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In this paper we are concerned with the problem, posed by
R. R. Phelps, of describing the into isometries of the disk
algebra. We show that, in a certain sense, every isometry can be
approximated by convex combinations of isometries of the form
f—=k(fod). We also give some sufficient conditions for an
isometry to be of the form f— k(f°d).

Let D and I" denote, respectively, the open unit disk and the unit
circle. The disk algebra, i.e., the algebra of all complex valued functions
which are continuous on D U T and analytic on D, will be denoted by A.
It will be assumed that A is equipped with the sup-norm.

Operators of the form

(1 Tf=k(f-d)

are isometries of A: if k € A, if |kf|=1, and if 6: DUT—>DUT is
analytic on D, continuous on D UT ~ k 7'(0), and satisfies ¢ (k'(I') DT.
In fact, if T is a surjective linear isometry of A, then it must be of the
form (1) with k being a constant, and ¢ being a Mobius transformation.
(See [3, pp. 142-148].) Rochberg {8] has shown that if T is an isometry
such that T1 =1, and T(A) is a sub-algebra of A, then T is of the form
(1) with kK =1.

Note that any bounded linear operator T: A — A which satisfies
(1) also satisfies.

2) T1T(fg) = TfTg
for all f and g in A. Moreover, we have the following.

ProrosiTiON 1.1. A bounded linear operator T: A — A satisfies
(2) for all f,g € A iff it is of the form (1).

Proof. 1t is only necessary to show that, if T satisfies (2) for all
f,g € A, then it satisfies (1).

Suppose that w is a point of D where T1 is not 0. Consider the
linear functional defined on A by

L.(f) = (T1w)'Tf(w).

By (2), L. is a multiplicative. Hence, there is a v in D UT such that
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L.(f)=f(v). Since v =(T1(w))'TZ(w), where Z is the identity
function on D UT, it follows that the function ¢ = (T'1)"'TZ is bounded
on D. Thus, the singularities of ¢ in D are removable. Let S be the
operator defined on A by

Sf=T1(f ).

It follows easily from (2) that SZ" = TZ" for n =0,1,---. Since the
polynomials in Z are dense in A, the operators T and S are the same. If
T1=0, then, by (2), (Tf)’= T1Tf*=0. It follows that T is of the form
(1) with k =0.

For an example of an isometry which fixes 1 but is not multiplica-
tive, see [8].

For the remainder of this section, T will denote an arbitrary
isometry of A. Consider the closed set I'(T) ={z €T||TI(z)| =1 and
there is a point T(z) in T such that Tf(z) = T1(z)f(T(z)) for all f € A}.
Since A separates the points of I, it follows that the mapping z — T'(z),
denoted by T, is well defined and continuous on I'(T). In[5], we showed
that T maps I'(T) onto I'. The following proposition gives a simple
description of I'(T).

ProrosITION 1.2.
[(T)={weT||Ti(w)|=1 and |TZ(w)|=1}.

Proof. 1t is enough to show that if |T1(z,)| =|TZ(z,)| =1, then
z,€I(T). By the Hahn-Banach theorem, there is a measure w on I’

having total variation = 1 such that Tf(z,) = ffdp, for all fE A. Let
a= f ldu and b = deu, where Z is the identity on D UT'. Since au
has total variation = 1 and f adu =1, it follows that adu is nonnega-

tive. Note that f Re(l1 — abZ)adu =0. Thus, Re(1—abZ) is 0 on the

support of u. Hence the support of u consists of a single point, i.e.,
T(z).

THEOREM 1.1. Suppose m(I'(T)) >0, where m denotes Lesbegue
measure on I'. Then T is of the form (1).

Proof. For f,g € A, we have

T1(z) T(fg)(z) = Tf(z) Tg(2)
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forevery z €I'(T). Any two functions in A which agree on a subset of
I having positive Lesbeque measure are equal. (See [3, p. 52].) Thus
T1T(fg) = Tf Tg. It follows by Proposition 1.1 that T is of the form (1).

THEOREM 1.2. Assume that T1 is an inner function. Suppose that
T(A) contains a function G having the following properties: |G| =1,
m(G~)I)) >0, the set of connected components of G™(T') is countab e,
and G is not a constant multiple of T1. Then T is of the form (1).

Proof. Let H=TIG. Note that H'()=G"'T). Let
{Ji,J,,---} denote the collection of connected components of
H™'(I'). Suppose it can be shown that, for some q, m(H(J, NI'(T))) >
0. Then J, is necessarily a nontrivial sub-arc of I'. By a form of the
Schwartz reflection principle (See, e.g. [2, p. 187].), G can be continued
analytically across the interior of J,. It follows that the restriction of H
to the interior of J; is continuously differentiable. If H were constant
on J,, then we would have G = ¢T1 where c is a constant. Thus, H is
not constant and, hence, m(J, NT'(T))>0. It now follows by Theorem
1.1 that T is of the form (1).

It remains to be shown that m (H(J, NT'(T))) >0 for some q. Itis
claimed that

HH')=HH"'T)NI(T)).

For each z €T, there exists a measure w,, having total variation = 1,

such that ffduz = Tf(z) for each f€ A. In particular, we have 1=

le(z)duz. It follows that the measure T1(z)u, is nonnegative.

Suppose that z is choosen so that |G(z)|=|H(z)|=1. Let F be the
unique function in A such that G = TF. Then

f Re(1-H(z)F)T1(z)dn =0.

It follows }hat H(z) = F(w) for each w in the support of u.. Since the
mapping T is onto, there exists a z, EI'(T) such that
H(z)=F(T(2))

= T1(z)T1(z,))F(T(z))
= H(z)).
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Next it is claimed that m(H(H™'(I'))) >0. If m(H(H'(T'))) =0, then H
is constant on all of the J,’s. Since at least one of the J,’s is a
nontrivial sub-arc of I, it follows that G = ¢T'1 for some constant ¢ —a
contradiction to the hypothesis that G not be a scalar multiple of
T1. Finally, we have

O<mHMH'D)= mHJ, NT(T))).
It follows that m(H(J, N T'(T))) >0 for some q.

COROLLARY. Suppose that T1 is an inner function. If TA con-
tains an inner function which is not a scalar multiple of Tl then T is of
the form (1).

REMARK. Let & denote the sub-algebra of A consisting of func-
tions which are analytic in a neighborhood of D UT'. By arguments
similar to those used to prove Theorem 1.2, one can show that every
isometry of &/ must be of the form (1).

2. Approximation of arbitrary isometries. As in the
previous section, T will denote an arbitrary isometry of A. Let B
denote the space of bounded linear operators: A — A and let B, denote
the set of members of B having norm=1. As in [5], we define
E(T)={U € B,|Uf(z) = Tf(z) for every z€I(T) and every f€&
A}. In[5] we showed that E(T) is a face of B,, that E(T) is closed in
the weak operator topology, and that each member of E(T) is an
isometry. Thus, the set of isometries of A is the union of weak
operator-closed faces of B,. It follows from Proposition 1.2, that

E(T)={U € B,|UZ|I(T)=TZ|I(T) and UI1|I(T)=T1|I(T)},

where Z denotes the identity function on D UT. If m(I'(T)) >0, it
follows that E(T)={T}. Suppose that m(I'(T))=0. Let A, denote
the unit ball in A, let S,={f€A|f|[(T)= T}, and let S,=
{g €A |g|[(T)=T1|I(T)}. By aresult due to Rudin [9], both S, and
S, have infinitely many members. Let h €S, and k€ S,. The
operator U defined by Uf = k(foh) is in E(T). Thus, E(T) contains
infinitely many elements iff m(I'(T))=0. For the remainder of the
paper, we will consider only isometries T for which m(I'(T)) = 0.
Let F(T)={U € E(T)| U is of the form (1)}. Inview of (5, Th. 3],
it is natural to ask whether E(T) is the closed convex hull of F(T),
where the closure is taken in the weak operator topology? Although we
are unable to answer this question, we will show that there is a family ©
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of locally convex Hausdorff topologies on B with the following
properties: for each 7 € S, E(T) is the J-closed convex hull of F(T),
and the weakest topology containing all the members of © is the weak
operator topology.

The weak operator topology on B is the weakest topology in which

all linear functionals of the form H — fod,u, where fisin A and u isa

Baire measure on I', are continuous. It follows that the space B* of
weak operator continuous linear functionals on B is the direct sum of
sub-spaces & and ¥, where « is the sub-space of B* spanned by linear

functionals of the form H — j(Hf)gdm with g € L(m), and where & is

the sub-space of B* spanned by functionals of the form H — f Hfdv

with v being singular with respect to m. (See [1, p. 421]). Let Li(m)
denote {g €L,(m)|g=0 ae.}. For each g €L3i(m) we define the
Fg-topology on B to be the weakest topology in which the linear

functionals of the form H —>J'(Hf)gdm with f in A, and the linear

functionals in &, are continuous. Set ©={¥g|g € Li(m)}. Let W
denote the weak operator topology on B. Note that ¥g C W for each
g ELi(m). By [1, p. 421], the ¥g-continuous linear functionals on B

are those of the form I[(H) = fogdm + 31, f Hf.du,, where the meas-

ures w;, i =1,2,-- -, n, are singular with respect tom and f,f,,f» - fx €
A. Let U denote the smallest locally convex topology on B which
contains all members of ©. Any functional of the form L(H)=

f Hfdv, where f € A, and v is a regular Baire measure, can be written in

the form
L(H)= f Hidu + 3, [ HG"M)g.dm,

where w is singular with respect to m, and g,,8,, 83,8, € Li(m). It
follows that L is %-continuous. Hence, by the definition of %, we
have U C W.

THEOREM 2.1. Foreach g € Li(m), E(T) is the ¥g-closed convex
hull of F(T).

REMARK. It is not possible to prove Theorem 2.1 by using argu-
ments based on the Krein-Milman theorem. For in order for the
Krein- Milman theorem to apply to E(T) it would be necessary for
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E(T) to be compact in the ¥g-topology, but the following argument
shows that E(T) is not $g-compact for any g€ Li(m): Let K bea
“Cantor” subset of I which is disjoint from I'(T). Let C,(K) denote
the set of continuous complex valued functions on K having absolute
value=1. Define j: E(T)—> C(K) by j(U)=UZ|K. If C(K) is
equipped with the topology of pointwise convergence, then j is ¥g-
continuous for each g € Li(m). By [9], the map j is onto. Since
C\(K) is not compact in the topology of pointwise convergence, it
follows that E(T) is not compact in the ¥g-topology.
Our proof of Theorem 3 will depend on the following two lemmas:

LemMA 2.1. Forzin D, and t €{— m, 7] let
P.(e")=Re((z +e*) (z—e€")),

i.e., P.(e") is the Poisson kernel. Consider the set V ={Z",¢;P. |c: =0
and z, €D fori =1,2,---,n}. Then the L,-closure of V is Li(m).

Proof. Suppose that g, € Li(m), but g, is not in the closure of
V. Then there exists an h in L.(m), such that fg,hdm >0 and

f vhdm =0 for every v € V. In particular

sz(e"')h(e"')dm (e")=0.

for all z in D. Fatou’s Theorem [3, p. 34] implies that h =0 almost
everywhere with respect to m. Hence, jghdm =0. Thus, we have
reached a contradiction.

LemMMmA 2.2. Let E be a closed subset of T' such that m(E) =
0. Let ¢o: E—->DUT be continuous. Consider z,,z,, - ,2,, WE

D. There is a function ¢ in the unit ball A, of A which extends ¢, and
satisfies ¢(z)=w fori=1,2,---,n.

Proof. Suppose that w =0. Let
B(Z)=1I.,[(z—-z) (1-zz)""].

For each u in ', we have |B(u)|=1. Define B, on E by By(u) =
B(u)po(u). The function B, has an extension 8 in A,. It follows that
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BB satisfies the assertion of the lemma in the case where w =0. If
w# 0, we choose a Mobius transformation 7 of D such that 7(0) = w,
and apply the preceeding argument to obtain a function ¢, in A, which
extends 7 '°¢, and maps z,,---,z, into 0. Thus, the function ¢ =
7o), extends ¢, lies in A, and statisfies ¢(z;) =w fori =1,2,---n.

Proof of Theorem 2.1. (The argument used here is an adaptation
of one due to Morris and Phelps [6, Th. 2.1].)

Suppose U € E(T) but it is not in the Fg-closed convex hull of
F(T). By [1, Th. 9, p. 421}, there are functions f,f,,f,,---.f, EA,
measures W, 4, * * *, M, on I' which are singular with respect to m, and a
real number r >0 such that

Re ( f (Uf) gdm + 21 Ufdu) 2 Re ( f (Ff) gdm + 21 Fhd)+,

for every F in E(T).
By Lemma 2.1, there are points z,,z,,- -+, 2z, € D and nonnegative
real numbers ¢y, c,, -, ¢, such that

Re (2 ¢ Uf(z) + 2 Ufd,)
3)

r

=Re (S ¢Ff(z)+ | Ffdui) +Z,
(g i=1 ) 2

for every F in F(T). We can assume without loss of generality that
wi=z0 for i=1,2,,---,n. Since Uf,=Ff, on I'(T) for i =1,2,--+,n
and FeE€F(T), we can also assume that w,(I'(T))=0 for i=
1,2,---,n. Letv =2, u. Given e >0, thereisa closed subset Y of
I'~T(T) such that m(Y)=0 and v(T~Y)<e. Let h denote the
Radon-Nikodym derivative of u; with respect to » for i=
1,2,---,n. Choose continuous functions k'’ on I' such that 0=h|=1

and flhi—h',»ldv<e fori=1,2,---,n.

Let g =2t ,hiUf. Foreachy€Tl,define k, =27, hi(y)f. Then
g(y) = Uk,(y). g(y) is also equal to (U%*e,) (k,), where U* is the
adjoint of U and e, represents the ‘‘evaluation at y” functional on
A. Let S denote the unit ball in the dual space of A. Since U* maps
S into S, it follows that U*e, € S. The function W(p) =Rep(k,) is
weak™® continuous on S and sup W(S)=ReU*e,(k,) = Reg(y). The
extreme points of S are exactly the functionals ce,, where ¢,y €T. It
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follows from the Krein-Milman theorem that, for each y €T, there exist
¢ (y), c(y)ET, such that

Re (3 c(hIAG () >Reg(y)—e.

For each y € Y choose an open neighborhood V, of y such that
V,NI(T)=¢ and

Re( 3 coIMAB()) > Reg(w)-2e

forevery w € V,. Let{V,,- -, V, }be afinite collection of V,’s which
covers y. We can easily find another open cover {U,,---,U,} of Y

such that U, CV,, and v({y|y is in more than one U;})<e. Consider
the sets

H =(YNnU)~ U{Uli#j}, i=12-p.

Then H;’s are closed and disjoint and »(Y ~ U’_,H;) <e.
Define mappings 6o, ko: I(T) U[U%.,H,]—T by

_ [ (y) if y EH,
‘9°(y)“{T(y) if  yer.

_[cw) if yeH,
k"(y)—{Tl(y) if yer(T).

Note that m(I'(T) U[ U }.;H;]) =0. Since U is an isometry, there are
points w, and w, in D such that Re wof(w,)=Re Uf(z;))—€ for i =
1,2,---,p. By Lemma 2.2, there are extensions # and k, of 6, and k,
respectively, which lie in A, and satisfy 6(z) = w, and k(z;) = w, for
j=12,---,n. Define the linear operator F:A—>A by Fh=
k(h-0). Clearly, we have F,€ F(T). By a straightforward argu-
ment, we can find a constant M >0 independent of € such that

Re (,2 c,-F,f(zi)+§ Flfidu,-)

> Re (2 GUf)+ 3, f Uf,.du,-) ~ Me.

We can obtain a contradiction to (3) by taking € to be sufficient small.
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CorROLLARY 2.1. Suppose Tl1=1. Let E(T)={U|U€ E(T)
andU1= 1}, and let F(T)= E(T)NF(T). Then for each g € Li(m),
the set E\(T) is the closed convex hull of F,(T) where the closure is taken
in the $g-topology.

Proof. Let S,={L € S|L(1)=1}. The adjoint T* of T maps S,
to S;. The extreme points of S, are the functionals of the form e, with
y €. Thus, in the proof of Theorem 2.1 we may take c(y)=
1. Also, it is clear that, in this case, we may take w,=
1. Consequently, it can be asumed that the function k is identically 1.

3. Thecase T'1 = 1. In this section it will be assumed that
T1=1. We will investigate the closure in the weak operator topology
of the set cov F\(T).

Let H. denote the space of bounded analytic functions on D and let
B(H.) denote the space of bounded linear operators on H.. Denote by
% the weakest topology on B (H.) such that all linear functionals of the
form M — Mg(z), where g € H. and z € D, are continuous. The
following property of B(H.) will be very useful in this section: The unit
ball of B(H.) is ?-compact. To verify this property it sufficies to use a
result due to Kadison [4] together with the fact that the unit ball H. of
H. is compact in the topology of pointwise convergence.

Let Ar ={¢ €EA,|¢|I(T)=T}. Let H; denote the closure of Ar
in the topology of pointwise convergence on D. Since Hr C H., it
follows that H; is compact in the topology of pointwise convergence on
D. Each F & F(T) is of the form Ff=fo¢ for all f € A, where
¢ € Ar. Thus, F has an extension to H.. denoted F* which is defined
by F*g =go¢ for every g € H.. Similarly, each V €cov F(T) has
an extension V* lying in covF¥(T), where F¥(T)=
{F*|F € F(T)}. Since F¥(T) is contained in the unit ball of B(H.), it
follows that the 2-closed convex hull of F*(T), denoted by R, is
compact in the P-topology. Let Q denote the %-closure of
F¥(T). Suppose that W € R. By the integral form of the Krein-
Milman Theorem [7, p. 6], there is a probability measure wy supported
by Q such that

We(2)= | Wg(a)dun(W)
for every g € H. and every z € D. Note that Q ={W|Wg =go¢,

where ¢ € Hr}. Thus, Q may be identified with H.. Consequently,
we can write

We(2)= | go4()duu()
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for all g € H. and all z € D. Suppose now that U is in the weak
operator closed convex hull of F,(T). Then there exists a net {V,} in
cov F,(T) which converges in the weak operator topology to U. In
particular, Uf(z) = lim V,f(z) for each f € A and each z € D. The net
V* has a subnet V¥ which converges to some U*ER. By the
definition of the 2-topology, we have U*f(z) = Uf(z) for fE A and
z €D. Thus, we have proved the following:

THEOREM 3.1. Let U be in the closure of cov F(T) in the weak

operator topology. Then there exists a probability measure u on Hr
such that

Uf(z)=fH fod(2)du(s)

for each f € A and each z € D.

We will now use Theorem 3.1 to derive another sufficient condition
for an isometry to be of the form (1).

THEOREM 3.2. Suppose U is in the weak operator closure of
cov F(T). |If there is a nonconstant inner function G such that UG is
an extreme point of A,, then U is of the form (1).

Our proof of Theorem 3.2 depends upon the following technical
lemma.

LEmMA 3.1. Let G be a nonconstant inner function in
A. (a) Suppose that k € A is of the form k =Geoh on D, where

heH. Then h has an extension to DUTL which s
continuous. (b) Let h,, h,€ A,. Consider the set

S ={Z ED UFIh,(Z)= hz(Z)}.

Suppose that h,(S) is infinite. Suppose also that Geh,=Goh,. Then
h| = hz.

Proof. Since G is an inner function and is a member of A, it
follows that G is of the form

G(z)= e'“lyl (z —z)/(1 - Z,2),
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where the z,’s are (not necessarily distinct) points of D. It follows that,
given any point u, € I' U D, there exists a disk D, about u, and analytic
functions g,,g,,- -, g. defined on D,, such that if G(w) = u € D, then
w = g;(u) for some j. Suppose that u, = k(z,), where z,€T. Choose
a set W containing z, which is open relative to I'U D and satisfies
k(W)Cc D,. On WND,wehavek =Goh. Itfollows that for some j,
h(z) =g °k(z)forallz€ W. Thus, h can be extended continuously to
WNT. A simple compactness argument now shows that h can be
extended continuously to all of T'.

Consider the set Y={z€DUT|G'(h(z))#0 and h(z)=
hAz)}. We will show that Y is open relative to D UT'. Since Y is
nonempty, it will follow that h, = h,. Letz,€ Y. Since G'(h,(z,)) #0,
there exists an open disk D, about h,(z,) such that G is one-to-one on
D,. Choose a set N, which is open relative to D UT, such that
h(N)C D;and h,(N)C D,. Then, for z €N, G(h(z))= G(h(z)). It
follows that h, = h, on N.

Proof of Theorem 3.2: By Theorem 3.1, we may write

Ufe) = [ fo@)du(@)
forall f€ A and all z&€D. For each z €D, let
J, ={¢p € H |Re UG(z) <Re G ° ¢(2)}.

Suppose that for some u € D, we have ¢ = u(J,) >0. Define measures
@i and p, on Hy by

wi(K)=c'w(KNJ,)
pAK)=(1-c)"'n(K N(Hr ~J1,)).

By [7, Prop. 1.1], there are operators U, and U, in R such that
Uf) = [ fo6(@du i=12,

for each f€ A and each z € D. (Note that for f€ A, Uf is not
necessarily in A.) It follows that

Uf(z)=cUf(z) + (1 - c)Uf(2)

for f€E A and z € D. Since UG is an extreme point of A,, it is also
extreme point of H!. (See [3, p. 139].) Thus, we have UG = U,G =
U,G on D, but
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Re UG (u) =f Re UG (u)du (o)

< Re G o p(u)du(d)=Re U,G(u),

Hr

a contradiction. It follows that for each z€D we have
u{d|Re UG(z) <ReGo¢(z)}) =0. Similarly, we can show that

w({ed|ReUG(z)>ReG ¢ (2)}) = n({¢d |ImUG(z) #Im G ° ¢(2)}) = 0.

Thus, UG(z) = G ° ¢(z) for all ¢ in the support of u. It follows that
the support of u consists of finitely many functions ¢, -, . € Hr,
where each ¢, satisfies G °¢; = UG on D. By Lemma 3.1, each ¢; is
continuous on D UT. Thus, there exist positive numbers ¢y, -+, Cn
such that 2¢; =1 and

Uf(Z)z cf o di(2)

fpr each f€ A and each z€ D UTI'. For z €I(T), we have ¢;(z) =
T(z)fori=1,2,---,m. Itfollows by Lemma 3.1, that ¢, = ¢p,=--- =
¢.. Hence U € F(T).

ReEMARK. Theorem 3.2 provides a possible approach to the prob-
lem of finding an isometry T such that T'1 =1 and E(T) is not the weak
operator closure of cov F|(T). If an isometry T can be found such
that: T1=1, T is not of the form (1), and TG is an extreme point of A,
for some nonconstant inner function G € A, then it will follow from
Theorem 3.2 that T& weak operator closure of cov F(T).
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