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Functions are from R to N or R x R to N, where R denotes
the set of real numbers and N denotes a normed complete
ring. If β > 0, H and G are functions from R x R to N, / and
h are functions from R to N, each of H, G and dh has bounded
variation on [a, b ] and | H \ < 1 - β on [α, fc ], then the following
statements are equivalent:

(1) / is bounded on [a,b], each of [ H, [ G and

(LR) I (fG +fH) exists and
Ja

j X (fG+fH)

for ά ^ x ^ b, and
(2) each of *IΓ(1 +ΣJL, H ' ) , *ΓΓ(1 + G) and

exists for <2 ̂  JC < y ^ >̂ and

+ (R) £* dA (l + 2 H') ,Π*(l + G) (l + | j H1

for α ̂  JC ̂  /?.

This result is obtained without requiring the existence of inte-
grals of the form

G~ΪG=0 and Γ 11 + G - Π(l + G)\ = 0.

This article is part of a sequence of results on the solution of
integral equations initiated by two papers by H. S. Wall [28] [29] on
continuous continued fractions and harmonic matrices. He studied
certain techniques for solving integral equations which are associated
with product integration and his results have been extended in various
directions by J. S. MacNerney [18] [19] [20] [21] [22], J. W. Neuberger
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88 JON C. HELTON

[24] [25] [26], T. H. Hildebrandt [13], J. R. Dorroh [41, B. W. Helton
[5] [6] [7], D. B. Hinton [14], J. V. Herod [11], C. W. Bitzer [2] [3], D. L.
Lovelady [16] [17] and J. A. Reneke [27]. The results here connect
closely with those of B. W. Helton [5, §5, pp. 307-315].

B. W. Helton [5, Theorem 5.1, p. 310] solved the integral equation

(a) ΓifG+fH)
J a

by using product integral techniques. In his development, the exis-
tence of integrals of the form

(b)
Γ G-IG=0 and Γ \ 1 + G - Π(l + G)| = 0

plays an important part. For real valued functions, A. Kolmogoroff

exists and[15, p. 669] has shown that if G exists, then J G - I

is zero. Further, W. D. L. Appling [1, Theorem 2, p. 155] and B. W.
Helton [5, Theorem 4.1, p. 304] have shown that there exist other classes

of functions such that the existence of G is sufficient to assure that

G
- / •

f
J a

exists and is zero. Also, B. W. Helton [5, Theorem 4.2, p.

305] has shown that for some settings the existence of xΐl
y(ί + G) for

Γb

a ^x <y ^b is sufficient to assure that 11 + G - Π(l 4- G)\ exists
J a

and is zero. However, it has been shown by W. D. L. Appling [1,
Theorem 2, p. 155] and the author [8, pp. 153-154] that the existence of

G and xY\y{\ + G) for a ^x < y ^b is not sufficient to imply the

existence of the integrals in (b). In the following, we solve the integral
equation in (a) without requiring the existence of the integrals in (b).

All integrals and definitions are of the subdivision-refinement type,
and functions are from either R to N or R x R to N, where R denotes
the set of real numbers and N denotes a ring which has a multiplicative
identity element represented by 1 and a norm | | with respect to which
N is complete and | 1 | = 1. Lower case letters are used to denote
functions from R to JV, and capital letters are used to denote functions
from R x R to N. Unless noted otherwise, functions on R x R are
assumed to be defined only for elements {a, b) of R x £ such that
a<b. If D = {xq}

n

q=0 is a subdivision of [a,b], then D(/) =
{[xq-\,xq]}ϊ=u U = / U i ) and Gq = G(xq-uxq). Further, {xqr}

Λr%} repre-
sents a subdivision of [xq-nxq] and Gqr = G(xq,r-hxqr).
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ίThe statement that G exists means there exists an element L of

N such that, if e >0, then there exists a subdivision D of [a,b] such
that if / is a refinement of D, then

<€.

The statement that αΠb(l + G) exists means there exists an element L of
N such that, if e >0, then there exists a subdivision D of [a,b] such
that if / is a refinement of D, then

< 6.

The statement (LI?) (JG +fH) exists means C exists, where
J a J a

C(r,s) = f(r)G(r,s) + f(s)H(r,s).

We adopt the conventions that

ΓG=0
J a

and

Further,
i i

Σ Gq — 0 a n d Π
q = i q=i

where i > j .
The statements that G is bounded on [α, b], G E OP° on [α, b] and

GEOB° on [α, b] mean there exist a subdivision D of [a,b] and a
number B such that if {xq};=0 is a refinement of D, then

(1) \Gq\<B for <j = 1,2, ••-,*,
(2) JΠUO + G , ) ! ^ f o r i ^ i ^ j ^ n , and
(3) Σ q % | G j < B ,

respectively. Similarly, statements of the form \G\<β are to be
interpreted in terms of subdivisions and refinements. Observe that
every function in OB° is also in OP°.

The statement that G G OM* on [a, b] means ,Πy(l + G) exists for
fl^x<y^fc and if e > 0 then there exists a subdivision D of [a, b]
such that if {xq}

n

q=0 is a refinement of D and 0 ^ p < ( j g n , then
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Also, GEOL° on [a,b] only if limx_p+G(p,Jt), limx_p G(x,p),
limxy^p G(JC, y) and limxy^p G(x,y) exist for a ̂ p ^b, and G G OA°

on [a, b] only if I G exists and I G - \ G exists and is zero. For

additional background with respect to this paper, see work by B. W.
Helton [5] [6] and J. S. MacNerney [20]. Further, additional back-
ground on product integration is given by P. R. Masani [23].

LEMMA 1. If G is a function from R x R to N and G GOB° on

[a,b], then G exists if and only if xΐl
y(l + G) exists for a ̂ x <y ^b

J a

[10, Theorem 4].

LEMMA 2. If Hand G are functions from RxRtoN,He OL° on

[a,blGEOB° on [α, b] and either f G exists orxΠ
y(l + G) exists for

J a

a^x<y^b, then ΓHG and ΓGH exist and Xΐl
y(l + HG) and

,Π y(l + GH) exist for a^x<y^b [10, Theorem 5].

LEMMA 3. // G is a function from RxRto N,G G OJ3° on [a, b]
amixΠ

y(l + G) exists for a ^x<y^b, then GeOM* on [a,b] [10,
Theorem 1].

LEMMA 4. Ife>0,H is a function from RxRto N and H G OL°
on [a9b]> then there exist a subdivision {ίt}f=0 of [a,b] and a sequence
{/cy}f=, such that if l ^ j g p and ί M < x < y < th then

\H(x,y)-kί\<€

[6, Lemma, j). 498].

LEMMA 5. If Hand G are functions from RxRtoN,H G OL° on
[a,b] andG(EOA° and OB° on [a,b], thenHGEOA0 on [a9b] [6,
Theorem 2, p. 494].

LEMMA 6. If F and U are functions from RxRto N9F and U are
inOB0 on [a,b], F G OA° on [a, b], xYίy(I + U) exists for a ̂ x<y g
b and

(R) Γ F 5 I P
J X
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exists for a S x <y g fc, then

ί (R) P F S Γ P ( 1 +t/)-F(x, y)
Ja Jx

exists and is zero [5, Lemma, p. 307].

The main result now follows.

THEOREM. // β > 0, H and G are functions from R x R to N, / and
h are functions from R to N, each ofH, G and dh is in OB° on [a, b ] and
\HI < 1 - β on [a, b], then the following statements are equivalent:

Γb rb

(1) / is bounded on [a, b], each of \ H, \ G and
J a J a

(LR) Γ(fG+fH)
J a

exists and

fX (fG+fH)

for a ^ x ^ b, and
(2) each of XW(\ +Σj=lH

i), xW(l + G) and

(R) j " dh (l + Σ #') SΠ'(1 + G) (l + Σ H'

exists for a ^ x < y ^ b and

j = 1

+ (R) j X dh (l + Σ H') ,Π*(1 + G) (l + 2 H')

/or α ^ x i f e .
Before proving the theorem, we point out the results of considering

left and right integrals, respectively. If H = 0, then we have the
integral equation

(a) Γ fG.
J a
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This equation involves only a left integral, and its solution is

(b) f(x) = h(a)aIlx(l + G) + (R) Γ dhsll
x(\ + G).

J a

On the other hand, if G = 0, then we have the integral equation

(c) f(x) = h{x) + (R) [ fG
J a

This equation involves only a right integral, and its solution is

(d) f(x)^h(a)aU
x(\ + ΣHi) + (L) ΓdhrU'll + ΣH').

\ j=\ I Ja \ j=l

If z is in N and \z \ < 1, then 1 +ΣJL| z] exists and is (1 -z)'\ Thus, in
(d) and in the theorem itself, it is possible to substitute (1 - H)~ι for
1 + ΣJL, H!. To obtain some feeling for why invertibility-related condi-
tions are placed on H but not on G, consider the first approximations to
equations (a) and (c). For (a), we have that

f(x)±h(x) + f(a)G(a,x);

while for (c), we have that

and hence that

f(x)±h(x)[l-H(a,x)Γ.

For additional discussion of product integrals, inverses and integral
equations, the reader is referred to papers by J. V. Herod [12] and the
author [9].

The main result is now established.

Proof. To simplify notation in the following work, we use the
interval functions Γ, U and V to denote

,=\ i=\
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and
00

•f 'V "l T T i

respectively. Further, we use C to denote the interval function

Proof (1)^(2). Since f H exists and HGOB° on [a,b], it

follows that HEOL° on [ α , H and hence, 1 + ΣΓ-iHJ f ε OL° on
[a,b]. Thus, the existence of

ΓbI
Ja a j=\

follows from Lemma 2. Therefore, the existence of XΓFV for a ^ x <
ygf) follows from Lemma 1. Also, Lemma 1 implies the existence of

xΐl
y(l + G) for a ^ x < y ^ b from the existence of G. Lemma 2

J a

can be used to establish the existence of G ΣJL, H*. Therefore, since
J a

each of
fb fb » fb 00

G, Σ W and G 2 tf'
J a J a ] - \ J a / = 1

exists, we have that 1/ exists, and thus, the existence of X ΠT for
J a

α g x < y S b can be established by applying Lemma 1. Finally, since
V(r,s)sYlyT is in OL° on [α,ft], the existence of

(£) P<#tV$ΓFΓ
J X

fb

for fl g x < y g fc can be obtained from the existence of dh through
J a

the use of Lemma 2.
Suppose a g x ^ ft. We now show that

/(JC) = /t(0)αΓPΎ + (R) Γ dh VSWT.
J a

If a = x, the result follows immediately. Therefore, suppose α < JC.
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L e t £ > 0 . Since \H\< 1-/3 on [a,x], G, H and dh areinOB°on
[a,x] and / and V are bounded on [a,x], there exist a subdivision D, of
[a,x] and a number B such that if {JC,}?,0 is a refinement of D,, then

(1) | H , | < l - / 3 for i = \,2,- ,n,
(2) Σ?
(3) Σ?

(4) Σί. < B, and

(5) I V, ΠjU+1 Tk I < B for / = 1,2, , n.
Since rΓFΓ exists for a^r^s^x and UEOB° on [a,x], it

follows from Lemma 3 that there exists a subdivision D2 of [a,x] such
that if {jt,}Γ=0 is a refinement of D2 and 0 ^ p < q i n , then

(l) Urr«r-n;Lp+l:r|<e(i6B)-,
(2) |Π?_p + 1Γ i- ΐ,Π I Γ|<e(16B)~I, and
(3) \h(a)aU

xT

Since (/?) I rfΛ Vs IP Γ exists, there exists a subdivision D3 of [α, x ]
J a

such that if {JCJΓ-O is a refinement of D 3, then

J α vsu
xr- <€/8.

Since V(r, 5)SΠ
X Γ is in OL° on [Λ, JC], it follows from Lemma 4 that

there exist a subdivision D 4 = {U}Uo of [α, JC] and a sequence {/c;}f=1 such
that if l ^ j g p and fM < r < 5 < ii5 then

\V(r, s)sU
x T - kj

ίSince C E OB° on [α,x] and C exists, there exist subdivisions

jf+o1 and {sjpo1 of [α,jc] such that
(1) tM < η < Sj < tj for / = 1,2, ,p, and

(2) -ί"
Jx>.k-\

<e[8J3(p-hl)Γ 1 for / = l,2, ,p and

each refinement {Xjk}ϊ2o of {s/-i,ίj-i,f}}.
Further, for / = 1,2, ••,/?, there exist subdivisions Ey of [rh Sj] such that
if Ĵ  is a refinement of Eh then

Σ Σ c - ί 1

J = l F;(/) Jr,

Let D denote the subdivision

U A U {riJtf U {sjpo1 U JB,
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of [a, x ], and suppose {JC, }Γ=0 is a refinement of D. For / = 1,2, , p, let
Kj be the set such that i G Jζ only if η < JC,- S s, . Let K and L denote
the sets

U Ks and {ι}Γ,,- U ^ ,
j=\ /=!

respectively.
We now establish two inequalities that are necessary to complete

the proof. First,

ΓdhV.TFT-ΣdhtVt Π Γft|
Ja i = ] k=i + \

dh,vlxιn'τ-5jdhiv, Π
\ i = l <c=i + l

(I?) Γ dhV.ΐΓT-Σdh,Vlxιn'T
J a i = l

Second,

Π*Γ- fl €/8

i\c,-ί" c]vi Π τk

Γ civ, Π
xi-i J k=ι + l

μ Σ Q-Γ c v, Π
iGL Jx,_1 fc = i +

Σ\C-Γ civ, Π

Σfc,-Γ cl viβπ

Σ|fc i -Γ τk-x,wτ

€/8
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< - Γ c]viXlwτ
Jx,-, J

Vίx,ΓFΓ e/4

\ - ί C\k

l,?Jc~£,c

<Σ

If we employ the iterative technique used by B. W. Helton [5, p.
311], we have that

' - c] v, iΐ
J k = i + \

i=1 ί = l

Thus,

h(a)aU'T + (R) (XdhV,U'T-f(x)
J a

h(a)eWT-h(a)tlTt
i

+ (R) Γ dhVsWT-Σ dh, V, Π Tk
Ja i = l k=i + \

Σ\C,-\ C\V, Π 7
1 = 1 L Jx,-i J k=/ + l

Therefore, (1) implies (2).
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Proof (2)—>(1). It follows from the bounded variation of the
various functions involved that / is bounded on [a, b]. Since ΣJLi H' G
OB° on [a,b]9 it follows from Lemma 1 that

Γb oo fb

Ja )=\ Ja

exists. Recall that (1+ ΣJL1H'Γ1 exists and is \-H. Thus, since
ίb

\~HEOL° on [α,fc], it follows from Lemma 2 that H
J a

exists. Further, it follows from Lemma 1 that G exists. The
J a

Γb Γb Γb

existence of C now follows from the existence of G and H by
J a J a J a

applying Lemma 2.
Suppose a ^ JC ̂  b. We now show that

t* (fG+fH).
Ja

If α = JC, the result follows immediately. Therefore, suppose a <x.
Let e >0. There exist a subdivision D, of [a,x] and a number B

such that if {x,}"=0 is a refinement of Dx, then
(1) | H i | < l - / 3 for i = 1,2, - ,n,
(2) Σ?., |G, |<B,
(3) ΣΓ., |H, |<B,
(4)
(5)

Since G exists and Σ;=,ίί' e 0L° on [α,f>], it follows from

Lemma 2 that G Σ^, W exists. Thus, the existence of U follows
J a J a

from the existence of

Γ G, f * Σ Ĥ  and Γ G Σ ^J

J α J a j = l J a j = l

Therefore,
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exists f o r α ^ r g ί g j c by Lemma 1. Now, it follows from Lemma 3
that U G OM* on [α,x]. Hence, there exists a subdivision D2 of [α, x]
such that if {x;}Γ=o is a refinement of D2 and O^p < q ^ n, then

i=p +
< e(6BΓ

Since dh is in OA° and OJ3° on [a,x] and V G OL° on [α,x], it
follows from Lemma 5 that dh V G OA° on [α,x]. Thus, since 1/ G
OB° on [0, x] and , ΓΓ T exists for a ^ 5 < ί ^ x, it follows from Lemma
6 that

Jα Ju
(R)\ dhVsn

vT-dh(v)V(u,v) = 0.

From the existence of this integral and the fact that U G OM* on [a, x],
it follows that there exists a subdivision D3 of [α, x] such that if {JC,}Γ=0 is
a refinement of D3 and O g p < ί ^ n , then

(1) ΣΓ-.

(2) LΠ-

(R)Γ dhVsU
xT-dhiVi

Jxi-i
<€{\2B2Y\ and

Thus, if {JCJ}Γ=O is a refinement of D, U D 3 and 0 < p § n, then

(R)j'P dh VsΠ*- T - g dΛ« V, t Π Γt

(Λ) ί^ dh VsTF>T-Σ dh, VixιIF-T
J a i = 1

P P

i-Σl^v i x,πx-r- π rt

Σ ί (*) ί" dh Vs IT'T - dh v] *, IF* T
i-i L J*,-, J

HB[e(12B2)-']

(Λ) fX' dh V.TΓ T-dhtV,
JXi-X

Σ
1-1

'] + e(12B)-' = €(6B)'.
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It follows from the existence of the integrals involved that there
exists a subdivision D4 of [a,x] such that if {JC,}Γ=O is a refinement of D4,
then

<elβ

and

ΣdfcV, Π Tk-(R)ίXdhV,IΓT
i = l * = / + ! Ja

<e/6.

Let D denote the subdivision U U\ A of [a,x]. Suppose {Xi}Γ=o is a
refinement of D. Observe that

± (H
j=m \fc=m

Further,

$dh,V, Σ (Π τ

and

Σ (fl τ

These identities can be established by induction and are used in
subsequent manipulations.

We now work out a further identity to aid in establishing the
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existence of the desired integral. By employing the previously stated
identities, we have that

)ok+ Σ
/ ki l

Σ
k=i +

i = l i = l <c=i + l \j = i + l

Σ^v; Σ (fl r,)ft
/=! fc=ι+l \/=i+l /

/ = 1 i = 1

ftfciVi f t
A = / + !

k=j + \

(«) Γi + ± (H rfc) α + ± ( ή τfc) «I
L «=i \k=i / i=ι \k=i /

dΛ/V, f t Γtl G,
J

Σ (fl Γt) G, +/(α) Σ (fl Tk) H,
i = 1 V#c = 1 / i = l \k = \ I

iVi ft\Σ
i = 2 L / - 1
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Now, by employing the identity developed in the preceding parag-
raph, we have that

h(x)

<

ί = l

- [/(«) ft Tt+Σ dh, V^n+i 7i] I + e/6 + 6/6

i=2 L/ = k=j+l

/(α)αff-Γ-/(α)ΠΓk

e/3

\(Ji

\HA

+ Σ (R) ί ' d h v° n*'-'τ - Σ dh, v,
i=2 Ja j=\ k

+ Σ (J?)|a

IIldAv1,π j i'Γ-ΣdAJvitl
il

€/3

iαι

= 6.

Therefore, (LR) I (fG+fH) exists and is f(x)-h(x). Hence, (2)
implies (1). Ja

B. W. Helton states three additional theorems on the solution of
integral equations by product integration [5, Theorems 5.2, 5.3, 5.4, pp.
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313-314]. The techniques used in the present paper to avoid requiring
the existence of the integrals

Γ G-\G = 0 and Γ | l + G-Π(l

can also be applied to these results.
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