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Let 'M denote the Hubert space of square summable analytic
functions on the unit disk, and consider those formal differential
operators

which give rise to symmetric operators in 3€. Examples have
been given where the symmetric operators associated with these
formal operators have defect indices (0, 0) and (2, 2) and hence
are either self-adjoint or have self-adjoint extensions in W. In
this note a class of symmetric operators with defect indices (1,1)
is given.

Let sA denote the space of functions analytic on the unit disk and $?
the subspace of square summable functions in si with inner product

( / 'g )"/l<, fWsWdxdy.

A complete orthonormal set for $f is obtained by normalizing the
powers of z. From this it follows that %t is identical with the space of
power series Σ™=Qanz

n which satisfy

(1.1)

Let L be such that it maps polynomials into Sίf and has the property
n,zm) = (zn,Lzm), n, m =θ, l ,2 , . Let SD0 be the subspace of

polynomials and set Tof = Lf for / in 3)0. Then To is symmetric and the
defect indices m+ and m" of its closure, 5, are just the number of
linearly independent solutions of Lu = in and Lu = - iu respectively
which are in $?. See [2]. In [2] and [3] examples of such symmetric
operators 5 with defect indices (0, 0) and (2, 2) are provided. We now
give a class of operators with defect indices (1, 1).
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2. Consider the operator L9

(2.1) L = ( c 1 z 3 + c 1 z ) ^ + ((c2 + 3 c 1 ) z 2 + c 2 ) ^ + 2c2z.

In [3] it is shown that L gives rise to symmetric To. Concerning the
defect indices of its closure 5, we have the following.

THEOREM 2.1. Let L be the operator of (2.1) then S has defect
indices m + = m~ = 1.

Proof. The idea of the proof is to show that the equation Lφ =
±iφ has precisely one power series solution φ(z) = Ί^=Qaiz

i and that
there exists a K > 0 and a positive integer p such that | α, f = Kj~ιlp for /
sufficiently large. Consequently the series ΣJL0|αy |

2/(j + 1) converges
and φ belongs to 9€, and m+ = m~ = 1.

Dividing Lφ = ± ίφ by c, we have the differential equation

(2.2) (z3 + ωz)φ" + [(3 + α)z2 + β]φ' + lazφ = λφ,

where ω = cjcu a = c2/cu β = c2lcl9 and λ = ±//c,.
Substituting ΣJ=oajz

i into (2.2) we obtain

(2.3) 00, + Σ [(/ + l)(ω/ + β)aj+ι + (/2 + /α + α - l

If β = 0 we have a0 = 0 and (2.3) can be solved recursively for
α2, #3, * * *, in terms of αj since ωj + β never vanishes. Thus we have
but one analytic solution

If β 7̂  0, we have α, = λao/β and (2.3) can be solved recursively for
α2, α3, etc., provided that (ωj + β) never vanishes for j =
1,2, . Thus we are able to obtain the single formal power series
solution φ(z) = 1 + axz + α2z

2 + . The case when (ωj 4- β) van-
ishes for some positive integer / presents some complications and will
be considered later in the proof. Solving (2.3) for aj+ι we have
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But βlω = c2lcι = α, hence (2.4) becomes

( 2 A)

Thus we obtain the estimate

(2.5) k+i|^Λ
\ω\

Since | ω | = 1 we have

(2.6) \aj+]

where

and

_ j 2 + ja -f (α -

We now estimate | w,(/)| and | w2(/)| for large /. Since | u2(j)I tends
to zero as j~2 it follows that there exists an M > 0 such that

(2.7) I u2(/)| = — , for / sufficiently large.

Concerning |MIO#)| we obtain, upon dividing,

«,(/) = (l - j ) + j Im(α)i + OO"2).

Thus I iiiθ')|2 = 1 ~ 2// 4- O(j~2), and hence by a direct calculation,

For ξ >0, we note that |ιii(j)| = 1 - ί/"1 for j sufficiently large if and
only if - 1< - £, or ξ < 1. Hence we have
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(2.8) I u^j) I ^ 1 - 1 , for / sufficiently large

and 0 < £ < l .

Using (2.6), (2.7), and (2.8) we obtain, for j sufficiently large,

w h e r e M(j) = max{\a]-]\,\aj\}.
Thus, for sufficiently large /, we have

(2.9) \aj+ι\^(\-y

where 0 < γ =ξ/2<l
Now consider the expression (l — γj~ι)(j — l)~ιlp, where p is a

positive integer. This is dominated by (j 4- l)"1/p for j sufficiently large
if and only if

Hence, if and only if - pγ + 1 < - 1 or - py < - 2. Since γ > 0,
p > 21 y. Thus we have

(2.10)

We now show that there exists a positive constant K for which
\a}\^Kj-ιlp for j ^ 1. Let j , be such that (2.9) and (2.10) hold for
/ > /,. Let K = max^y, | α, \j1/p so that | α; | ^ Kj~υp for / ^ /,. Using
(2.9) it follows that

where

Hence,
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and using (2.10) we have

(2.11) | f l J i + I | ^KGΊ+ir 1 / p

We now proceed inductively to establish

(2.12) | f l / l + k |^K0i + *r I / p , fc=2,3, .

Let

Kλ = max \aAjVp

making use of (2.11). Using (2.9) we have

where,

M ( / i + D = Max (I aiι+ιl\ah\)

It follows from (2.10) that

Continuing on in this manner we establish (2.12). Hence any
solution ΣJ=oa}z

i whose coefficients satisfy (2.4) is in $f. To complete
the proof we have only to deal with the case where jω 4- β vanishes for
some positive integer /.

We now consider the case when jω 4- β vanishes for some positive
integer n. The analytic solution obtained from (2.3) by taking α0 = ax =
• = an = 0, and solving recursively for an+2, cιn+3, , in terms of an+] is,
as we have seen, in 3€. If there were a second analytic solution
corresponding to a0^ 0 it would be in IK as well, and m*(m~) would be
2. We now show that this is not the case, i.e., m+ = m~ = 1. To do
this we make use of the following result.

Let μ be such that Im(μ)>0 and let 3)+

μ be the nullspace of the
operator S* - μ. Then the dimension of 3)+

μ is equal to m +. Similarly,
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let Im(μ) < 0 and let 3)~μ be the nullspace of the operator S* - μ, then
the dimension of S)~ is equal to ra~, [1, p. 1232].

Using this we see that m + is just the number of linearly independent
solutions of Lφ = μφ in ffl for any μ such that Im(/x)>0. Similarly,
m " is the number of linearly independent solutions of Lφ = μφ in $f for
any μ such that Im(μ) < 0. Hence, if we can show that there exist μ
such that Im μ > 0 (Im μ < 0) for which there is no analytic solution
corresponding to a0^0 we will have shown that m+ = m~ = 1.

Consider (2.3), where A is now μ/c2, and suppose that β =
- nω. Taking j = 1,2, , n we obtain the following set of n + 1 linear
equations in α0 thru αn:

0' + 1)0' - n)ωaj+ι + (j2 + ja + a - ί)aM = λah

j = l , 2 , , n - l

(n2 + na + a - l)an-\ = λan.

Thus we are led to consider the homogeneous system

- λa0- nωaλ = 0

2aa0- λdi + 2 ( 2 - n)ωa2 = 0

(n2+ na -2n)an-2- λan-x - nωan = 0

(n2+ na + a - X)an-\ - λan = 0

Since the parameter λ = μ/c2 appears only on the diagonal the system
determinant A (A) is a polynomial in λ of degree n + 1,

Thus Dn (λ) vanishes at most n + 1 points in the complex plane, and we
can find μ in the upper half-plane and lower half-plane for which
Dn(μlc2) ¥" 0. Thus a0 = ax = = an = 0 and there is only one analy-
tic solution of Lφ = μφ.
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