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If G is a locally compact group, denote its Fourier-Stieltjes
algebra by B(G) and its Fourier algebra by Λ(G). If G is
compact, then B(G) = Λ(G) and σ(B(G)), the spectrum o!
B(G), is G. If G is not compact then σ(B(G)) contains partial
isometries and projections different from e, the identity of
G. More generally, σ(B(G)) is closed under operations that
commute with "representing" and the "taking of tensor
products". It is shown that σ(B(G)) contains a smallest
positive element, zF; and that g G G Cσ(B(G))h+zFg G
σ(B(G))zF is an epimorphism of G into G, the almost periodic
compactification of G.

A structure theorem is given for the closed, bi-translation,
invariant subspaces of B(G). In so doing we introduce the
concepts of inverse Fourier transform localized at TΓ, and the
standardization of TΓ, where TΓ is a continuous, unitary represen-
tation of G.

Introduction. In this paper we establish some facts about the
structure of the Fourier-Stieltjes algebra, J3(G), of a locally compact
group G, which were inspired by [7], [11] and [14]. In particular, we
apply the characterization of the (nonzero) spectrum of B(G),
σ(J9(G)), obtained in Theorem 1 (ii) of [17] to investigate further the
structure of this spectrum. As one of several applications, we relate
the smallest, positive element of σ(B(G)) to the almost periodic
compactification of G. It soon becomes apparent that a deep under-
standing of closed, bi-translation invariant subspaces (and more spe-
cially, sub-algebras and ideals) of B(G) is needed. It is to this end that
we introduce a canonical or standard form for any continuous, unitary
representation π of G on Hubert space, and with it the notion of the
inverse Fourier transform "localized at TΓ".

We follow the notational conventions of [17] and define in the text
any new notations introduced.

The spectrum of B(G). If s Eσ(B(G)) there are naturally as-
sociated two (norm-decreasing, algebra) endomorphisms of B(G), viz.,
γ5: b 6 B ( G ) h s , f e GJS(G) and δs: b EB(G)H>b .s EB(G) where,
for example, (x,s.b) = (xs,b) for all JC G W*(G) = B(G)'. Letting
5 . B(G) = {s .b G B(G): b G B(G)} = γs(B(G)), similarly for B(G). s,
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we observe that these are right, respectively left, translation invariant
subalgebras of B(G); where we adopt the convention that the right
translate of b E B(G) by g E G is ft . g and <x, ft . g) = <gx, b) for all
JC E W*(G). We also observe that the kernels of ys and δs are right,
respectively left, translation invariant ideals of B(G). In case s = s2

we write, for example, (e - s). B(G) = ker γs, where e is the unit in
W*(G). We should also observe that s2 = s implies that s . B(G) and
(e - s). B(G) are norm-closed. We now have the following:

PROPOSITION 1. // s E W*(G) is an idempotent, i.e., s2 = s, then
the following are equivalent:

(i) sεσ(B(G));
(ii) s ,B(G)is an algebra and (e - s). B(G) is an ideal in B(G);
(ii)' ys is an endomorphism
(iii) B(G).sis an algebra andB(G) .(e-s)is an ideal inB(G);
(iii)' 8S is an endomorphism.

Proof. That (i) implies (ii) and (ii)' is immediate. We now show
that (ii) => (ii)' => (i). Consider that for bί9 b2 E B(G),

s . (bxb2) = s .((s . b λ + ( e - s ) . bx){s . b 2 + ( e - s ) . b2))

= s . ( s . b ] S . b 2 ) + s . ( ( ( e - s ) . b d ( b 2 ) )

+ s . ( ( s b ι ) ( e - s ) . b 2 )

= s . ( s . b { s . b 2 ) ( s i n c e (e - s) . B ( G ) i s a n i d e a l a n d s 2 = s )

= s . bx s . b2 (since s . B(G) is an algebra),

hence (ii)'. Evaluation at e shows that sEσ(£(G)), thus (ii)'Φ
(i). The remainder of the proposition follows immediately by sym-
metry.

If s2 = s E σ(B(G)), we call (e - s). B(G) aright-prime or δ-prime
ideal; similarly, B{G) .{e - s) is called a left-prime or γ-prime ideal,
where our terminology here is influenced by [13]. Note that a δ-prime
ideal ICB(G) has the property that if (ft, .gι)(b2. g2) El for all
gugiEGj then either ft,E/ or b2EL

The following results show that σ(B(G)) is closed under certain
operations, and a basis for generalizing some of the results of [14], [15]
on the structure of the spectrum of convolution measure algebras is thus
obtained. Recall first that any operator s on Hubert space has a left
and right polar decomposition, viz., s = vy\s\y where |s \y = (s*s)m and
s = \s\δvδ where \s\δ = (ss*)1/2. Also for later notational convenience
let σ(B(G))+ and σ(B(G))p denote the positive, hermitian elements and
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(self-adjoint) idempotents in σ(5(G)), respectively. Note that idem-
potents of norm one are self-adjoint and that vδ = υγ. We then have:

THEOREM 1. If s E σ(B(G)), then vΎ, vS9 \ s |γ, and \ s \δ are also in
σ(B(G)).

LEMMA. Ifs E σ(B(G))+, then the positive square root, s 1/2, is also
in σ(B(G))+.

Proof of Lemma. Let π, and τr2 be any two continuous unitary
representations of G on Hubert space, and by the same letters denote
their canonical extensions to W*(G). Abusing notation again, let
TΓ, ® τr2 denote both the usual tensor product group representation of G
and its canonical extension to W*(G). Now in W*(G) s m s m = s, and
π, <g> ττ2(s

 m s m) = (π, (8) π2(s m))\ But TΓ, ® π2(5) = 77,(5) <g) τr2(s)
since 5Gσ(B(G)), cf., [17], Theorem 1, (ii); and 7Γi(s)(g)7r2(s) =
(πi(51/2)®π2(51/2))2. Thus by uniqueness of the positive square root,
we have π,(s m) <g) τr2(sI/2) = TΓ, ® π2(51/2), hence s m G σ(B(G)) by [17]
Theorem 1, (ii) again.

Proof of Theorem 1. We prove υγ and \s |γ are in σ{B{G)), the
remainder of the theorem follows by symmetry. Note first that s*s E
σ(B(G)), since s*s^0, cf., [17] Theorem 1 (iii). Thus by the lemma
\s\y Eσ(B(G)). Now again let ττ,,π2 be representations as
above. We have τr,(g)772(s) = τr1(g)π2(ϋγ)7r1(g)π2(|5 | γ ) and
τr,(5)(g)7r2(5) = (π 1(ί; γ)(g)7r 2(ι; γ))(π 1(|5| γ)(g)7r 2(|5| γ)). Since 5, \s\y E
σ(B(G)) we have

π,(| 5 | y) 0 τr2(| 5 | γ)

= (π,(ι?γ)(g)7r2(ι;γ))(7r1(|5|γ)(g)π2(|5|γ))

Now ϋ*t?γ is the support of | s | γ , by the definition of the polar
decomposition. But it is easy to see that TΓ, ®π2(t>γ) and
πi(ι; γ )0 τr2(ι?γ) are partial isometries, both with initial projections equal
to the support of ττ,(|s \y)<S}π2(\s | γ ) . Thus again by uniqueness of the
polar decomposition and [17] Theorem 1 (ii), we have υΎ Eσ(B(G)).

As corollaries of the method of argument in the foregoing proofs
we have:

COROLLARY. IfsE σ(B(G))+, thens2 E σ(B(G)) for all complex z
with Re z > 0.
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REMARK. We understand by 5° the support projection of s, which
is in σ{B(G))\ and the map z\-+sz is analytic for Rez >0.

REMARK. Speaking loosely, the weakly compact *-semigroup
σ(B(G)), see first corollary of Theorem 2, is closed under any operation
that commutes with representing and the taking of tensor products. To
see that "raising to the z power" has these properties when defined,
application of the spectral theorem for self-adjoint operators will
suffice; or alternatively apply a standard analytic function proof.

COROLLARY. Let s and t be in σ(B(G))+ and let s^t, then there
exists a unique a Gσ(JB(G)) satisfying sm=atm, with support of a
majorized by that of t.

Proof. This follows from [4] Chap. 1, §1.6, Lemma 2.

We now show that σ(J3(G))+ has a smallest element zF, which is a
central idempotent.

THEOREM 2. zF = sup{z[π]: z[π] = support in W*(G) of finite
dimensional (unitary) representation TΓ}. Then zF is a central projec-
tion in W*(G), and zFGσ(B(G))+. Moreover if sEσ(B(G))+, we
have zFs = zF, i.e., zF g s.

Proof It is clear that zF.B(G) is an algebra, since the tensor
product of two finite dimensional representations is itself finite
dimensional. That (e - zF). B(G) is an ideal in B(G) follows from
[13], Briefly, if bx G (e - zF). B(G) and b2 G 5(G), let ττPi and ττPi be
the cyclic representations arising from, say, the left absolute values pλ

and p2 which arise from the left polar decompositions of bx and b2,
respectively. Then z[πPι]zF = 0, and thus z[πPχ (g) πpJzF = 0, by [13].
Butz[πP i]. bx = b{\ andz[ττP2]. b2

 = bτ. Hencez[ττPi(g)7Γp2].bxb2= bιb2,
and thus zF . bxb2 = 0. Thus by Proposition 1, zF G σ(B(G)).

We now show thatzF is the smallest element in σ(B(G))+. First
consider the case where q is an idempotent in σ{B(G))+. Now Zpq is
an idempotent in σ(B(G))+ satisfying zF g z^, or else Zpq = 0. In the
latter case (e - q). B(G) is an ideal of B(G) that contains 1, the identity
of B{G)\ hence q =0, which is impossible since 0£σ(B(G)). More
generally, if zFq^zF, consider that (e - Zpq). B(G) is a closed, right
translation invariant ideal in B{G) which contains a positive definite
function p which is a coefficient of a finite dimensional, irreducible
representation π. If π is on Hubert space Hm there is an orthonormal
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basis {fJrLV of Hn so that, supposing p = ωξi,ωξuξi E(e -
i = 1,2, ,dimπ; but then

dim*UIIII 7Γ

= Σ UMωM e(e-Zpq).B(G)

where ωξuξι(π(x)) = (π(x)ξι\ξi), the bar denoting complex conjugation,
i = 1,2, dim π. Thus again we get 4 = 0, an impossibility. Thus zF

is the smallest idempotent in σ(B(G))+. In general, let s E σ(B(G))+;
and let es = weak-limn_oo 5n, the projection on the eigenspace of 5
corresponding to eigenvalue 1. Since σ(B(G)) is weakly compact,
es E σ(J3(G))+ (because es ^ 0). But then zF ^ es § 5, and we are done.

We can now refine [17] Theorem 1, (iii):

COROLLARY. σ(B(G)) is a weakly compact ^-semigroup.

REMARK. The reader should be careful to note that σ(B(G)) is not
a topological semigroup (in general) in the weak topology. However,
σ(B(G)) is a topological semigroup in the strong topology (see discus-
sion of topology following Proposition 3). Then σ(B(G)) is not (in
general) compact in the strong topology, neither is * strongly continu-
ous, though * is weakly continuous.

Proof. All that remains to be shown is that if x, y E σ(B(G)), then
xy / 0. But by Theorem 2 above, we have that zF is smaller than either
the support or range projections of x and y. Thus it is easy to see that
zFxy Φ 0, hence xy ̂  0.

The following corollary is stated to illustrate in the simplest case, a
relationship between the topology of G and the idempotents in
σ(JΪ(G))+.

COROLLARY. G is compact if and only if the only central element in
σ(B(G))p is e.

Proof If G is compact, A(G) = B(G); and σ(B(G)) is G. Thus
the only idempotent in σ(B(G)) is e. Conversely, let s E σ{B{G)), and
let 5 = vy Is \y. Then zF ^ v* υy, and zF^-υyυ*. But zF = e by
hypothesis, hence υy is unitary, and | s \y = e. Thus σ(B(G)) is topolog-
ically isomorphic with G, e.g., G is compact, cf. [17] Theorem 1.

EXAMPLE. Consider the group SL(2,R). In this case zF = z0 =
support of the trivial representation of G. We must always have
zF ^ zθ9 and this example shows that equality may be obtained.
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Any analysis of the structure of a semigroup should include a
discussion of its ideals, idempotents, and groups. To begin with we
have:

PROPOSITION 2. // sEσ(B(G)), the principal left ideal
σ(B(G))s = σ(B(G))\s\y = {tEσ(B(G)): t*t^s*s}. Similarly,

sσ(B(G)) = I s \δσ(B(G)) = {ίG σ(B(G)): tt* g 55*}.

Proof. Clearly σ(B(G))s C{t E σ(B(G)): t*t^s*s}, since if x E
σ(B(G))9 \\x \\ww = 1, and (xs)*(xs) ^s*s \\x \\2

W*(G) Now s = vΎ\s\γ

implies σ(B(G))s = σ(B(G))υy \s \y Cσ(B(G))\s \y. But v*s = \s\y

yields the opposite inclusion. Finally, suppose t*t^s*s,
t G σ(B(G)). Then by the second corollary of Theorem 1,11 \γ = a \ s \Ύ

for some a Eσ(B(G)). But then t = v'y\t \y = v\a \s \y is in
σ(B(G))\s\y =σ(B(G))s. To get the corresponding "right-handed"
proposition just observe that the * operation on σ(B(G)) induces a
symmetry between right and left.

Letting 151" denote the projection on the eigenspace of \s\y

corresponding to eigenvalue 1, we have the following chain of inclu-
sions:

COROLLARY. If S E σ(B(G))> then for 1< a < β,

σ(B(G))\s\;Cσ(B(G))\s\β

yCσ(B(G))\s\a

yCσ(B(G))s

A similar statement holds for the corresponding principal, right ideals.

Proof. We have, e.g., | s \β

y = 15 \β

y'
a \ s \a

y. The rest is clear.

PROPOSITION 3. ICσ(B(G)) is a left-ideal if and only if s El,
t £σ(B(G)), and t*t ^s*s imply t EL A corresponding statement
holds for right ideals.

Proof. If 5 and t satisfy the above conditions, then for some
aEσ(B(G)),

t = ΌΎ \t \y = vya \s \y E σ(B(G))\s\y = σ(B(G))s Cl.

Conversely, given 5 El Cσ(B(G)) where / satisfies the above condi-
tion, we must show that xs El if x E σ(B(G)). But (Jt5)*(x5) ̂  s*s,
hence we are done.
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We remark that there is a map from the (weakly) closed, right ideals
in σ(B(G)) to the left translation invariant "radical" ideals in B(G),
where if / is such an ideal in σ(J9(G)), the corresponding radical ideal is
{b E B(G): b(s) = 0 for all s E /}.

Before going further we must discuss the strong and weak to-
pologies on σ(i?(G)), as is done in [14] for G abelian. We have that
σ(J3(G)) is compact, the involution * is continuous, and multiplication
is separately continuous in the weak (or what is the same, weak
operator) topology on σ(B(G)). Also, the weak topology is weaker
than any of the following strong topologies. (Note that consequently
principal ideals in σ(B(G)) are weakly hence strongly closed.) Due to
the non-abelianess of G, there are four strong topologies on σ(JB(G)):
the strong operator topology; the left-strong topology, i.e., s -» s0 in
σ(B(G)) if and only if \\ys(b)-Ύso(b)\\-*0 for each bEB(G); the

right-strong topology, i.e., s ->s0 in σ(B(G)) if and only if \\δs(b)-
δso(b)\\-^0 for each b E B(G); and the *-strong topology, i.e., s -» s0 in
σ(B(G)) provided both s-+s0 and s*—•$$ in the strong operator
topology. It is easy to verify that s -»s0 strongly (as operators in
W*(G)) if and only if s-* s0 left-strongly, and s*-+st strongly (as
operators in W*(G)) if and only if s -» s0 right-strongly, and the
involution * is a homeomorphism between the left and right strong
topologies. Multiplication in σ(B(G)) is jointly continuous in all the
strong topologies, whereas the involution is continuous in the *-strong
topology. Finally, it is clear that the map s E σ(B(G))-*s*s E
σ(B(G))+ (resp., ss* E σ(B(G))+) is continuous from the left-strong
(resp., right-strong) topology to the weak topology.

It is well to note the following for later use.

PROPOSITION 4. (i) If {sa} is a net in σ(B(G)), s E σ(β(G)), and
stsa^s*s (resp., sa s * ̂  ss *) for all α, then sa-^s left-strongly (resp.,
right-strongly) // and only if sa-+ s weakly

(ii) the weak and left-strong (resp., right-strong) topologies agree
on any set of the form {s Eσ(J5(G)): s*s = ί, t Eσ(β(G))+} (resp.,
{s E σ(B(G)): w* = ί, ί e σ(B(G))+});

(iii) The weak and left- (or right) strong topologies agree on any
subset of σ(B(G))+ which is totally ordered.

Proof (i) Suppose s* sa ^ s*s and sa —> s weakly. Then for a
positive definite function p EJ3(G), and x E W*(G),

(p9x (sa-s))\ g

sup p(xx*y12p((sa - s)*(sa - s))m^\\p\\yl\2p(s*s)-2Rcp(s*sj)m
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which converges to zero. Since any b G B(G) is a linear combination
of four positive definite functions we are done. The rest of (i) is by
symmetry.

(ii) Immediate from (i).
(iii) Let s and net {sa} be in a totally ordered subset of

σ(B(G))+. Our claim follows from the inequality p((sa-s)2)^
2\p(sa -s)\9 where p is positive definite, cf., [4] Appendice II.

Now any interval, {/ e σ(B(G))+: s^t^ s2} in σ(B(G))+, deter-
mined by 5i,5 2Eσ(β(G))+ is closed in both the weak and strong
topologies. On the other hand,

PROPOSITION 5 / // S Cxr(B(G))+ is strongly closed, then S con-
tains minimal and maximal elements.

Proof. All strong topologies coincide on the set of self-adjoint
elements in σ(B(G))+, now apply Proposition 4 (iii), weak compactness
of σ(J3(G))+, and Zorn's lemma.

As in the abeJian case, minimal elements of strongly open-closed
subsets of σ(B(G))+ are especially important in the theory. Before
discussing these objects, however, let us have the following notations,
GPΎ ={sG σ(B(G)): s*s = p}, Gp,δ = {s E σ(B(G)): ss* = p}, Gp =
Gpy Π Gpδ, where p G σ(B(G))p.

PROPOSITION 6. (i) Gp is a topological group with * for inverse, p
for identity, and the right or left-strong topology or the weak topology —
all of which coincide on Gp. Gp is * -strongly closed in σ(B(G)).

(ii) Gpγ Cσ(B(G))p, Gp,δ Cpσ(B(G)) and the following inclusions
hold: σ(B(G))pσ(B(G))D pσ(B(G))U σ(B(G))p D pσ(B(G))Π
σ(B(G))p = pσ(B(G))p => Gp.

Proof The proof is rather easy and left to the reader.
Now consider the following conditions on s Gσ(B(G))+.
Condition (A): There does not exist a net {sa }Cσ(B(G))+ satisfy-

ing sa ψ s and limα sa = s.
Condition (B): There does not exist a net {sa}Cσ(B(G))+ satisfy-

ing slf s2 (which implies sar s) and \imasa = s.
Note that in both conditions weak and strong limits are

equivalent. Also Condition (A) implies Condition (B). Both condi-
tions imply that s G σ(B(G))p, since if s2β s then sa? s (respectively,
s2a^ s2) and limα ι, s

a = s. We should also observe that if s is central,
then s satisfies condition (A) if and only if it satisfies condition (B),
since if sa and s commute, 0^sa^s is equivalent to 0 ^ s | ^
s2. What is much more important for us, however, is that if 5 satisfies
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5 2 = 5 § 0 , then we have that 0 ^ 5 α S 5 2 = s holds if and only if
0 g si^ s2 = s. Note that 0^sa^s2= s implies that (e - s)sa =
sa(*e - s) = 0, hence sas = ssa = say and we are done, since for positive
operators sa9 s, si ^ s2 always gives sa ^ s. Thus we have the following
generalization of the notion of critical point introduced in [14]:

DEFINITION. If p Eσ(B(G))+ satisfies condition (A), or equival-
ently condition (B), then p is called a critical element of σ(B(G))+.

Observe that p is critical if and only if p is weakly isolated in

(pσ(B(G)))+ = {ί e σ(B(G))+: t2^p} = {tE cr(B(G))+: t g p }

= pσ(B(G))+p=(pσ(B(G))p)+.

We now have the following characterization of critical elements:

PROPOSITION 7. (i) p Eσ(B(G))+ is critical',
(ii) Gpy is left-strongly (weakly) open in σ(B(G))p;
(iii) Gp,δ is right-strongly (weakly) open in pσ(B(G))\
(iv) Gp is strongly (weakly) open in pσ(B(G))p;
(v) p is a minimal element of a strongly open and closed subset of

σ(J8(G))+.

Proof. Consider the map θ: s Eσ(B(G))\->s*s Eσ(B(G))+ is
continuous from the left-strong to the weak topology. Now in {t E
σ(J8(G))+: t2 ^ p}, if p is critical {p} is weakly open; and Gpy - θ~\p) is
thus left-strongly open in

σ(B(G))p = θ-\{t Gcr(β(G))+: t2^p}).

That Gpy is weakly open in σ(B(G))p follows from Proposition 4 (i),
thus (i) implies (ii). Clearly, (i) also imples (iii). Conversely, since
{p}=σ(B(G))+ΠGp,γ, and (σ(B(G))p)+ = σ(B(G))+ Π σ(B(G))p, we
have (ii) implies (i). Clearly (iii) implies (i) also. It is now easy to see
that (i) is equivalent to (iv). Now suppose p is critical, then p is a
minimal element of the strongly (weakly) open-closed set {t E
σ(B(G))+: p ^t2} = {t E σ(B(G))+: pt = p} (which is the inverse image
of weakly isolated point {p} under weakly continuous map t E
σ(B(G))+t-+ptp Epσ(B(G))+p). Conversely, if p is a minimal ele-
ment of some strongly open and closed set 5 Ccr(J5(G))+, then {p} =
SΠ{t E σ(J3(G))+: t ^ p} is strongly (weakly) isolated in
pσ(B(G))+p = {t E σ(B(G))+: t g p}, and p is thus critical. Hence (i)
is equivalent to (v), and we are done. Since GpM Gpγ, and Gp are
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weakly open in weakly compact pσ(B(G)), σ(B(G))p, pσ(B(G))p
respectively, we have:

COROLLARY. // p is critical Gpδ, Gpy are locally compact spaces,
and Gp is a locally compact topological group.

We now investigate a special critical point, viz., zF, which is critical
by Theorem 2. Note that if z is a central critical element then a
continuous homomorphism θz: g EGt-*gz EGZ results. In general, at
the very least one has that '02: b G B(GZ) >-+b °θz G B(G) is a normdec-
reasing homomorphism between the corresponding Fourier-Stieltjes
algebras. In the case of zF we have:

PROPOSITION 8. GZF is the almost periodic compactification of G,
and '02F is an isometry ofB(GF) onto B(G) Π AP(G) = zF . B(G), where
ΛP(G) denotes the almost periodic functions on G.

Proof. Let G denote the almost periodic compactification of G,
then /: G -> G the canonical inclusion is such that 'i: B(G)—• AP(G) Π
B(G) (isometrically), where AP(G) Π B(G) is a bi-translation invariant,
closed subalgebra of B(G), i.e., AP{G) Π B(G) = z0. B(G) where z0 is
a central projection in W*(G), cf., [5] 2.27 and [17]. Now zF . B(G) C
z o.B(G) since any element in zF.B(G) is almost periodic, [3],
16.2.1. Now zF G σ(B(G)) implies zF G σ(J3(G)), where we identify
B(G) and zQ.B(G). But z o εσ(B(G)), namely, the identity. But G
is compact, hence by the second corollary of Theorem 2, zF = z0. Thus
B(G) = zF . B(G). Now the dual group (in the sense of [18]) of B(G)
is uniquely determined, and is G; while the dual group of zF . B(G) is
the compact group σ(B(G))zF = GZF. Thus G is topologically isomor-
phic with GZF.

A natural discussion now arises. Given a central critical element
z, then the closure of 02(G), call it Gθz, in Gz is a locally compact group,
and (with a slight abuse of notation) *θz: B(GΘJ-*B(G) is an isometric
isomorphism onto a closed, bi-translation invariant subalgebra of
B(G). Also, of course, the inclusion /: Gθz-+Gz induces a norm-
continuous homomorphism'/: B (Gz) —> B (Gθz) with the additional prop-
erty that '/(A(G2)) = A(Gθz), cf., [8]. One question then is Gθz = G2?
By Proposition 8 the answer is yes if z = zF. In general, it is not hard to
see that the complete analysis of a central critical point z in σ(B(G))+

depends ultimately on the resolution of the following question: Does the
algebra of functions z.B(G) contain an element of A(GZ)? The
affirmative answer to this question in case G is abelian was furnished by
Taylor, cf. [14], [15] and references therein, with much machinery and
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considerable work. A closely related question is: what types of
commutative Banach algebras are dual to a locally compact group G (in
the sense of [18])? Must such a dual algebra contain a copy of A(G)Ί A
tool which we hope will help resolve these questions is considered in the
next section.

Generalized inverse Fourier-transform. In [7], [8] C. S. Herz
demonstrates that A(G) is the quotient of L\G) (g)L2(G) (the projec-
tive tensor product of L\G) with itself) by the kernel of the continuous
surjection P: L\G)®L\G)^> A(G) determined by P(ξβ)η) = η * | ,
where η *ξ(g) = J ξ(g~'x)η(x)dx for £τ/GL 2 (G). With this norm
A(G) is a Banach algebra. Now we note that L\G) is a Hubert
G-module, i.e., there is a continuous unitary representation of G on
L2(G), viz., the left regular representation λ, and that A(G) is just the
collection of coefficients of λ. A natural question is: can this result be
generalized to an arbitrary Hubert G-module H^ i.e., to the case where
we have a continuous, unitary representation π of G in HπΊ We give an
affirmative answer to this question, and in so doing introduce the notion
of the generalized inverse Fourier transform localized at π, as well as the
notion of the standardization of π. These concepts have been moti-
vated by our desire to better understand closed, bi-translation invariant
subspaces, subalgebras, and ideals in £(G). We present this section
with the hope that it will be a useful tool which will bring to bear on any
unitary group representation almost the entire calculus previously only
used in association with the left-regular representation. Technically
we have been motivated by [7], [8], [10], [11] as will become apparent,
but the Tomita-Takesaki theory makes the dominant contribution.

We first note that L\G) ® L\G) may be identified with the nuclear
(or trace class) operators, SΓ(L2(G)), on L\G) via the map
r: L2(G)(g)L2(G)->^"(L2(G)) determined by τ(f®τj) = < ,η)ξ,
where although L\G) and its dual L\G) are "the same" we prefer to
retain the distinction. Note that < ,τj> indicates we view η as in
L2(G), ( \η) indicates we view η E.L2(G).

REMARK. From an intuitive point of view we regard 5~(L2(G)) as a
semi-abelianized, discretized version of another noncommutative L1-
measure algebra associated with a weight. The precise meaning of this
statement will be made clear when we discuss the standardization of
7r. Suffice it to say that the map P of C. S. Herz behaves very much
like an inverse Fourier-transform of an IΛspace onto A(G).

A version of our next theorem, we have been informed by mail, was
obtained independently by a student of P. Eymard, G. Arsac, in his
Ph.D. thesis. The research of this paper was carried out independently
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by the present author without knowledge of the work of Arsac. Our
point of view and motivation are different, and our "concrete" trans-
form and standardization concepts, as far as we know, have not been
discussed by Arsac. Whereas our proof of Theorem 3 is based on an
inverse transform of nuclear (i.e., trace class) operators, Arsac's proof
is based on the more abstract projective tensor product representation
of this object as a Banach space. Our proofs differ in that we look at a
"concrete" transform of nuclear operators; also, we have a C*-algebra
of operators to deal with; and thus we obtain more detailed
results. Our approach emphasizes the action of G and closely resem-
bles the classical Fourier-transform theory.

DEFINITION. Given a continuous, unitary, representation π of G
on Hπ, we denote the nuclear operators on Hπ by S'iH^). We define
the inverse Fourier-transform of t E ^(H^) to be that complex-valued
function on G defined by fπ: g E G *->Tr(π (g)t), where Tr is the
normalized trace on ^(H^). We refer to this map as the inverse
Fourier transform (localized) at π.

REMARK. This transform is obtained by considering t E SΓ(Hπ) as
an element in the predual of ^(Hπ) and then restricting to the von
Neumann algebra {π(g): g E GYC^iH^). In this way we shall see
that U Ez[τr].B(G). If we define the transform by g^G^
Tr(π(g)*t), then U E z[ττ]. B(G), where π is the representation "con-
jugate" to π.

THEOREM 3. (i) The function tπ(g) = Tr(π(g)t) on G is in
z[π].B(G), where z[π] is the support of π in W*(G), i.e., z[π]B(G) is
the closed, bi-translation invariant subspace of B(G) determined by the
coefficients {(ττ( )ξ |η): ξ,η E H^} of π.

(ii) //1 is a positive operator in SΓ(Hπ), then tπ E z[ττ]. P(G), and
|IMB(G) = f.(e) = ||φ(H.) = Tr(O. // t = v\t\ESΓ(Hπ) (left polar de-
composition in ^{Hπ)), then f* = u . | f |i (left polar decomposition with
respect to £(Hπ)), and \\ tn \\BiG) g ||ί \\nHn).

(Hi) For each b Ez[π].B(G), there is a teSΓ(Hπ) such that
b=tπ.

(iv) The map t E ^(Hπ)^ U E B(G) is one-to-one if and only ifπ
is irreducible.

Proof. Given t E SΓiH^), let t = υ \ 11 be its polar decomposition,
with | ί | = ΣΓ-iλf ( | 6 ) $ where ί,E// f f, | | 6 | | = 1 , and λ.g O for all
ί,Σr=1λ,=Tr(|φ. Thus tΛg) = Tr(π(g)t) = Ύr(ΣJ=]λi(\ξi)π(g)vξi))
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= ΣΓ-iλ,Tr(( |δ)ir(g)ϋ$). where the last equality follows from the
Holder inequality

Tr (ττ(g)v Σ λ,( |&)ξ) I ̂  \\π(g)v |UH., I Σ M |ξ,)U
\ i = n I I \\i = n I

Thus tv(g) = Σ%ιλi(π(g)υξi\ξι) = Σ7=ιλt(v .ω*)(g) is in B(G); since
(restricted to G) ΣΓ=iλ, ω6 GP(G) norm — converges in B(G) to an
element in P(G)\ and since v ..(ΣΓ=i λ/ω ,̂) = ΣΓ=i λtι; . ωξi, when restricted
to { π ( g ) : g £ G Γ is in z[π].B(G). Note that HΣΓ-Λt? .α>J| B ( σ ) ^
ΣΓ=i λ, = Tr( 111). Thus (i) and (ii) have been demonstrated. As for (iii)
and (iv) they are almost obvious from the remark immediately above,
since z[π], B(G) is the predual of the von Neumann algebra {π(g): g G
G}\ SΓ(Hπ) is the predual of 2(Hπ), cf., [4] Chap. I, §3 Theoreme I, and
{π(g): g G G}" = £(Hπ) if and only if π is irreducible.

REMARK. Note that the partial isometry υ in part (ii) of Theorem 3
is in general not in {ττ(g): g G G}" but only in ^ ( H J . Thus ||fπ ||B(σ) can
be a zero even if t is not zero, and z[τr]. B(G) is the Banach space
coimage of Λ.

REMARK. Theorem 3 can immediately and obviously be applied to
any group representation π such that, for example, π{L\G)) Π SΓ(Hπ)
is large; and there are many groups whose irreducible representations,
for example, have this property. Thus one might say that B(G) is
"sufficient" for the Fourier analysis of such groups. We contend,
however, in a forthcoming paper that B(G) is "sufficient" for the
Fourier analysis of any locally compact group, cf., the final remark of
this paper.

We now introduce the concept of the standardization of a continu-
ous, unitary group representation π. This procedure amounts basically
to translation of the Tomita-Takesaki theory into the special context of
group theory. This standardization process gains added significance
when one realizes that with the machinery of this theory any continuous
unitary, representation π of group G becomes a "modified left-regular"
representation accompanied by the calculus thereof. As an application
we will apply Theorem 3 in this setting.

Given any TΓ, as above, let Af(τr) (or Afw, whichever notation is
more convenient) be the von Neumann algebra {π(g}: g EG}"C
$(Hπ). On M(ττ) there exists a normal, faithful, semi-finite weight
denoted by φ(π), or φπ; we can thus put the pair {Λί(τr), φ(π)} into
standard form, cf., [6], [11], [12], [16]. Very briefly, we take left-ideal
nφ(τr) = {x GM(ττ): φπ(x*x)< +°°}; Hφ(πh the completion of nφiπ) with
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respect to the nondegenerate inner product induced by φ(π), and
η: x G nφ H> η(x) G Hπ the usual inclusion. We then denote by λiψπ)
the faithful ^representation of M(ττ) on Hφi7Γ) determined by λ(<pπ)(jc)
η(y) = λ{φπ)Ύ]{xy) for all x G Afπ, y 6n f ( π ) . But λ((pj°7r is thus also
a continuous, unitary representation of G and it is quasi-equivalent to
π. Thus in particular, z[λ(φ7Γ)°π] = z[π], and both representations
determine the same subspace of B(G).

DEFINITION. Given any quasi-equivalence class {π} of continuous,
unitary representations of locally compact group G, then for π G {π}
construct πs = λ(φπ)°π G{ττ}, and call πs the standardization of π.

REMARK. With abuse of notation we will often drop the subscript s
and use π to denote both π and ττs, also Hπ will henceforth refer only to
Hπs = Hφ(π), etc.

We thus have the following corollary of Theorem 3:

COROLLARY. Let π be the representation of G in standard
form. Then the inverse Fourier-transform localized at π has, in addi-
tion to properties (i), (ii), (iii), of Theorem 3,

(v) // b Gz[ττ].B(G), there exists an operator of rank one,
t = ( I η )ξ G ̂ ( H J , such that b = tπ. Furthermore, ξ, η G H^ can be
so selected that || b \\B{G) = || ξ \\Hw || η \\Hw.

REMARK. This corollary is obvious if one is familiar with the
Tomita-Takesaki theory. A quick proof is as follows: Observe that if π
is standard, i.e., Mπ on Hπ, with unitary involution Jn, and self-dual cone
Pπ CHπ, then any sigma-finite projection in Mπ has a cyclic vector ξ
(which can be chosen from Pπ). But now we are done, cf., [4] Chap. II,
§ 1 cor. of Thm. 4 and the discussion of standard forms following this
corollary. Each positive, weakly continuous functional on Afw, i.e., in
z[π].P(G) is of the form ωξ, with ξ£Pπ. (In fact the map
ξ G Pπ CHπ ι-> ωξ G (M7Γ)+ = z [ π ] . P(G) is a norm, homeomorphism, cf.
[1], [2], [6].) Thus given b G z[π] ,B{G), let v .p =b be the (left)
polar decomposition of b with respect to Mπ, i.e., v G Afπ, p G
z[π].P(G). T h e n \\p \\B(G) = ωξ(e) = \\ξ\\2^, a n d p=tu w h e r e ί, =
( \ξ)ξ, and b = f2, where f2 = ( | ^ ) ^ , where ||fc ||β(G) = ||f||||^||. Thus
every element in z[π]. B(G) is a transform of a rank-one operator of
"minimal cross-norm". (We have in fact shown more, since we can
select ξ G P,.)

REMARK. AS a corollary of the above discussion we get a more
detailed version of [5], Thm. p. 218. Thus we may think of b G
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z[π] B(G) as a generalized convolution (with a "twist") of two
elements from Hn, cf., L\G)*L\G)~ = A(G).

REMARK. We mentioned earlier that ^(H^) was a semi-
abelianized, discretized version of another noncommutative ίΛmeasure
"algebra". The measure "algebra" we have in mind is the ίΛspace of
weight ψπ. We have a definition and embryonic theory for this space
analogous to the work done in [9] and [10] for the unimodular (trace)
case. This ίΛspace is the "proper" domain for the inverse Fourier
transform; however, to go into details here would take us beyond the
scope of this paper. We intend to go into this subject in depth in an
upcoming paper.
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