the single
valued extension property.

13. COROLLARY. // T is a closed linear operator on a Banach
space with dense domain and closed range, and if both T and T* have
the single valued extension property, then n(T) = d(T).

14. COROLLARY. Let T be a closed linear operator on a Banach
space with dense domain and with n(T) = d(T) finite. Then Thas the
single valued extension property near λ =0 if and only if T* does.

Proof. Since d(T) is finite and T is a closed operator, it follows
that the range is closed and hence T is a semi-Fredholm operator. If T
does not have the single valued extension property near 0, then
n(λl - T) > 0 for λ in a neighborhood of zero. Then

d(λl -T) = d(T) -n(T) + n(λl- T)

= n(λI-T)>0.

Thus n(λl* - Γ*) = d(λl — T) is strictly positive in a neighborhood of
zero. But then T* is a Fredholm operator whose point spectrum
contains an open set, and so by Theorem 10, T* does not have the single
valued extension property.

Conversely, suppose T does have the single valued extension
property. Then from Theorem 10, n(λl - T) = 0 in a deleted neighbor-
hood of zero (using the fact that n (λl - T) is constant in a deleted
neighborhood of a point where λl - T is semi-Fredholm). Hence
d(λl - T) = 0 in this neighborhood. This implies that Γ* has the single
valued extension property near λ = 0.

Two more concepts are useful at this point. Consider the iterates
T\k = 0,1,2, , of the operator T. The null space N(Tk+ι) always
contains N(Tk) and may be strictly larger. But if for some
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p, N(Tp+ι) = N(Γ P ), then for all k > p, N(Tk+1) = N(Γfc). The smallest
p satisfying the above is the ascent of Γ. It may happen that the
equation is not satisfied for any p ; in this case the ascent is
infinite. The descent is defined in a similar way with the ranges of T
instead of the null spaces. It is the smallest q with Tq+]X = TqX, and
is infinite if no such q exists.

15. THEOREM. Let T be a semi-Fredholm operator on X. Then
Thas the single valued extension property near 0 if and only if the ascent
of T is finite.

Proof. If the ascent is finite, then certainly T has the single valued
extension property near 0. For if (λl - T)f(λ) = 0 and /(λ) = Xxnλ

Λ

9

then xn is in N(Tn+ι) but not in N(T"). Hence N ( Γ n + V N(Γ") for
any n.

Suppose that the ascent is infinite. Since T is semi-Fredholm, if
the nullity n(T) is infinite, then the deficiency d(T) is finite; and, by
Theorem 11, T does not have the single valued extension
property. Thus assume that n(T) is finite, and let

y= n τ*x.
= 1

As was shown in the proof of Theorem 9, Y is a closed, invariant
subspace, and T maps Y onto Y. Since n(T) < », the null space N in
finite dimensional, and so (TkX) Π N is eventually constant. Since
the ascent is infinite, (TkX) Π N^ (0), for all k. It then follows that
y f l N ^ ( O ) ; that is, T is not one-one on Y. From Corollary 3, Γ does
not have the single valued extension property.

16. COROLLARY. If T is a semi-Fredholm operator with domain
dense in X, then Γ* has the single valued extension property if and only if
the descent of T is finite.

Proof. Since the range of Tk is closed for all k (as was shown in
the proofs of Theorems 9 and 10), the null space of Γ*k is the set of x*
orthogonal to the range of Γ\ Hence the ascent of Γ* is the descent of
T, and the conclusion follows by Theorem 15.

Acknowledgement. This paper is based on the author's Ph.D.
dissertation at the University of Illinois.



THE SINGLE EXTENSION PROPERTY ON A BANACH SPACE 69

REFERENCES

1. Errett Bishop, A duality theory for arbitrary operators, Pacific J. Math., 9 (1959), 379-397.
2. Ion Colojoara and Ciprian Foias, Theory of Generalized Spectral Operators, New York:
Gordon and Breach, 1968.
3. Nelson Dunford, Spectral operators, Pacific J. Math., 4 (1954), 321-354.
4. Nelson Dunford and Jacob Schwartz, Linear Operators, New York: Interscience 1957.
5. Seymour Goldberg, Unbounded Linear Operators Theory and Applications, New York:
McGraw Hill, 1966.
6. Tosio Kato, Perturbation Theory for Linear Operators, New York: Springer-Verlag, 1966.
7. G. M. Keselman, On the single-value analytic continubility of the resolvent of a bounded linear
operator, (Russian), Uspekhi Matematicheskikh Nauk, 17 (1962), 135-139.
8. D. G. Lay, Spectral analysis using ascent, descent, nullity, and defect, Mathematische Annalen,
184 (1967), 197-214.
9. Angus E. Taylor, Theorems on ascent, descent, nullity, and defect of linear operators,
Mathematische Annalen, 163 (1966), 18-49.
10. F. H. Vasilescu, Residual properties for closed operators on Frechet spaces, Illinois J. Math.,
15 (1971), 377-386.

Received July 17, 1974.

UNIVERSITY OF SAN FRANCISCO





CONTENTS

Zvi Artstein and John A. Burns, Integration of compact set-valued
functions 297

J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are
cofaithful 1

Mark Benard, Characters and Schur indices of the unitary reflection
group [321]3 309

H. L. Bentley and B. J. Taylor, Wallman rings 15
E. Berman, Matrix rings over polynomial identity rings II 37
Simeon M. Berman, A new characterization of characteristic

functions of absolutely continuous distributions 323
Monte B. Boisen, Jr. and Philip B. Sheldon, Pre-Prufer rings 331
A. K. Boyle and K. R. Goodearl, Rings over which certain modules

are injective 43
J. L. Brenner, R. M. Crabwell and J. Riddell, Covering theorems for

finite nonabelian simple groups. V 55
H. H. Brungs, Three questions on duo rings 345
Iracema M. Bund, Birnbaum-Orlicz spaces of functions on groups ....351

John D. Elwin and Donald R. Short, Branched immersions between
2-manifolds ofhigher topological type 361

J. K. Finch, The single valued extension property on a Banach
space 61

J. R. Fisher, A Goldie theorem for differentiably prime rings 71
Eric M. Friedlander, Extension functions for rank 2, torsion free

abelian groups 371
J. Froemke and R. Quackenbusch, The spectrum of an equational

class of groupoids 381
B. J. Gardner, Radicals of supplementary semilattice sums of

associative rings 387
Shmuel Glasner, Relatively invariant measures 393
G. R. Gordh, Jr. and Sibe Mardesic, Characterizing local connected-

ness in inverse limits 411
S. Graf, On the existence of strong liftings in second countable

topological spaces 419
S. Gudder and D. Strawther, Orthogonally additive and orthogonally

increasing functions on vector spaces 427
F. Hansen, On one-sided prime ideals 79
D. J. Hartfiel and C. J. Maxson, A characterization of the maximal

monoids and maximal groups in βx 437
Robert E. Hartwig and S. Brent Morris, The universal flip matrix and

the generalized faro-shuffle 445



Pacific Journal of Mathematics
Vol. 58, No. 1 March, 1975

John Allen Beachy and William David Blair, Rings whose faithful left ideals
are cofaithful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Herschel Lamar Bentley and Barbara June Taylor, Wallman rings . . . . . . . . . . 15
Elizabeth Berman, Matrix rings over polynomial identity rings. II . . . . . . . . . 37
Ann K. Boyle and Kenneth R. Goodearl, Rings over which certain modules

are injective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
J. L. Brenner, Robert Myrl Cranwell and James Riddell, Covering theorems

for finite nonabelian simple groups. V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
James Kenneth Finch, The single valued extension property on a Banach

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
John Robert Fisher, A Goldie theorem for differentiably prime rings . . . . . . . . 71
Friedhelm Hansen, On one-sided prime ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Jon Craig Helton, Product integrals and the solution of integral

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Barry E. Johnson and James Patrick Williams, The range of a normal

derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Kurt Kreith, A dynamical criterion for conjugate points . . . . . . . . . . . . . . . . . . . 123
Robert Allen McCoy, Baire spaces and hyperspaces . . . . . . . . . . . . . . . . . . . . . 133
John McDonald, Isometries of the disk algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 143
H. Minc, Doubly stochastic matrices with minimal permanents . . . . . . . . . . . . 155
Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint

paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Theodore Windle Palmer, Jordan ∗-homomorphisms between reduced

Banach ∗-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Donald Steven Passman, On the semisimplicity of group rings of some

locally finite groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Mario Petrich, Varieties of orthodox bands of groups . . . . . . . . . . . . . . . . . . . . . 209
Robert Horace Redfield, The generalized interval topology on distributive

lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
James Wilson Stepp, Algebraic maximal semilattices . . . . . . . . . . . . . . . . . . . . . 243
Patrick Noble Stewart, A sheaf theoretic representation of rings with

Boolean orthogonalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Ting-On To and Kai Wing Yip, A generalized Jensen’s inequality . . . . . . . . . . 255
Arnold Lewis Villone, Second order differential operators with self-adjoint

extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Martin E. Walter, On the structure of the Fourier-Stieltjes algebra . . . . . . . . . 267
John Wermer, Subharmonicity and hulls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Edythe Parker Woodruff, A map of E3 onto E3 taking no disk onto a

disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Pacific
JournalofM

athem
atics

1975
Vol.58,N

o.1


	
	
	

