SUBHARMONICITY AND HULLS

JOHN WERMER
SUBHARMONICITY AND HULLS

JOHN WERMER

For X a compact set in C^2, $h(X)$ denotes the polynomially convex hull of X. We are concerned with the existence of analytic varieties in $h(X) \setminus X$. X is called "invariant" if (z, w) in X implies $(e^{i\theta}z, e^{-i\theta}w)$ is in X, for all real θ. X is called an "invariant disk" if there is a continuous complex-valued function a defined on \mathbb{D} with $a(0) = a(1) = 0$, such that $X = \{(z, w) \mid z \leq 1, w = a(|z|)/z\}$. Let X be an invariant set and put $f(z, w) = zw$. Let Ω be an open disk in $C \setminus f(X)$ and put $f^{-1}(\Omega) = \{(z, w) \in h(X) \mid zw \in \Omega\}$. In Theorem 2 we show that if $f^{-1}(\Omega)$ is not empty, then $f^{-1}(\Omega)$ contains an analytic variety. Let now X be an invariant disk, with certain hypotheses on the function a. Then we show in Theorem 3 that $f^{-1}(\Omega)$ is the union of a one-parameter family of analytic varieties. A key tool in the proofs is a general subharmonicity property of certain functions associated to a uniform algebra. This property is given in Theorem 1.

1. Let X be a compact Hausdorff space, let A be a uniform algebra on X and let M be the maximal ideal space of A.

Fix $f \in A$. For each $\zeta \in C$ put $f^{-1}(\zeta) = \{p \in M \mid f(p) = \zeta\}$ and for each subset Ω of C, put $f^{-1}(\Omega) = \{p \in M \mid f(p) \in \Omega\}$. Consider an open subset Ω of $C \setminus f(X)$. Supposing $f^{-1}(\Omega)$ to be nonempty, what can be said about the structure of $f^{-1}(\Omega)$? Work of Bishop [2] and Basener [1] yields that if $f^{-1}(\zeta)$ is at most countable for each $\zeta \in \Omega$, then $f^{-1}(\Omega)$ contains analytic disks. On the other hand, Cole [4] has given an example where no analytic disk is contained in $f^{-1}(\Omega)$. In §2 we prove.

THEOREM 1. Let Ω be an open subset of $C \setminus f(X)$. Choose $g \in A$. Define $Z(\zeta) = \sup_{f^{-1}(\zeta)}|g|$, $\zeta \in \Omega$. Then $\log Z$ is subharmonic in Ω.

This theorem is proved by a method of Oka in [5].

In §3 we apply Theorem 1 to the following situation: X is a compact set in C^2, A is the uniform closure on X of polynomials in z and w. Here $M = h(X)$, the polynomially convex hull of X. We assume that X is invariant under the map T_θ:

$$(z, w) \rightarrow (e^{i\theta}z, e^{-i\theta}w) \quad \text{for} \quad 0 \leq \theta < 2\pi.$$
Put $f = zw$. Let Ω be an open disk contained in $\mathbb{C} \setminus f(X)$ with $0 \not\in \Omega$. Here $f^{-1}(\Omega) = \{(z, w) \in h(X) \mid zw \in \Omega\}$.

Theorem 2. If $f^{-1}(\Omega)$ is not empty, then $f^{-1}(\Omega)$ contains an analytic disk.

In §4, we consider the case when X is a disk in \mathbb{C}^2, defined:

$$X = \left\{(z, w) \mid |z| \leq 1, \ w = \frac{a(|z|)}{z}\right\},$$

where a is a continuous complex valued function defined on $0 \leq r \leq 1$, with $a(r) = o(r)$.

X is evidently invariant under T_θ for all θ. In Theorem 3 we give an explicit description of $h(x)$ for a certain class of such disks X.

2. Proof of Theorem 1. (Cf. [5], §2.) Fix $\zeta_0 \in \Omega$ and let $\zeta_n \to \zeta_0$. Assume $Z(\zeta_n) \to t$. We claim $Z(\zeta_0) \geq t$. For choose p_n in $f^{-1}(\zeta_n)$ with $|g(p_n)| = Z(\zeta_n)$. Let p be an accumulation point of $\{p_n\}$. Then $|g(p)| \geq t$, whence $Z(\zeta_0) \geq t$, as claimed. Thus Z is upper-semicontinuous at ζ_0, and so Z is upper-semicontinuous in Ω.

Theorem 1.6.3 of [6] gives that an upper-semicontinuous function u in Ω is subharmonic provided for each closed disk $D \subset \Omega$ and each polynomial P we have

$$u \leq \text{Re} \ P \text{ on } \partial D \text{ implies } u \leq \text{Re} \ P \text{ on } D.$$

Fix a closed disk D contained in Ω and let \hat{D} be its interior. Choose a polynomial P such that $\log Z \leq \text{Re} \ P$ on ∂D. Then

$$Z(\zeta) |\exp(-P(\zeta))| \leq 1 \text{ on } \partial D.$$

Hence for each ζ in ∂D, if x is in $f^{-1}(\zeta)$, then

$$|g(x)| \cdot |\exp(-P(f(x)))| \leq 1, \text{ or }$$

$$|g \cdot \exp(-P(f))| \leq 1 \text{ at } x.$$

Now $g \cdot \exp(-P(f))$ is in A. Put $N = f^{-1}(\hat{D})$. The boundary of N is contained in $f^{-1}(\partial D)$. Hence by the Local Maximum Modulus Principle for uniform algebras, for each y in N we can find x in $f^{-1}(\partial D)$ with

$$|g \exp(-P(f))(y)| \leq |g \cdot \exp(-P(f))(x)|,$$
whence by (2) we have

\[(3) \quad |g \cdot \exp(-P(f))(y)| \leq 1.\]

Fix ζ_0 in D. Choose y in $f^{-1}(\zeta_0)$ with $|g(y)| = Z(\zeta_0)$. Applying (3) to this y, we get

\[(4) \quad Z(\zeta_0) |\exp(-P(\zeta_0))| \leq 1.\]

Hence $\log Z(\zeta_0) \leq \text{Re} P(\zeta_0)$. So (1) is satisfied, and so $\log Z$ is subharmonic in Ω, as desired.

3. Proof of Theorem 2. Since X is invariant under the maps $T_\theta, h(X)$ is invariant under each T_θ. Fix $\zeta \in \Omega$. There are two possibilities:

(a) $|z|$ is constant on $f^{-1}(\zeta)$.

(b) $\exists r_1, r_2$ with $0 < r_1 < r_2$ and $\exists (z_1, w_1), (z_2, w_2) \in f^{-1}(\zeta)$ with $|z_1| = r_1, |z_2| = r_2$.

Suppose (b) occurs. Then the circles: $z = r_1 e^{i\theta}, w = \zeta/r_1 e^{i\theta}, 0 \leq \theta \leq 2\pi$ and $z = r_2 e^{i\theta}, w = \zeta/r_2 e^{i\theta}, 0 \leq \theta \leq 2\pi$ both lie in $h(X)$. Hence the analytic annulus: $r_1 < |z| < r_2$, $w = \zeta/z$ lies in $f^{-1}(\zeta)$. Thus if (b) occurs at any point ζ in Ω, $f^{-1}(\Omega)$ does contain an analytic disk. Hence to prove the Theorem, we may assume that (a) holds for each $\zeta \in \Omega$. Define, for $\zeta \in \Omega$, $Z(\zeta) = \sup_{f^{-1}(\zeta)} |z|$, $W(\zeta) = \sup_{f^{-1}(\zeta)} |w|$. Fix $(z_0, w_0) \in f^{-1}(\zeta)$. Since we have case (a), $Z(\zeta) = |z_0|$. Hence $W(\zeta) = |w_0|$ and so $Z(\zeta) W(\zeta) = |\zeta|$, whence

$$\log Z(\zeta) + \log W(\zeta) = \log |\zeta|.$$

Since $\log Z$ and $\log W$ are subharmonic in Ω while $\log |\zeta|$ is harmonic, $\log Z, \log W$ are in fact harmonic in Ω. Put $U = \log Z$ and let V be the harmonic conjugate of U in Ω. Put $\phi(\zeta) = e^{U+iV}(\zeta)$. Then ϕ is analytic in Ω and $|\phi| = Z$ in Ω.

Assertion. The variety $z = \phi(\zeta), w = \zeta/\phi(\zeta), \zeta \in \Omega$, is contained in $h(X)$.

Fix $\zeta \in \Omega$. Choose $(z_1, w_1) \in f^{-1}(\zeta)$. Then $Z(\zeta) = |z_1|$, so $|\phi(\zeta)| = |z_1|$, i.e., \exists real α with $z_1 = \phi(\zeta)e^{i\alpha}$. Then $w_1 = \zeta/\phi(\zeta)e^{i\alpha}$. But $(e^{-i\alpha}z_1, e^{i\alpha}w_1) \in h(X)$. Hence $(\phi(\zeta), \zeta/\phi(\zeta)) \in h(X)$. The Assertion is proved, and Theorem 2 follows.

Note. Questions related to the result just proved are studied by J. E. Björk in [3].
4. Invariant disks in \(C^2 \). Let \(P \) be a polynomial with complex coefficients, \(P(t) = \sum_{n=0}^{N} c_n t^n \), which is one-one on the unit interval with endpoints identified, i.e., we assume that \(P(1) = P(0) = 0 \) and \(P(t_1) \neq P(t_2) \) if \(0 \leq t_1 < t_2 < 1 \). Also assume \(P'(t) \neq 0 \) for \(0 \leq t \leq 1 \). Then the curve \(\beta \) given parametrically: \(\zeta = P(t), \ 0 \leq t \leq 1 \), is a simple closed analytic curve in the \(\zeta \)-plane whose only singularity is a double-point at the origin. Denote by \(\theta \) the angle between the two arcs of \(\beta \) meeting at 0. Assume \(\theta < \pi \). Define \(a(r) = P(r^2) \), i.e.,

\[
\begin{equation}
(5) \quad a(r) = \sum_{n=1}^{N} c_n r^{2n}.
\end{equation}
\]

Let \(X \) be the disk in \(C^2 \) defined

\[
(6) \quad X = \left\{ \left(z, \frac{a(|z|)}{z} \right) \mid |z| \leq 1 \right\}.
\]

The function \(f = zw \) maps \(X \) on \(\beta \). Denote by \(\Omega \) the interior of \(\beta \).

Theorem 3. \(\exists \) function \(\phi \) analytic in \(\Omega \) such that \(h(X) \) is the union of \(X \) and \(\{(z, 0) \mid |z| \leq 1\} \) and

\[
\{(z, w) \mid zw \in \Omega \quad \text{and} \quad |z| = |\phi(zw)|\}.
\]

Corollary. Every point of \(h(X) \setminus X \) lies on some analytic disk contained in \(h(X) \).

Notation. \(A(\Omega) \) denotes the class of functions \(F \) defined and continuous in \(\overline{\Omega} \) and analytic in \(\Omega \).

\(\mathfrak{A} \) denotes the algebra of functions on \(|z| \leq 1 \) which are uniformly approximable by polynomials in \(z \) and \(a(|z|)/z \).

Lemma 1. Let \(G \in C[0, 1] \). If \(G(|z|) \in \mathfrak{A} \), then \(\exists F \in A(\Omega) \) such that \(G(r) = F(a(r)) \) for \(0 \leq r \leq 1 \).

Proof. Let \(g \) be a polynomial in \(z \) and \(a(|z|)/z \). Calculation gives that there is a polynomial \(\tilde{g} \) in one variable with

\[
\frac{1}{2\pi} \int_{0}^{2\pi} g(re^{i\theta})d\theta = \tilde{g}(a(r)), \quad 0 \leq r \leq 1.
\]

Choose a sequence \(\{g_n\} \) of polynomials in \(z \) and \(a(|z|)/z \) approaching
\[G(|z|) \text{ uniformly on } |z| \leq 1. \text{ Then } g_n(a(r)) \rightarrow G(r) \text{ uniformly on } 0 \leq r \leq 1. \text{ Hence } \exists F \in A(\Omega) \text{ with } g_n \rightarrow F \text{ uniformly on } \beta, \text{ so } G(r) = F(a(r)). \]

Lemma 2. If \(f = zw \), then \(f^{-1}(\Omega) \) is not empty.

Proof. Fix \(\zeta_0 \in \Omega \). If \(f^{-1}(\Omega) \) is empty, then \(f - \zeta_0 \neq 0 \) on \(h(X) \) and so \((zw - \zeta_0)^{-1} \) lies in the closure of the polynomials in \(z \) and \(w \) on \(X \). Then \(a(|z|) - \zeta_0)^{-1} \) lies in \(\mathfrak{a} \). By Lemma 1, \(\exists F \in A(\Omega) \) with \(F(a(r)) = (a(r) - \zeta_0)^{-1} \). Then \((\zeta - \zeta_0)^{-1} \in A(\Omega) \), which is false. So \(f^{-1}(\Omega) \) is not empty.

Lemma 3. Fix \(\zeta \in \beta \setminus \{0\} \). Let \((z_0, w_0) \) be a point in \(h(X) \) with \(z_0w_0 = \zeta \). Then \((z_0, w_0) \in X \).

Proof. Assume \((z_0, w_0) \notin X \). Let \(r \) be the point in \((0, 1)\) with \(a(r) = \zeta \). Put, for each \(r \), \(\gamma_r = \{(re^{i\theta}, (a(r)/re^{i\theta})) | 0 \leq \theta < 2\pi\} \). Then \(\gamma_r \) is a polynomially convex circle contained in \(X \). Hence \(\exists \) polynomial \(P \) with \(|P(z_0, w_0)| > 2, |P| < 1 \) on \(\gamma_r \). Choose a neighborhood \(N \) of \(\gamma_r \) on \(X \) where \(|P| < 1 \). The image of \(X \setminus N \) under the map \((z, w) \rightarrow zw \) is a closed subarc \(\beta_1 \) of \(\beta \) which excludes \(\zeta \). Choose \(F \in A(\Omega) \) with \(F(\zeta) = 1, |F| < 1 \) on \(\beta \setminus \{\zeta\} \). Then \(\exists \delta > 0 \) such that \(|F| < 1 - \delta \) on \(\beta_1 \). Hence \(|F(zw)| < 1 - \delta \) on \(X \setminus N \). Also \(|F(zw)| \leq 1 \) on \(X \). Fix \(n \) and put

\[Q = F(zw)^n \cdot P(z, w). \]

\[|Q(z_0, w_0)| > 2. \text{ On } \mathfrak{N}, |Q| \leq |P| < 1. \text{ On } X \setminus N, |Q| < (1 - \delta)^n \cdot \max_x |P|, \text{ and so } |Q| < 1 \text{ on } X \setminus N \text{ for large } n. \text{ Then } |Q| < 1 \text{ on } X. \text{ Since } F \text{ is a uniform limit on } \beta \text{ of polynomials in } \zeta, Q \text{ is a uniform limit on } X \cup \{(z_0, w_0)\} \text{ of polynomials in } z \text{ and } w. \text{ This contradicts that } (z_0, w_0) \in h(X). \text{ Thus } (z_0, w_0) \in X. \text{ We are done.} \]

Note. Since \(f \) maps \(X \) on \(\beta \) and \(C \setminus f(X) \) is the union of the interior and exterior of \(\beta \), we conclude from the last Lemma that \(h(X) \) is the union of \(X \) and \(f^{-1}(\{0\}) \) and \(f^{-1}(\Omega) \).

We need some notation now. For each \(\zeta \in \beta \setminus \{0\} \), denote by \(r(\zeta) \) the unique \(r \) in \((0, 1)\) with \(a(r) = \zeta \).

Since \(a \) is a polynomial in \(r \) vanishing at 0, there is a constant \(d > 0 \) such that

\[r(\zeta) > d |\zeta|, \text{ all } \zeta \in \beta. \]
For \(\zeta_0 \in \Omega \), denote by \(\mu_{\zeta_0} \) harmonic measure at \(\zeta_0 \) relative to \(\Omega \). Since \(\beta \) consists of analytic arcs, with one jump-discontinuity for the tangent at \(\zeta = 0 \), \(\mu_{\zeta_0} = K_{\zeta_0} ds \), where \(K_{\zeta_0} \) is a bounded functions on \(\beta \) and \(ds \) is arc-length. Define

\[
U(\zeta_0) = \int_\beta \log r(\zeta) d\mu_{\zeta_0}(\zeta).
\]

Since (7) holds, this integral converges absolutely. \(U \) is a harmonic function in \(\Omega \), bounded above, and continuous at each boundary point \(\zeta \in \beta \setminus \{0\} \) with boundary value \(\log r(\zeta) \) at \(\zeta \).

For \(\zeta \in \Omega \), define

\[
Z(\zeta) = \sup_{f^{-1}(\zeta)} |z|, \quad W(\zeta) = \sup_{f^{-1}(\zeta)} |w|.
\]

Lemma 4. For all \(\zeta \in \Omega \), \(\log Z(\zeta) \leq U(\zeta) \) and \(\log W(\zeta) \leq \log |z| - U(\zeta) \).

Proof. Fix \(\zeta \in \beta \setminus \{0\} \), choose \(\zeta_n \in \Omega \) with \(\zeta_n \to \zeta \) and suppose \(Z(\zeta_n) \to \lambda \). Choose \(p_n \in f^{-1}(\zeta_n) \) with \(Z(\zeta_n) = |z(p_n)| \). Without loss of generality, \(p_n \to p \) for some point \(p \in h(X) \). Then \(f(p) = \zeta \). By Lemma 3, \(p \in X \), i.e., \(p = (re^{i\theta}, (a(r)/re^{i\theta})) \) for some \(r, \theta \). Also \(a(r) = \zeta \) and so \(r = r(\zeta) \), whence \(|z(p_n)| \to r(\zeta) \) and so \(\lambda = r(\zeta) \). Thus \(Z(\zeta') \to r(\zeta) \) as \(\zeta' \to \zeta \) from within \(\Omega \), and so \(\log Z \) assumes the same boundary values as \(U \), continuously on \(\beta \setminus \{0\} \).

For each positive integer \(k \), let \(\Omega_k = \{ \zeta \in \Omega \mid |\zeta| > 1/k \} \). \(\partial \Omega_k \) is the union of a closed subarc \(\beta_k \) of \(\beta \setminus \{0\} \) and an arc \(\alpha_k \) on the circle \(|\zeta| = 1/k \).

Fix \(\zeta_0 \in \Omega \). For large \(k \), \(\zeta_0 \in \Omega_k \). Denote by \(\mu_{\zeta_0}^{(k)} \) the harmonic measure at \(\zeta_0 \) relative to \(\Omega_k \). An elementary estimate gives that there is a constant \(C_{\zeta_0} \) independent of \(k \) such that

\[
\mu_{\zeta_0}^{(k)}(\alpha_k) \leq C_{\zeta_0} \cdot \frac{1}{\sqrt{k}} \quad \text{for all } k.
\]

Let \(S \) be any function subharmonic in \(\Omega \) and assuming continuous boundary values, again denoted \(S \), on \(\beta \setminus \{0\} \). Assume \(\exists \) constant \(M \) with \(S \leq M \) in \(\Omega \). Then for all \(k \),

\[
S(\zeta_0) \leq \int_{\beta_k} S d\mu_{\zeta_0}^{(k)} + \int_{\alpha_k} M d\mu_{\zeta_0}^{(k)}, \quad \text{whence}
\]

\[
S(\zeta_0) \leq \int_{\beta_k} S d\mu_{\zeta_0}^{(k)} + M \cdot C_{\zeta_0} \cdot \frac{1}{\sqrt{k}}.
\]
Applying (9) with $S = \log Z$, we get

$$(10) \quad \log Z(\zeta_0) \leq \int_{\beta_k} U d \mu^{(k)}_{\zeta_0} + MC_{\zeta_0} \cdot \frac{1}{\sqrt{k}},$$

since as we saw earlier, $\log Z = U$ on $\beta \setminus \{0\}$.

By (7), if $\zeta' \in \alpha_k$,

$$U(\zeta') = \int_{\beta} \log r(\zeta) d \mu_\zeta(\zeta) > C + \int_{\beta} \log |\zeta| d \mu_\zeta(\zeta),$$

where C is a constant, so

$$U(\zeta') > C + \log |\zeta'| = C + \log \frac{1}{k}.$$ Hence

$$U(\zeta_0) = \int_{\beta_k} U d \mu^{(k)}_{\zeta_0} + \int_{\alpha_k} U d \mu^{(k)}_{\zeta_0}$$

$$\leq \int_{\beta_k} U d \mu^{(k)}_{\zeta_0} + \left(C + \log \frac{1}{k}\right) \frac{C_{\zeta_0}}{\sqrt{k}}.$$

Combining this with (10) and letting $k \to \infty$, we get that $\log Z(\zeta_0) \leq U(\zeta_0)$, as desired. A parallel argument gives the assertion regarding W. We are done.

Lemma 5. With Z defined as above, $\log Z(\zeta) = U(\zeta)$ for all $\zeta \in \Omega$, and $\log W(\zeta) = \log |\zeta| - U(\zeta)$.

Proof. Suppose either equality fails at some point ζ_0. By the last Lemma, this implies that

$$\log Z(\zeta_0) + \log W(\zeta_0) < \log |\zeta_0|.$$ Fix $p \in f^{-1}(\zeta_0)$. Then $|z(p)| \leq Z(\zeta_0)$, $|w(p)| \leq W(\zeta_0)$, so

$$\log |z(p)w(p)| < \log |\zeta_0|.$$ But $z(p)w(p) = \zeta_0$, so we have a contradiction, proving the Lemma.

Proof of Theorem 3. Let V denote the harmonic conjugate of U in Ω and put $\phi = e^{U+iv}$. Fix $(z_0, w_0) \in f^{-1}(\Omega)$ and put $\zeta_0 = z_0 \cdot w_0$. Unless $|z_0| = Z(\zeta_0)$ and $|w_0| = W(\zeta_0)$, we have

$$|\zeta_0| = |z_0| |w_0| < Z(\zeta_0) W(\zeta_0) = |\zeta_0|$$

by the last Lemma. So we must have $|z_0| = Z(\zeta_0) = |\phi(\zeta_0)|$.

Conversely fix $\zeta_0 \in \Omega$ and let (z_0, w_0) be a point in C^2 such that $z_0 \cdot w_0 = \zeta_0$ and $|z_0| = |\phi(\zeta_0)|$. Choose $(z_1, w_1) \in f^{-1}(\zeta_0)$. By the preceding $|z_1| = |\phi(\zeta_0)|$, so \exists real α with $z_0 = e^{i\alpha} z_1$, $w_0 = e^{-i\alpha} w_1$. Hence $(z_0, w_0) \in h(X)$, so $(z_0, w_0) \in f^{-1}(\Omega)$. Thus $f^{-1}(\Omega)$ consists precisely of those points (z, w) with $zw \in \Omega$ and $|z| = |\phi(zw)|$

To finish the proof we need only identify $f^{-1}(0)$. The circle $\{(z, 0) \mid |z| = 1\}$ lies in X, so the disk $D: \{(z, 0) \mid |z| \leq 1\}$ is contained in $f^{-1}(0)$. If $(z_0, w_0) \in f^{-1}(0)$ and does not lie in D, then $z_0 = 0, w_0 \neq 0$. The same argument as was used in proving Lemma 3 shows that then $(z_0, w_0) \notin h(X)$, contrary to assumption. So $f^{-1}(0) = D$, and the proof of Theorem 3 is finished.

Remark. As we have just seen, $f^{-1}(\Omega)$ is the union of varieties V_α, $0 \leq \alpha < 2\pi$, where V_α is defined:

$$z = e^{i\alpha} \phi(\zeta), \quad w = e^{-i\alpha} \frac{\zeta}{\phi(\zeta)}, \quad \zeta \in \Omega.$$

What does the boundary of such a variety V_α in $h(X)$ look like? It splits into two sets:

$$S = \{(z, w) \in \partial V_\alpha \mid zw \in \beta \setminus \{0\}\} \quad \text{and} \quad T = \{(z, w) \in \partial V_\alpha \mid zw = 0\}.$$

It is easy to see that S is an arc on X cutting each circle: $\{(z, w) \in X \mid |z| = r\}$, $0 < r < 1$, exactly once while T is a closed subset of the disk $D = \{(z, 0) \mid |z| \leq 1\}$.

It is remarkable that even though X is itself very regular, the rest of the hull of X is attached to X in a very complicated way.

Acknowledgements. I am grateful to Andrew Browder and Bruce Palka for their helpful suggestions.

References

Received April 23, 1974.

Brown University
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zvi Artstein and John A. Burns, Integration of compact set-valued functions</td>
<td>297</td>
</tr>
<tr>
<td>J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful</td>
<td>1</td>
</tr>
<tr>
<td>Mark Benard, Characters and Schur indices of the unitary reflection group [321]</td>
<td>309</td>
</tr>
<tr>
<td>H. L. Bentley and B. J. Taylor, Wallman rings</td>
<td>15</td>
</tr>
<tr>
<td>E. Berman, Matrix rings over polynomial identity rings II</td>
<td>37</td>
</tr>
<tr>
<td>Simeon M. Berman, A new characterization of characteristic functions of absolutely continuous distributions</td>
<td>323</td>
</tr>
<tr>
<td>Monte B. Boisen, Jr. and Philip B. Sheldon, Pre-Prüfer rings</td>
<td>331</td>
</tr>
<tr>
<td>A. K. Boyle and K. R. Goodearl, Rings over which certain modules are injective</td>
<td>43</td>
</tr>
<tr>
<td>J. L. Brenner, R. M. Crabwell and J. Riddell, Covering theorems for finite nonabelian simple groups. V</td>
<td>55</td>
</tr>
<tr>
<td>H. H. Brungs, Three questions on duo rings</td>
<td>345</td>
</tr>
<tr>
<td>Iracema M. Bund, Birnbaum-Orlicz spaces of functions on groups</td>
<td>351</td>
</tr>
<tr>
<td>John D. Elwin and Donald R. Short, Branched immersions between 2-manifolds of higher topological type</td>
<td>361</td>
</tr>
<tr>
<td>J. K. Finch, The single valued extension property on a Banach space</td>
<td>61</td>
</tr>
<tr>
<td>J. R. Fisher, A Goldie theorem for differentiably prime rings</td>
<td>71</td>
</tr>
<tr>
<td>Eric M. Friedlander, Extension functions for rank 2, torsion free abelian groups</td>
<td>371</td>
</tr>
<tr>
<td>J. Froemke and R. Quackenbusch, The spectrum of an equational class of groupoids</td>
<td>381</td>
</tr>
<tr>
<td>B. J. Gardner, Radicals of supplementary semilattice sums of associative rings</td>
<td>387</td>
</tr>
<tr>
<td>Shmuel Glasner, Relatively invariant measures</td>
<td>393</td>
</tr>
<tr>
<td>G. R. Gordh, Jr. and Sibe Mardešić, Characterizing local connectedness in inverse limits</td>
<td>411</td>
</tr>
<tr>
<td>S. Graf, On the existence of strong liftings in second countable topological spaces</td>
<td>419</td>
</tr>
<tr>
<td>S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces</td>
<td>427</td>
</tr>
<tr>
<td>F. Hansen, On one-sided prime ideals</td>
<td>79</td>
</tr>
<tr>
<td>D. J. Hartfiel and C. J. Maxson, A characterization of the maximal monoids and maximal groups in βx</td>
<td>437</td>
</tr>
<tr>
<td>Robert E. Hartwig and S. Brent Morris, The universal flip matrix and the generalized faro-shuffle</td>
<td>445</td>
</tr>
</tbody>
</table>
John Allen Beachy and William David Blair, *Rings whose faithful left ideals are cofaithful* ... 1
Herschel Lamar Bentley and Barbara June Taylor, *Wallman rings* 15
Elizabeth Berman, *Matrix rings over polynomial identity rings. II* 37
Ann K. Boyle and Kenneth R. Goodearl, *Rings over which certain modules are injective* .. 43
J. L. Brenner, Robert Myrl Cranwell and James Riddell, *Covering theorems for finite nonabelian simple groups. V* 55
James Kenneth Finch, *The single valued extension property on a Banach space* .. 61
John Robert Fisher, *A Goldie theorem for differentiably prime rings* 71
Friedhelm Hansen, *On one-sided prime ideals* 79
Jon Craig Helton, *Product integrals and the solution of integral equations* ... 87
Barry E. Johnson and James Patrick Williams, *The range of a normal derivation* .. 105
Kurt Kreith, *A dynamical criterion for conjugate points* 123
Robert Allen McCoy, *Baire spaces and hyperspaces* 133
John McDonald, *Isometries of the disk algebra* 143
H. Minc, *Doubly stochastic matrices with minimal permanents* 155
Shahbaz Noorvash, *Covering the vertices of a graph by vertex-disjoint paths* ... 159
Theodore Windle Palmer, *Jordan *-homomorphisms between reduced Banach *-algebras* ... 169
Donald Steven Passman, *On the semisimplicity of group rings of some locally finite groups* .. 179
Mario Petrich, *Varieties of orthodox bands of groups* 209
Robert Horace Redfield, *The generalized interval topology on distributive lattices* ... 219
James Wilson Stepp, *Algebraic maximal semilattices* 243
Patrick Noble Stewart, *A sheaf theoretic representation of rings with Boolean orthogonalities* .. 249
Ting-On To and Kai Wing Yip, *A generalized Jensen’s inequality* 255
Arnold Lewis Villone, *Second order differential operators with self-adjoint extensions* .. 261
Martin E. Walter, *On the structure of the Fourier-Stieltjes algebra* ... 267
John Wermer, *Subharmonicity and hulls* 283
Edythe Parker Woodruff, *A map of E^3 onto E^3 taking no disk onto a disk* .. 291