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RINGS WHOSE FAITHFUL LEFT IDEALS
ARE COFAITHFUL

JOHN A. BEACHY* AND WILLIAM D. BLAIR

A left module M over a ring R is cofaithful in case there is an
embedding of R into a finite product of copies of M. Our main
result states that a semiprime ring R is left Goldie, that is, has a
semisimple Artinian left quotient ring, if and only if R satisfies (i)
every faithful left ideal is cofaithful and (ii) every nonzero left
ideal contains a nonzero uniform left ideal. The proof is
elementary and does not make use of the Goldie and Lesieur-
Croisot theorems. We show that (i) and (ii) are Morita
invariant. Moreover, (ii) is invariant under polynomial exten-
sions, and so is (i) for commutative rings. Absolutely torsion-
free rings are studied.

The ring Q is a left classical quotient ring for the ring R C Q if
every regular element (nondivisor of zero) of R is invertible in Q and if
every element of Q is of the form b ~ιa where a,b E R and b is regular;
in this case we also say that R is a left order in Q. A ring is said to be
left Goldie if it has the ascending chain condition on left annihilators
and has finite uniform dimension. (A left R -module has finite uniform
dimension if it has no infinite direct sum of nonzero submodules, and it
is said to be uniform if it is nonzero and any two nonzero submodules
have a nontrivial intersection.) A theorem of Goldie [8,9] and Lesieur
and Croisot [12] states that a ring is a left order in a semisimple Artinian
ring if and only if it is semiprime and left Goldie. It is known that the
ascending chain condition on left annihilators is not preserved under an
equivalence of categories (Morita invariant); in fact, it does not go up to
matrix rings. It is unknown whether being left Goldie is Morita
invariant.

In section two we give a proof of the theorem stated in the abstract,
and in the prime case we give a proof which shows directly that such a
ring is an order in a full matrix ring over a division ring. We also
weaken the hypothesis of an important theorem on semiprime PI
rings. In the third section we use these techniques to study absolutely
torsion-free rings. In particular, we show that an absolutely torsion-
free ring is Goldie if and only if it has a uniform left ideal, and that the
endomorphism ring of a finitely generated projective module over an
absolutely torsion-free ring is absolutely torsion-free.
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1. Some general results. All rings will be associative and
have an identity element; all modules will be unital. Let R be a ring
and S a subset of R. Then the right annihilator of S in R is
€R(S) = {rGR\Sr = 0} and the left annihilator is ίR(S). If X is a
subset of a left R -module M, then Ann* (X) = {r E R | rX = 0}. If there
is no ambiguity we write ί(S) instead of fR(S), etc. ZR(M) will denote
the singular submodule of M, the set of elements of M whose
annihilator is essential in JR.

A module RM is said to be cofaithful if there exist elements
m,, ra2, ,mk E M such that Π f=i Ann(m,) = 0, or equivalently, if for
some direct sum Mk of k copies of M there exists an exact sequence
0—> R —• Mk. Every cofaithful module is faithful. On the other hand,
every faithful left R -module is cofaithful if and only if R contains an
essential Artinian left ideal (see Beachy [1]), in which case we say R is
essentially left Artinian. A ring R is essentially left Artinian if and
only if R has an essential and finitely generated left socle. We study
the weaker condition that every faithful left ideal of JR is
cofaithful. Recall that RM is torsionless if for each 0 ^ m E M there
exists / E Horn* (M, JR) with f(m) ^ 0.

PROPOSITION (1.1). The following conditions are equivalent for a
ring R.

(a) Every faithful left ideal of R is cofaithful.
(b) Every ideal ofR which is faithful as a left ideal is cofaithful.
(c) Every faithful, torsionless left R-module is cofaithful

Proof, (a) Φ (b) and (c) Φ (a) are immediate.
(b) φ (c). Let RM be a faithful torsionless module and A be the

sum in JR of the homomorphic images of M. If 0 ̂  r E R, then since M
is faithful there exists m E.M such that rm ̂  0, and since M is
torsionless there exists / E Horn* (M, R) with rf(m) = f(rm) φ 0, which
shows that the ideal A is faithful. Thus A is cofaithful and so
Π "=1 4(tf«) = 0 for some a-t E A, i^i^n. Since at E A, ax = Σ///(mf/)
for ml7 E M and fi} E HomR(M, JR), and then rmn = 0 for all i,/ implies
ra{ = 0 for all ί, so Π u AnnR(m0) = 0 and M is cofaithful.

COROLLARY (1.2). The condition that every faithful left ideal of a
ring is cofaithful is Morita invariant.

Proof. By Beachy [2] a module is faithful if and only if it
cogenerates every projective module and it is cofaithful if and only if it
generates every injective module. A module is torsionless if and only
if it is cogenerated by every faithful module. Since the classes of
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faithful, cofaithful and torsionless modules are all invariant under an
equivalence of module categories, the result follows from condition (c)
above.

The next two propositions show that our condition implies certain
finiteness conditions, although it is much weaker than the descending
chain condition for left annihilators. In particular, a commutative,
semiprime ring satisfying the condition has finite uniform dimension,
and so it must be Goldie.

PROPOSITION (1.3). Let R be a ring such that every faithful left
ideal is cofaithfui

(a) R is not a direct product of infinitely many (nontrivial) rings.
(b) // JR is semiprime, then it contains no infinite direct sum of

nonzero ideals.

Proof, (a) Suppose that R is an infinite direct product of
rings. Let A be the set of all elements which are zero in all but finitely
many components. Then A is faithful but not cofaithful.

(b) Assume that A = A i 0 A 2 0 • is an infinite direct sum of
ideals. If JR is semiprime, then A Π ({A) = 0 and A 0 £{A) is faithful,
so by assumption there exist JC,, •• ,JC* E A ®£(A) such that
Πίc=,/(xι) = 0. But there exists an integer n such that JC, E

A\ 0 * 0 An 0 €(A) for all /, and so for any 0 ^ y 6 Λn+1 we have
y E n?eI^(jCi), a contradiction.

PROPOSITION (1.4) (Faith [5]). A ring R has the descending chain
condition on left annihilators if and only if for every subset S of R there
exists a finite subset {JCJ,X 2 ,"

 m

9xn}Q S such that €R(xu , x n ) = ΐR(S).

Proof If R satisfies the descending chain condition on left
annihiίators, choose {JC,,JC2, ,xn} so that /(JC,, ,xv) is minimal in the
set of all left annihilators of finite subsets of S.

Conversely let Λ,DΛ 2 D be a descending chain of left an-
nihilators and let S = U ^ ( A ) Then there exists a subset
{xi,x2, ,Jcn}CS so that /(JC,,JC2, * *,*„) = £(S). There exists a posi-
tive integer k such that ί(Ai)D{xί9x2,-—9xn} for all i^k. But for
igfc, Ai = €(€(Aι))C€(xu '9xH) = €(S)CAh so A = €(S) and the
chain terminates at Ak.

We remark that Handelman and Lawrence [11] have given an
example of a prime ring in which every (faithful) left ideal is cofaithful
but which does not have the analogous property for right ideals. We
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next give some examples to show the relationship between this condi-
tion and various other finiteness or chain conditions.

A left Noetherian ring need not satisfy our condition, as is shown
by the following example due to Small [16]. Let R be a simple left
Noetherian domain which is not a division ring, let F be the field which
is the center of R, and let K be a nonzero left ideal of JR. Set M = JR IK

and let S be the ring of all matrices ( , j where a EF, b EM and

c ER. It is easily seen that S is left Noetherian, and following Small
one can show that given any finite subset of M, say {mu , m,}, there
exists 0/dER such that dm, = 0 for ι" = l, ,ί. Thus / =

J L i E F , b e Λ f [ is a faithful left ideal of S which is not

cofaithful.
On the other hand, a left Noetherian ring which is integral over its

center has the property that every faithful left ideal is cofaithful since it
is a subring of a left Artinian ring (see Blair [4]). Also in the positive
direction, if R is left Noetherian and Z(JR) = 0 (e.g. if R is left
hereditary) then our condition holds.

The ring R = {(n, a) | n G Z, a E Zp~}, where Zp~ is Prufer's quasi-
cyclic group and multiplication is given by (n,a)(m,b) =
(nm, nb + ma), provides an example of a commutative ring with finite
uniform dimension for which every faithful ideal is cofaithful (since R
is essentially Artinian), but it can be checked that JR does not satisfy the
chain condition on annihilators.

The next proposition provides many more examples.

PROPOSITION (1.5). IfR has a left classical quotient ring Q which is
essentially left Artinian, then R has finite uniform dimension and every
faithful left ideal is cofaithfui

Proof Let A be an essential Artinian left ideal of Q. If
Bι 0 B2 0 0 Bk is a direct sum of left ideals of R, then by standard
quotient ring techniques QB, 0 QB2 0 0 QBk is a direct sum of left
ideals of Q and so if each QB^Q then {QBX ΠA)φ(QB2DA)
0 * 0 (QBk n A) is a direct sum of nonzero left ideals in A. Since A
is left Artinian such direct sums must be finite and thus R has finite
uniform dimension.

If B is a faithful left ideal of R, then ΠbEB€Q(b) = 0 since
ΠbeBίQ(b)ΠR = ΠbeBfR(b) = 0. Since A is Artinian,

n
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for some finite subset bub2,-%bn of B, and then Π M ^ ( 6 , ) C

Γ\Uι€Q(bi) = 0 since A is essential.

We say that a ring has enough uniforms if every nonzero left ideal
contains a uniform left ideal. If a ring has finite uniform dimension
then it has enough uniforms. An infinite direct product of copies of Z
shows that a ring may have enough uniforms without having finite
uniform dimension.

PROPOSITION (1.6). If R is a ring with enough uniforms, then every
nonzero submodule of a free R-module has a uniform submodule.

Proof. Let F be a free R -module and Λ4V0 a
submodule. Without loss of generality we may assume Λf is cyclic, in
which case we may also assume F is finitely generated. Let F = Rn,
and pn be the projection onto the last summand. If the restriction of pn

to Λί is a monomorphism then an isomorphic copy of M is contained in
jR and so M contains a uniform submodule. If pn restricted to M is not
a monomorphism then M Π R " " V 0 and we complete the proof by
induction.

COROLLARY (1.7). The condition that a ring have enough uniforms
is Morita invariant.

In the course of proving that finite uniform dimension goes up to
polynomial rings, Shock [15] showed that if U is a uniform left ideal of
R then U[x] is a uniform left ideal of R[x]. With only slight
modification Shock's proof shows, in fact, that if RM is a uniform
R-module then M[x](^R[x](g)RM) is a uniform left i?[x]-module.

PROPOSITION (1.8). // R has enough uniforms, then R[x] has
enough uniforms.

Proof. Let I be an ideal of R[x], where R has enough
uniforms. As an JR-submodule of the free R -module R[x],I contains
a uniform R -submodule M by Proposition 1.6. Thus there exists
q(x)El such that Rq(x) is a uniform R-submodule of /. By multiply-
ing q(x) by appropriate elements of R we may assume that the left
annihilators of all the nonzero coefficients of q(x) are the same. This
"new" q(x) is also an element of M CJ, so Rq(x) remains a uniform
R -module. Since the left annihilators of the nonzero coefficients of
q(x) are all the same we have R[x]q(x)^R[x]<g>RRq(x). By the
remarks before the theorem this shows that R[x]q(x) is a uniform left
ideal of R[x] contained in I
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PROPOSITION (1.9). Let R be a commutative ring in which every
faithful ideal is cofaithful. Then every faithful ideal of R[x] is
cofaithfui

Proof. Let / be a faithful ideal of the ring R[x] and let Jo be the
ideal of R generated by the coefficients of the polynomials in
/. Clearly JΓ0 is a faithful ideal of R. Thus there exist au α2, , αf E Jo

such that €R{au βi, * , at) = 0. Let f(x) be a polynomial of / in which
aκ appears. Let deg/i(jt) = n,- and set no = O. We show
*RM(fι(x), * •,/,(*)) = 0. If not, and say h(x)f(x) = 0 for i = 1, , ί,
then set m, = ΣJiUn, + 1) and g(x) = ΣJ.,/,(x)jcm|. Now h(x)g(x) = 0,
and since R is commutative, 6.13 of Nagata [13] shows that there exists
0 φ c E JR such that cg(x) = 0, and so cα, = 0 for i = 1, , £, a con-
tradiction.

We remark that Theorems 1.8 and 1.9 are true for polynomial rings
in a finite number of indeterminants by induction, and then due to the
"local" nature of the conditions the results hold for polynomial rings in
an arbitrary number of indeterminants.

2. Orders in semisimple Artinian rings.

THEOREM (2.1). The ring R is semisimple (simple) Artinian if and
only if R is semiprime (prime), every nonzero left ideal contains a
minimal left ideal, and every faithful left ideal is cofaithfui.

Proof. Assume that R is semiprime, every faithful left ideal is
cofaithfui, and every nonzero left ideal contains a minimal left ideal,
and let S be the sum of all minimal left ideals of R. Then by
assumption S is essential in JR, and hence faithful since R is
semiprime. Thus S must be cofaithfui, and so there exists an exact
sequence 0-» R —> Sk for some positive integer L This shows that RR
is completely reducible, and therefore semisimple Artinian.

In analogous fashion we are able to characterize orders in semisim-
ple Artinian rings by merely requiring enough uniform left ideals instead
of enough minimal left ideals as in Theorem 2.1. We study the prime
case first. (Recall that a ring is prime if and only if every nonzero left
ideal is faithful.)

THEOREM (2.2). The ring R is a left order in a simple Artinian ring
if and only ifR is prime, contains a uniform left ideal, and every nonzero
left ideal is cofaithfui.
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Proof. If R is an order in a simple Artinian ring then every left
ideal is cofaithful and R contains a uniform left ideal by Proposition 1.5.

Conversely, if Z(R), the singular ideal of R, is nonzero, then there
is an exact sequence 0—> R —• Z(R)* for some positive integer k. This
implies Z(R) = R, a contradiction. Since Z(R) = 0, in order to show
that R is left Goldie it suffices to show that R has finite uniform
dimension. To see this, let U be a uniform left ideal of R. Then R
has finite uniform dimension, since for some positive integer k there
exists an exact sequence 0-»i? -* Uk.

We next give a proof of Theorem 2.2 which avoids Goldie's
Theorem and simultaneously produces the full matrix ring over a
division ring in which the ring is a left order. The proof is inspired by
the proof of Faith's Theorem 34 [6]. We first observe that if the left
uniform dimension of R is n and 0—•!?—>Mm is exact for some
positive integer ra, then there exists an exact sequence 0-*R-*Mk

with k g n.

THEOREM (2.2 bis). // the ring R is prime, contains a uniform left
ideal, and every nonzero left ideal is cofaithful, then Qcι(R), the left
classical quotient ring ofR, is ann xn matrix ring over a division ring.

Proof. As in the proof of Theorem 2.2, Z(R) = 0 and R has finite
uniform dimension, say dim R = n. Furthermore, there exists an exact
sequence 0-» R —• Un where U is a uniform left ideal of R. Let V be
the quasi-injective hull of U. Since Z(R) = 0, Z(l/) = 0 and U is
strongly uniform in the sense of Storrer [17]. By Lemma 7.4 of Storrer
[17], D = End*( V) is a division ring. By Proposition 13 of Faith [6], V
is in fact injective. We claim that V has dimension n as a vector space
over D. There exists an exact sequence 0-+R -» V , and if
(t?i, t?2, , vn) is the image of 1 E JR in V", we show {i;,, , vn} is a basis
for V over D. Let v EV and /: R -* V be the map given by
f(r) = rv. By the injectivity of Vn this extends to a map /': Vn -* V
with components d, G D. Hence i? = /(I) = /'(ι>,, •••,»„) =
Σf-i d/i><. Thus t;,, •> !>„ span V. If, on the other hand, Σf=j d,t;, = 0,
with say dft / 0, then rv, = 0 for i ̂  j implies rv} = 0 and there is a
monomorphism from JR into Vn~\ so, since V is a uniform 1?-module,
this contradicts the fact that dim(l?) = n. If Q = EndD( V), then Q is
the ring of n x n matrices over D o p p , and there is a natural embedding
R CQ, since V is faithful. Now V is isomorphic as a Q -module to a
minimal left ideal of Q and QQ — * V , which implies that 1? is essential
in Q. Furthermore, if V{ is the intersection of R and the ίth compo-
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nent of Q, then V{ is nonzero for otherwise we have an embedding of R
in Vn~ι and contradict dim(J?) = n.

Let A be an essential left ideal of R, and let A =
AΠVi^O. Then Λ,Λ, ̂ 0 , since R is prime, so there exists ax G A
with Ajfl/^O. Thus we may define a nonzero homomorphism
/: A, -> Aί C V by /(α) = 00, for α G ,4,. Since U is essential in V and
Z(l/) = 0, we have Z(V) = 0. If ker(/) ̂  0, then ker(/) is an essential
submodule of V and if x G Ax C V then {r G I? | rf(x) = 0} is an essential
left ideal of £, which implies f(x)EZ(V) = 0 and / = 0, a
contradiction. Hence there exists an exact sequence

and so there exists JC G A such that 4 0 0 = 0. Since R is essential in
Q, €Q(x) = 0, and since Q is left Artinian x must be invertible in Q and
hence regular in R. This shows that every essential left ideal of R
contains a regular element, so if q G Q, then (R: q) = {r G I? | rq G R} is
an essential left ideal of R since I? is essential in Q, and thus (R: q)
contains a regular element JC. Hence xq = r ER and so q =
jfV. Thus 1? is a left order in Q.

LEMMA (2.3). Let Rbe a semiprime ring and U a uniform left ideal
of R. Then P = €R(U) is a prime ideal of R, and the image of U in RIP
is a uniform left ideal of R IP.

Proof. Let A and B be left ideals of R such that AB C P. Then
ABU = 0 and so BUA=0 for otherwise (BUA)2 = 0, while
BUA^O. Hence BUAU = 0 and so BUΠAU = 0 since R is
semiprime. Since U is uniform BU = 0 or AU = 0 and so A C P or
β C P. Since P Π (7 = 0, it is easy to see that the image of U in R IP is
again uniform.

LEMMA (2.4). Let Rbe a semiprime ring in which every faithful left
ideal is cofaίthful and let S be a left ideal ofR. If A = 4 ( 5 ) , then every
faithful left ideal of R/A is cofaithfui

Proof. Let I be the ideal SR. Then A = 4(J), and since R is
semiprime, A = €R(I). Let B/A be a faithful left ideal in R/A. If
C = 4 (B) then CB = 0 and s o C B C Λ ; hence C C A Thus C2 = 0,
since C C A CB. Since I? is semiprime, C = 0 and J5 is a faithful left
ideal of R. By hypothesis there exist bu ,bt EB such that rbx = 0
for ί = l, ,ί implies that r = 0. Let bi be the image of bt in
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B/Λ. Suppose PERI A is such that rb, = 0 for / = 1, , t. Then
rbf G A for i = 1, , ί and rbj = 0, so Irbi = 0 for i = 1L , ί. Hence
/r = 0 and re€R(I) = A. Thus f = 0 and €R/A(bl9 •• •,£,) = 0.

THEOREM (2.5). Tfte ring i? is α /e/ί order in α semisimple Artinian
ring if and only if R is semiprime, has enough uniform left ideals, and
every faithful left ideal is cofaithful.

Proof. Assume R is semiprime, has enough uniforms and every
faithful left ideal is cofaithful. Let A be the sum in JR of all uniform
left ideals and let M be the external direct sum of these left
ideals. Since R is semiprime and A is essential, A is a faithful left
ideal. Thus Λί is a faithful torsionless left R -module and by Proposi-
tion 1.1 it is cofaithful. Hence there exists an exact sequence

0 - » 1 ? - 4 M * for some k. Since le i?,/(I) belongs to a finite direct

sum of uniform JR -modules and so R is isomorphic to a submodule of a
finite dimensional module. This shows that R has finite uniform
dimension.

Let U = U\ 0 U2 0 0 Un be a maximal direct sum of uniform
left ideals of JR. It is clear that U is a faithful left ideal of R and
Π Jli Piί = 0, where {J*} is the set of distinct elements of K(l7i)}. Thus
the canonical map φ: JR -> U /Pi 0 01? /Pm is a monomor-
phism. By Lemmas 2.3 and 2.4, JR/P; is a prime ring which contains a
uniform left ideal and in which every left ideal is cofaithful. By
Theorem 2.2, RIP, is a left order in a simple left Artinian ring 5,. One
can show directly that S = Si 0 0 Sm is the left classical quotient
ring of φ(R), or else since I? is a subring of the left Artinian ring 5,R
has the ascending chain condition on left annihilators and we can apply
Goldie's theorem.

The Gabriel dimension of a ring is defined by Gordon and Robson
[10] in terms of localizing Serre subcategories. From Corollary 2.10 of
[10], one can easily show that a ring with Gabriel dimension has enough
uniforms. Thus we are able to state the following corollary of
Theorem 2.5.

COROLLARY (2.6). A semiprime ring with Gabriel dimension is left
Goldie if and only if every faithful left ideal is cofaithful.

We end this section with a theorem on semiprime rings with a
polynomial identity. Our result weakens the hypothesis of theorems of
Armendariz-Steinberg, Formanek, Rowen and Small.
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THEOREM (2.7). Let R be a semiprime ring with a polynomial
identity and center C, where C satisfies the condition that every faithful
ideal is cofaithful. Let S be the set of regular elements of C. Then R is
an order in a semisimple Λrtinian ring and

(1) S'ιC = F, φ 0 Fk, a finite direct product of fields,
(2) S'ιR = Qi 0 φ QΛ, where Q, is a finite-dimensional central

simple algebra with center F,.

Proof. Apply Proposition 1.3(b) to the semiprime ring C to see
that C satisfies the ascending chain condition on annihilators. The
result now follows from Theorem 9 of Formanek [7].

3. Absolutely torsion-free rings. A left exact subfunctor
of the identity Id on RM, the category of left R-modules, is called a
torsion preradical. For torsion preradicals p and σ we write p ̂  σ if
p(M) C σ(M) for all M E RM. Observe that σ(R) = R if and only if
σ = Id. For M E RM, let RadM be the smallest torsion preradical σ
such that σ(M) = M. Then for X E RM, RadM(X) =
{x E XI x = ΣΓ=i f'Xnii) for m, EM, /j G Horn* (Km,, X)}, and it follows
that RadM = itf if and only if M is cofaithful by Beachy [3].

We recall that a module is said to be prime if for all nonzero
submodules M'CM, AM1 = 0 implies AM = 0 for all left ideals A of
R. A submodule will be called fully invariant if it is invariant under all
endomorphisms. The injective envelope of a module Λί is denoted
E(M).

PROPOSITION (3.1). The following are equivalent for M E RM.
(a) For all torsion preradicals σ of RM, either σ(M) = 0 or

σ(M) = M.
(b) M is contained in every nonzero fully invariant submodule of

E(M).
(c) For all 0 ̂  x E.M and y EM there exist r,, r2, ,rnER such

that ΠΓ=i Ann(r,x)CAnn(y).
(d) M is prime and if 0 / M' CM then for all y EM there exist

*i,x2, ,xn E Af' such that ΠΓ=1 Ann(jc,) C Ann(y).

Proof ( a ) Φ ( b ) . If O^NCE(M) is fully invariant, then
RadN(£(M)) = N, so RadN(M) = MΠ RadN(E(M)) = Λf Π Nέ 0, and
thus we have RadN(M) = M and so M C N.

(b) Φ (c). For 0 / J C G M , let N be the sum in E(M) of the

homomorphic images of Rx. Then N is fully invariant, so by assump-
tion M CN and thus y = Σf=, finx) for rf E R and / E
Horn*(Rx, E(M)). Therefore anx = 0 for all i" implies ay = 0.
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(c) Φ (d). If 0 ϊ M' C M, and AM' = 0 for some AC/?, then let
E M ' . By assumption for any y G M there exist r,, r2, , rn G JR

such that Λ C Π"=1 Ann(riJc)CAnn(y), so AM = 0 and Aί is
prime. The second condition follows immediately from (c).

(d) Φ (a). If 0 ̂  σ{M) - N for some torsion preradical σ, then
for any y G M there exist xux2, —,xk€ίN such that Π?=1 Ann(jc,)C
Ann(y). Thus for x = (x,, -,**)£ N \ the mapping /: l?x —>l?y de-
fined by f(ax)-ay is a well-defined homomorphism, and since x G
σ(Nk) we must have y = f(x)Gσ(M). This shows that σ(M) = M,
completing the proof.

Taking y = 1 G JR in condition (d) of Proposition 3.1 shows that RR
satisfies the equivalent conditions of the proposition if and only if R is
prime and every (faithful) left ideal is cofaithful. Condition (a) is
satisfied if and only if σ(R) = 0 for every torsion preradical σ such that
σ^ Id; such rings are the absolutely torsion-free rings studied by Rubin
[14]. Taking y = 1 in condition (c) shows that R is absolutely torsion-
free if and only if for all 0 ^ r G R there exist r,, , rn G R such that
srf = 0 for all / implies 5 = 0 , and this gives the condition studied by
Handelman and Lawrence [11]. It also gives the equivalent condition
that every nonzero left ideal is cofaithful, as shown by Viola-Prioli [18],
Theorem 1.1.

Many of Rubin's results on absolutely torsion-free rings are easier
to prove in the light of Proposition 3.1. A prime left Goldie ring is
absolutely torsion-free on the left and right (Rubin [14], Theorem 1.11)
since it satisfies the descending chain condition on both left and right
annihilators. Since being prime and having every faithful left ideal
cofaithful are both Morita invariant, so is being absolutely torsion-free
(Rubin [14], Theorem 1.12). Applied to RR condition (b) of Proposition
3.1 states that E(R) has no nontrivial invariant submodules. If S D R
is a subring of the complete ring of quotients of /?, then E(SS) - E(RR)
and the condition implies that S is absolutely torsion-free whenever i?
is (Rubin [14], Theorem 1.15).

PROPOSITION (3.2). A ring R is left absolutely torsion-free if and
only if R is prime, Z(R) = 0, and every nonsingular quasi-injective left
R-module is injective.

Proof. Assume that R is left absolutely torsion-free and that
0^RM is quasi-injective with Z(M) = 0. Then RadM(M) ̂  0 implies
that RadM = Id by Violi-Prioli [18] Theorem 1.1, so M is cofaithful and
hence injective.
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Conversely, let M be a fully invariant submodule of E(R). Then
M is quasi-injective and nonsingular since by assumption Z(R) = 0, so
M must be injective and thus a direct summand of E(R), say E(R) =
MφJV. But M ΠR is an ideal since M is fully invariant in E(R), so
(M ΠR)-(N ΠR) = 0 and this implies that NΠR=0 since R is
prime. Thus N = 0 since J? is essential in E(R), so M = E(R) and it
follows from Proposition 3.1 that 1? is absolutely torsion-free.

Finally, as a consequence of Proposition 3.1 we have the following
restatement of Theorem 2.2.

THEOREM (3.3). A left absolutely torsion-free ring is left Goldie if
and only if it has a uniform left ideal.

We call a module M semicompressible if for all nonzero sub-
modules N CM there exists an exact sequence 0—»M->Nk for some
positive integer k. (Note that a semicompressible module satisfies the
conditions of Proposition 3.1.) The following proposition can be
generalized easily to quasi-projective semicompressible modules.

PROPOSITION (3.4). The endomorphism ring of a projective,
semicompressible left R-module is left absolutely torsion-free.

Proof. Let RM be semicompressible and projective and let
Endκ(M) act on the left of M. We will show that EndR(M) satisfies
condition (c) of Proposition 3.1. Let /,g E EndR(M), /τ^0,
g/0. Since g(M)^0 and M is semicompressible, there exists a
positive integer k and a monomorphism /: Λf —>(g(M))\ Let
p : Mk -*{g{M))k be the homomorphism with components px-
g. Since M is projective, / lifts to a map h: M —• Mk with components
Λ,:

M

Then p/ι/ = /jV 0 since j is monic and / ^ 0, so gΛ/ = (p/i )(/y 0 for some
component (ph)j of p/i. Hence {((ph)if)C€(g).

THEOREM (3.5). The ring of endomorphisms of a finitely generated
projective module over a left absolutely torsion-free ring is left absolutely
torsion-free.
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Proof. Let R be left absolutely torsion-free. Then RR is
semicompressible, so the result will follow from Proposition 3.4 if we
can show that any finitely generated free module over JR is semicom-
pressible, since a submodule of a semicompressible module is
semicompressible. More generally, we show that if RM is semicom-
pressible, then Mn is also. For this purpose let 0 ̂  N C Mn and let pn

be the projection of Mn onto the last component. If pn is monic when
restricted to N, then since M is semicompressible there exists k such
that 0-*M-+<j>Λ(N))k~Nk is exact and so 0-+Mn^(Nk)n is
exact. If pn is not monic on JV then J V n M " " V 0 and the above
argument can be applied to N ΠMn']. Continuing we see that there
exists an embedding 0—> Mn —> N* for some t and Mn is semicompres-
sible.
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WALLMAN RINGS

H. L. BENTLEY AND B. J. TAYLOR

In 1964 Frink defined a normal base. He hypothesized that
every Hausdorίf compactification of a Tychonoίf space X may be
realized as a compactification w(:¥) of Wallman type obtained
from a normal base 9 on X, where ^ is the family of zero sets
for some subring of C(X). Later Biles formally defined a
Wallman Ring on a Tychonoff space to be a subring of C(X)
whose zero sets form a normal base on X.

The problem in this paper is to study examples of Wallman
Rings and develop properties of Wallman Rings. For a locally
compact space with a given compactification and a certain type
of retract map, a Wallman Ring is defined which induces the
given compactification.

General algebraic and topological properties of Wallman
Rings are considered. Among the results obtained are "Every
Wallman Ring is equivalent to one which contains all rational
constant functions" and "An ideal of a Wallman Ring which is
itself a Wallman Ring is equivalent to the superring."

I. Introduction. In 1938 H. Wallman [23] gave a method for
associating a compact T rspace w{2F) with a distributive lattice 3*\
w{3F) is the space of all ^-ultrafilters and the topology of w(^) has a
base for closed sets a lattice 3P* which is isomorphic to the lattice 9.
Wallman applied this procedure to the case when 9 is the lattice of all
closed subsets of a Γ r space X to arrive at a Γ, compactification w(3P)
of X which is now called "the Wallman Compactification" of X.

Several later mathematicians applied Wallman's construction to
certain types of lattices which are sublattices of the lattice of all closed
sets of a Γ,-space. Among these were Sanin [18], Banaschewski [3],
and Frink [12]. These techniques give rise to certain classes of
compactifications. In 1964, Frink [12] asked whether each Hausdorfϊ
compactification of a Tychonoff space X can be realized as a compac-
tification vv(^) of Wallman type obtained from a normal base $F for the
closed sets of X. (A normal base is a lattice which is a base for closed
sets and which satisfies certain separation properties.) This question
remains unanswered to the present day, but a great deal of effort has
been exerted by many mathematicians in an endeavor to solve the
problem.

Partial solutions have been obtained, e.g. Steiner and Steiner have
shown that any product of compact metric spaces is a Wallman type

15
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compactification (determined by some normal base) of any of its dense
subspaces. It has become customary to call a compactification of the
form w(SF), where & is some normal base, a "Wallman compactifica-
tion" of X and we shall use this terminology in the sequel.

Frink observed that the family Z(X) of all zero sets of continuous
real valued functions on a Tychonoff space X is a normal base on X
which gives rise to a compactification w(Z(X)) equivalent to the
Stone-Cech compactification βX of X. He also observed that if Y is a
given compactification of X, then Z(£(X, F)), the zero sets of continu-
ous real valued functions on X which are continuously extendible to Y,
is a normal base. Biles [8] later called a subring si of the ring C(X), of
all real valued continuous functions on X, a Wallman ring on X
whenever Z(si)9 the zero sets of functions in st9 form a normal base.

Frink wondered whether every Hausdorff compactification of a
Tychonoff space X is of the form w{Z($ί)) where si is some Wallman
ring on X. This question is still unanswered although many partial
results have been obtained.

Biles [8] studied relationships between the Gelfand and the Wall-
man compactifications determined by a Wallman ring si on a Tychonoff
space X.

In this paper we study examples of Wallman rings and develop
properties of Wallman rings.

In §IV we will consider a locally compact space and a compactifica-
tion of that space such that there is a certain type of retract map on the
compactification. We establish a Wallman ring on this locally compact
space which induces the given compactification. From this result we are
able to define a Wallman ring which yields the Alexandrofϊ compactifi-
cation and a Wallman ring on the open unit disc which induces a
compactification equivalent to the closed unit disc.

In section HI we consider general properties of Wallman rings on
spaces with more than one element. We find that a Wallman ring cannot
be an integral domain; that every Wallman ring is equivalent to one
which is inverse closed; that an ideal of a Wallman ring which is itself a
Wallman ring is equivalent to the larger ring. We also examine the
relationship between a Wallman ring being the direct sum of nontrivial
ideals and its associated compactification being disconnected. We
present some results linking Wallman rings to sublattices of C(X), and
we pose the question: "Is every Wallman ring on X equivalent to one
which is a sublattice of C{X)T

II. Preliminary notations and definitions. Throughout
this paper, all topological spaces are Tychonoff (completely regular and
Hausdorff), and contain at least two points. If X is a topological space,
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then a compact space Y is said to be a compactification of X if there is a
homeomorphism h from X into Y such that /ι [X] is dense in Y. The
function h is called an embedding. To simplify notation, embeddings
will be taken to be inclusions.

We will use the customary ordering of compactifications: Y, S Y2 if
there is a continuous map /: Y2-> Y\ which leaves X pointwise fixed
(i.e. f(x) = x for all x E X). Also, Y, and Y2 are equivalent (Y, = Y2) if
Y, ̂  Y2 and Y2 ^ Y,. As is well known, Y, = Y2 if and only if there is a
homeomorphism /: Yi—> Y2 which leaves X pointwise fixed.

We will use the following notation throughout the paper.

X — the set of natural numbers
01 —the field of real numbers
C(X)—the ring of all real valued continuous functions on the

space X.
C*(X) — the ring of all bounded functions in C(X).

the subset of bounded functions of a collection sέ C C(X),

Z(/) — the zero set of a real valued function / on X, Z(/) =
{jcEX:/(jc) = 0}.

Z[M] - the zero sets of a collection si of real valued functions on

Z(X)—the zero sets of C(X), Z(X) = Z[C(X)] = Z[C*(X)].
For basic concepts regarding the ring C(X), we refer the reader to

Gillman and Jerison [13].
Following the terminology of Biles [8] and Frink [12] we give the

following definitions.

2.1. DEFINITION. If 9 is a collection of subsets of X, then 9 is a
lattice on X if:

(1) φ,XE&
(2) If Λ, JB E ̂ , then A Π B G ^ a n d A U B G f .

2.2. DEFINITION. The lattice 9 on X is a normal base on X if 9
is:

(1) a base for the closed subsets of X,
(2) a disjunctive lattice on X (i.e. if A E ^ and JC E X - A, then

there exists B e f such that x EB and A Π B = φ),
(3) a normal lattice on X i.e. for each A, B G f such that

A Π B = φ, there exists C,D<Ξ9< such that A Π D = φ, B Π C = φ and

The space w(^) consisting of the set of all 9- ultrafilters on X is a
Hausdorίf compactification of X. The topology of w(9) is defined as
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follows. If A E 9, A* is the set of all 9-ultrafilters having A as a
member. A base for the closed subsets of w(^) is the set of all A * such
that A E 9.

X is embedded in w(2F) by the map which sends a point x E X into
the 9- ultrafilter consisting of all ^-sets which contain x.

2.3. DEFINITION. W(CF) is said to be a Wallman compactification
of X.

As was mentioned earlier a subring si of C(X) is a Wallman ring on
X if Z[sd] is a normal base on X. So if ^ is a Wallman ring on X, then
w(Z [«£#]) is a Wallman compactification of X.

We will content ourselves here with the above statements on
Wallman compactifications. The reader is referred to the literature (e.g.
Frink [12], Biles [8], Steiner [19], Alo and Shapiro [2]) for proofs of the
above statements.

Being interested in ordering of compactifications, we are led to the
following concept which is due to Steiner [19].

2.4. DEFINITION. Let 9 and $ be families of sets. Then:
(1) ^ S ^ (^ separates &) if and only if for each F,, F2E&,

FιDF2 = φ implies there exist G,, GjEΉ such that F, C G,, F 2 C G2

and 0,0 02 = φ.
(2) y = » ( ^ is equivalent to ») if and only if 9 ^ <S and » S Λ

2.5. THEOREM. T/ι̂  relation " g " defined in 2.4 « transitive and
reflexive. The relation " = " w an equivalence relation.

We will now look at an application of this concept. By a sublattice
of C(X) we mean a subset of C(X) which contains the supremum and
infimum of each pair of its elements. By a closed subring of C{X) we
mean a subring of C(X) which is closed in the uniform topology on
C(X).

2.6. DEFINITION, sd is an inverse closed subset of C(X) if and
only if for each fGsi and for each g 6 i such that Z(g) = φ, fig E M.

2.7. THEOREM. Let sέ be a Wallman subring and sublattice of
C(X), then f,gGst implies {x E X: fix) ^g(x)} E Z[d}.

Proof. {*EX:/(x)gg(x)} = Z((/-g)vO).

In a restricted situation, the following theorem gives some insight
into the separating relation of Steiner defined in 2.4. This theorem also
is closely related to generalizations of the Stone-Weierstrass Theorem
(for details see Taylor and Bentley [22]).
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2.8. THEOREM. Let si be a sublattice of C(X) which contains the
constant functions. Let 38 be an inverse closed subset of C(X) which is
also a closed subring of C(X). Then Z\d\^Z\β\ if and only if
sί*Q®.

Proof. Half of the proof is obvious. We will show only the other
half. We borrow our method of proof from Hager [14].

Let g G i * . There is a positive real number r such that \g\ = r.
Choose e >0. Then there is a natural number n such that 1/n < β/2r.

/ = { - n - l , - n , , - l , 0 , l , , n - l } .
For i E J, let

Then Fi E Z[st] and Π ie/JF; = φ. As was shown by H. L. Bentley [4]
there are functions //E 38 for each id I such that FiQZif) and
Π i^Zif) = φ. For each / E /, let

Σ/ί

So Σje/ ft, = 1 and since 38 is inverse closed hf E 3δ for each j EL
Let w = ΣieIirhiln. Since 38 is inverse closed, is a closed subring of

C(X)y and contains a function whose zero set is empty, namely Σ i e ί / ,
38 contains all the constant functions. Therefore u € 38.

Now let x E X and let j be as small as possible so that JC £ FJ x
cannot be in each of the Ft since ΠieIFi = φ. JC£ J^ implies jrln <

(j + 2)r/n so \g(x)-(j+ l)r/n \ <r/n and

jcE(n{f;: i ε/,/</})n(n{F,: /εi,i>j +1}).

Now w (x) = y — r/i, (x)

ie/
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Since 0 ̂  hj+](x) g 1 this yields

n n n n

Therefore | u(x) - (j + l)r/n | ̂  r\n and

g(χ)-- M(X)-J

For β > 0 , we have shown there is a function M 6 8 such that
\g(x)-u(x)\<€ for each x EX. Therefore, since SB is closed in C(X),

[21].
The following theorem is due to A. K. Steiner and E. F. Steiner

.

2.9. THEOREM. / / 3? and Ή ire normal bases on X, then:
(1) 9 ^ » // and only if w(&) ^
(2) 9 = » // and on/y // w ( ^ ) s

2.10. THEOREM. If 2F ̂ Ή ind 3P is normal, then <S is normal.

Proof. Let G, and G2 be disjoint elements of c§. ^%^ implies
there are sets Fu F2E& such that G,CF,, G2 C F 2 and F, Π F 2 = φ.
Since 3̂  is normal there exist F',, F 2 G ^ such that F , n F 2 = φ ,
F2ΠF\ = φ and F{ U F 2 = X Now, since ^ separates & there exist G;,
G2, Gα, G, G © such that F, C Gfl, F 2 C G2> F 2 C Gb, F\ C G',, G f l ΠG; =
φ and G, ΠG', = φ.

Now GxQFλQGa and GaΓ)G'2=φ implies G,nG2=</).
G 2 C F 2 C G b and ft Π G! = ψ implies G 2 Π G | = ψ.

andF c G ; and F 2 C G 2 implies G ; u G 2 = X
Therefore $ is normal.

2.11. THEOREM. // 9 is a disjunctive base for the closed sets ofX,
<& is a collection of closed sets of X and 9 ^ % then <§ is a disjunctive
base for the closed sets of X.

Proof. X and φ E <g since X and φ, as elements of 9, must be
separated by elements of (S.

If C is a closed subset of X and x is an element of X not in C, then
there exists F{E^ such that C C F , and x&Fu Consequently there
exists F 2 G 9 such that x e F 2 and FxnF2 = φ.
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Since 9 ^ % there are G,, G2 e » such that F, C G,, F2 C G2 and
Gi Π G2 = φ. This implies $ is a base for the closed sets of X since
x £ G , and C C G , .

If G G ̂  and JC£ G, then as above there are FUF2E.& such that
JC E F2, G C F , and F^Π F2= φ; and consequently disjoint GH G2 E ̂
such that x E G2, G C G,. Since JC E G2 and G ΠG2 = φ, % is a
disjunctive base for the closed sets in X.

2.12. THEOREM. If 3F is a normal base on X, <& is a lattice of
closed subsets of X and & = % then <§ is a normal base on X and

We will now translate this result from normal bases to Wallman
rings.

2.13. DEFINITION. If d and 38 are subrings of C(X) then:
(1) si^m if and only if Z[sέ] ^ Z[S8 ].
(2) d = $ if and only if d ^ S3 and 38 g ̂ .

2.14. THEOREM. If d x nd 31 are Wallman subrings of'C(X) then:
(1) ^ ^ 3 8 //and only if w(Z[d])^w(Z[Sft])
(2) ^ = 38 if and only if w(Z[d]) = w(Z[38]).

2.15. THEOREM, d is a Wallman ring on X, 38 is a subring of
C(X) and d = M, then 38 is a Wallman ring on X and w(Z[d]) =

III. Properties of Wallman Rings and Some
Questions. Since a Wallman ring is a ring in the usual algebraic
sense, it is natural for us to investigate which properties of rings
Wallman rings possess. Along this line we have discovered that a
Wallman ring cannot be an integral domain, and that each Wallman ring
is equivalent to a Wallman ring which is inverse closed. We have
investigated the problem of when a Wallman ring is equivalent to a
Wallman ring which is a sublattice of C(X), but have only partial
results.

We also investigated relationships between algebraic properties of
Wallman rings and topological properties of the induced compactifica-
tions. Our main result along this line is one involving the relationship
between a Wallman ring being the direct sum of nontrivial ideals and the
induced compactification being disconnected.

Our first result is the following.
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3.1. THEOREM. A Wallman ring cannot be an integral domain.

Proof. Let si be a Wallman ring on a space X and let JC and y be
distinct elements of X. Since Z[si] is a disjunctive base for the closed
sets of X, there are functions / and g 6 i such that x E Z(f), y E Z(g)
and Z(f) Π Z(g) = φ. By the normality of Z[si] there are functions /'
and g'<Ξsέ such that Z(/) Γ)Z(g') = φ, Z(g)ΠZ(f) = φ and
Z(f') U Z(g') = X. Now we have f'(y) Φ 0, g'(jt) ^ 0 but /'g' is the zero
function.

We will now show that every Wallman ring is equivalent to a
Wallman ring which is inverse closed and therefore to a Wallman ring
which contains all the rational constants.

3.2. LEMMA. Every Wallman ring contains at least two functions
whose zero sets are pairwise disjoint and nonempty, and a function
whose zero set is empty.

Proof. Let si be a Wallman ring over X. Let JC and y be distinct
elements of X. Then there are functions fx and f2Ed such that
x e Z(/,), y G Z(/2) and Z(/,) Π Z(/2) = φ. Then /? + /! is a function
from Λ? whose zero set is empty.

3.3. THEOREM. Every Wallman ring is equivalent to a Wallman
ring which is inverse closed.

Proof. Let si be a Wallman ring on X and let Sδ = {fig :f9g&st,
Z(g) = φ}. If fe si then Z(/) = Z(//g) where g is some function from
si such that Z(g) = φ; so Z[si]CZ[38]. Similarly Z[S8] CZ[si]. 38 is
a subring of C(X) and si = $ so by Theorem 2.15 ̂  is a Wallman ring
and

3.4. COROLLARY. Every Wallman ring is equivalent to a Wallman
ring which contains all the rational constants.

Proof. Let si be a Wallman ring on X. Let £3 be the Wallman ring
{fig :f,gesΛ,Z(g) = φ}. Let g <Ξ si such that Z(g) = φ. Then if m and
n are integers, n^O, mglng G 38 and (mglng) = (mln).

From this proof we observe that every inverse closed Wallman ring
contains all the rational constant functions.

The Wallman ring C*(X) is equivalent to the inverse closed
Wallman ring C(X), for any given space X. C*(X) itself need not be
inverse closed.
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3.5. DEFINITION. If Y is a compactification of X, then E(X, Y) is
the set of all real valued continuous functions on X which are
continuously extendable to Y.

Frink [12] was the first to observe that E(X, Y) is a Wallman ring
on X. Proofs of this were later given by Hager [14] and Biles [8].

In the next theorem we give conditions for C*(X) to be inverse
closed.

3.6. THEOREM. The following are equivalent:
(1) X is pseudocompact,
(2) Every nonempty zero set of βX meets X,
(3) For any compactification Y of X, every nonempty zero set of Y

meets X,
(4) For any compactification Y of X, E(X, Y) is inverse closed,
(5) C*(X) is inverse closed.

Proof 1 Φ 2. Let / E C{βX) and suppose Z(/|X) = φ. Then
(1//|X)GC(X) = C*(X). So So there exists gEC(βX) such that
g|X = (l//|X). Now(g/) |X=lsog/=landZ(/) = φ. SoZ(/|X) =
φ implies Z(/) = φ or equivalently Z(/) ̂  φ implies Z(/|X) φ φ.

2 ^ 3 . Let a be a continuous mapping of βX into Y which leaves
X pointwise fixed. The existence of such a function is guaranteed by
Stone's Theorem [14]. Let / G C(Y) such that Z(/) ̂  φ and suppose
Z(/|X) = φ. Let g=f\X. g^C(X) so g has an extension to a
continuous function gβ in C(βX), gβ = /°α. Since Z(g) = φ, Z(gβ) =
φ. Let x G Z(f). There exists y G βX such that x = α(y). Therefore
0 = /(*) = /(α(y)) = gβ(y), which contradicts the fact that Z(gβ) = φ.
Therefore Z(/) ϊ φ implies Z(/|X) ϊ φ.

3 Φ 4. . Let / G £(X, y) such that Z(/) = φ. There is a function
gEC(Y) such that / = g|X. Since Z(g|X) = φ, Z(g) = φ and
1/g e C(y). Now 1// = 1/g |X, so 1// G E{X, Y) and E(X, y) is inverse
closed.

4 Φ 5 . C*(X) = E(X,βX)

5 Φ 1. Let / G C(X). Let g = I/I v 1. / will be bounded if and
only if g is. Z(g) = φ so l/gGC(X). But |l/g| = l/g^l, so
1/g G C*(X). Of course Z(l/g) = φ. Therefore g = l/(l/g) G C*(X),
and C(X) = C*(X).

Parts of this theorem are problems in Gillman and Jerison. 1 <=> 2 is
problem 61, 1 <£> 5 is problem 15Q.

We now investigate what happens when sέ is a Wallman ring and S3
is an ideal of M.
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3.7. THEOREM. // d is a Wallman ring on X, S3 is an ideal of d
and Z[S3] is a disjunctive base on X, then si ^ S3.

Proof. Let / and gEd such that Z(f)ΠZ(g) = φ. Assume
Z(f)/φ and Z(g)/φ since otherwise the conclusion follows from
XGZ[S3] and φ GZ[S3]. Let xGZ(/) . Then x£Z(g) so there is a
function fx G S3 such that x G Z(/x) and Z(/Λ) Π Z(g) = φ. Now let
y G Z(g); y fέ Z(ffx) so there is a function gy G S3 such that y G Z(gy)
and Z(gy) Π(ffx) = φ. Consequently ffx and ggy are functions from S3
whose zero sets separate the zero sets of / and g.

3.8. COROLLARY. If si and 3ft are Wallman rings on X and Sft is an
ideal of si then d = ®, i.e., w(Z[d]) = e(Z[®]).

The next corollary tells us that a Wallman ring cannot be an ideal of
C(X) unless the Wallman ring is C(X) itself.

3.9. COROLLARY. // d is an inverse closed Wallman ring on X,
then d has no proper nontrivial ideals whose zero sets are disjunctive
consequently d has no proper ideals which are Wallman rings.

Proof. Let S3 be an ideal of d such that Z[S3] is disjunctive. By
Lemma 3.2 there are at least two disjoint non-empty zero sets of d, say
F Ϊ and F2. By Theorem 3.7 there are functions fx and f2 G S3 such that
F, C Z(/,), F 2 C Z(/2) and Z(/,) Π Z(/2) = φ. Let / = /? + / ! / G « and
Z(/) = φ. Since ^ is inverse closed g// G d for each g Ed. Therefore
8 = f glf E£β for each g Ed. The only nontrivial ideal of j# whose
zero sets are disjunctive is d itself.

If we were to eliminate the hypothesis in 3.9 that d be inverse
closed, then the conclusion of the corollary would not necessarily
follow, as is illustrated in this example.

3.10. EXAMPLE. Let X = (0,1], d = C*(0,1],

Then d is a Wallman ring on X which is not inverse closed, S3 is a
proper ideal of d and as we shall now show, Z(S3) is disjunctive. Let
/GS3 and let yEX-Z(f). Then for some a EX, 0<a<y and
[α,y]ΠZ(/) = φ. L e t H = ([α,l]ΓlZ(/))U{α}. Then y fέ H and H is
closed in [a, 1]. So, there exists a function g G C([a, 1]) so that g(y) = 0
and g (H) = 1. Observe that g (a) = 1. Extended g to a function h E S3
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by defining h(x) = x/a for each JCG(0,a). Clearly yGZ(h) and
Z(/) Π Z(h) = φ so that Z{β) is disjunctive.

We now divert our attention to the topology of a space with relation
to the zero sets of a Wallman ring on the space and observe that the
following properties hold.

3.11. THEOREM. If sέ is a Wallman ring on X, then every neigh-
borhood of a point x E X contains a Z[si] — neighborhood of x.

Proof. Let A be a neighborhood of x, X E X. {X - Z(f): f E si} is
a base for the open sets of X. So for some / 6 i , x 6 ( X - Z(/)) C A.
Since Z[si] is disjunctive, there is a function g Gsi such that g(x) = 0
and Z(g) Π Z(f) = φ. By the normality of Z[s4]9 there are functions h
and I t e i such that Z(/) Π Z(fc) = φ, Z(g)DZ(h) = φ, and
Z(h)UZ(k) = X. This yields x E Z ( g ) C X - Z ( / i ) C X - Z ( / ) C A So
Z(/c) is a neighborhood of x and Z(/c)C A.

3.12. COROLLARY. // ̂  is a Wallman ring on X, then the weak
topology generated by sd is the given topology on X.

In the case of the Wallman ring C*(X) it is known that its Wallman
compactification βX is connected if and only if C*(X) cannot be
expressed as the direct sum of nontrivial ideals. With slight modifica-
tions, this theorem can be generalized to arbitrary Wallman rings.

3.13. THEOREM. If si is a Wallman ring such that si = 33 © ^
where Sδ and <β are proper ideals of si and if

then 35' and T are proper ideals of sέ and si1 = 3T 0 <£'.

3.14. THEOREM. // ̂  /s α Wallman ring such that si = 38 ©9ί
vv/iere 33 αrcd ^ αr^ proper ideals of si, then w(Z[si] is disconnected.

Proof. Define si', Sft' and <€' as in the previous theorem. Then
\Esi' implies there are function / ^ 3δ' and g B^r such that 1 = / + g
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and fg = 0. Since £$' and c€r are proper ideals, they contain no functions
whose zero sets are empty. In particular Z ( / ) ^ φ and Z(g)^ φ.

Now Z(f)ΠZ(g) =

= Z(\)
= φ

andZ(/)UZ(g) =
Therefore ClwiZ[jdΊ)Z(f) Π Clw{Z[sr])Z(g) = φ and

U <X ( Z W ) Z(g) = w(Z[rf'])

where Clw(Z[JίΊ)Z(/) and C\w{Zw))Z(g) are nonempty closed sets in
κ>(Z[rf']). This means w(Z[d']) is disconnected. Therefore w(Z[d])
is disconnected, since it is homeomorphic to W(Z[d']).

Whether or not the converse of this theorem is valid is an open
question. We do however have a partial converse.

3.15. DEFINITION. If rf C C(X), then d is sectionally replete if it
satisfies the following condition:

If X= LI Y,,

where Y, G Z[d] for f = 1, , n and if there are functions gf G rf such
that /| Y, = gf-1Y,, for / = 1, , rc, then / G rf.

3.16. THEOREM. If d is a sectionally replete Wallman ring and
w(Z[d]) is disconnected, then there are proper ideals 31 and <€ of d such
that d = 3# 0 <β.

Proof Since w(Z[d]) is disconnected, there exist nonempty,
disjoint closed subsets H and L of w(Z[d]) such that / / U L =
w(Z[d]). Therefore, there exist sets B, C^Z[d] such that HQ
CU(z[rf])B, L C Clw(Z[rfl,C and B Π C = φ (Bentley [4]). Let & = {/ G rf:
/ = 0 on B} and ^ = {/ G rf: / = 0 on C}. Sδ and ^ are ideals of d
whose intersection is the zero ideal.

For each / e r f let

f ί 0 i f J C G B
/ l U ) l / O O if x G C

a n d
_ { / ( J C ) if J C G B

0 if J C G C .
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Since si is sectionally replete f{ and f2Gsί. f = fx + /2, /i £ 38, and
U £ *• Therefore ^ = 35 0 <g.

The final topic in this section is the sublattice problem. The
question of when a sublattice of C(X) is a Wallman ring was answered
by Biles [8]. Any sublattice of C(X) whose zero sets form a base for the
closed sets of X is a Wallman ring. It is well-known that every closed
subring of C(X) is a closed sublattice of C(X). So every uniformly
closed Wallman ring is a sublattice of C(X).

A question related to this, namely, "Given an arbitrary Wallman
ring, is it possible to construct an equivalent Wallman ring which is a
sublattice of C{X)T does not appear to be easily answered.

Along this line we do have the following results.

3.17. THEOREM. Let si be a Wallman ring on X, let 38 be the ring
generated by {\f\: f Est}. Then 38 is a Wallman ring on Xand si = 38.

Proof. Z(\f\ ±\g I) = Z{f±g2) and Z( | / | |g |) = Z(fg) so Z[si] =
Z[9S].

Clearly 38 is not necessarily a sublattice of C(X). With further
hypotheses we can get a little closer to a sublattice of C(X).

3.18. THEOREM. Let dbe a Wallman ring over X, let 1 G si, and
let Z(f Λ 0) G Z[sέ] for each fEsi. Then

is a Wallman ring on X, si = 3δ, and 2ft contains the supremum and
infimum of any two functions from si.

Proof. (1) Z[si]QZ[®] since si Q ®.
(2) Z[®]CZ[si] since

ι= U{P,:αC{l, ,B}}

where

sa = n z(g, ΛO), τa = n z((-gi)Λθ),

va=z(Σflg,-Σte)
ViGα i£a /
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and

(3) S3 is a subring of C(X).
Therefore S3 is a Wallman ring on X and S3 = si.
(4) II f9gest, then

and

So / Λ g and / v g G S3.
The following example illustrates that in trying to find a sublattice

of C(X) which is a Wallman ring equivalent to a given Wallman ring we
cannot in general look at the sublattice generated by our given Wallman
ring.

3.19. EXAMPLE. Let Y = [ - l , l ] , X = Y-{0}, M={feC(X):
for some compact set H C X, / is constant on X - H}, /: X-»2? be the
inclusion map, ̂  be the subring of C(X) generated by M U{/}, and S3
be the sublattice generated by si. Then (1) Z [ ^ ] = Z[M] so ^ is a
Wallman ring and (2)

Proof. (1) si = {Σ^ogni":gn^M,mE. Jf}, and Λί C ^ so

To show Z[sέ] C Z[Jί] let / G a/, / = Σ^ogjH where gn G M. If
m = 0, then / = g0E.M and we are through. Therefore suppose m >0.

For n = 0, , m, there exist compact subsets /fn of X such that gn

is constant on X - //„.
Let t>0 such that [-f, f]C Y- u ; = o f t . Let α«=g n (0 for

n =0, ,m. Then αn =gn(x) for x G [-ί, ί] Π X, n =0, ,m. For
x G [ - t, t ] Π X, f(x) = Σn=o gn (*)/π (x) = Σ =̂o anx

n which is a polynomial
over [ - ί , ί ] Π I So / has finitely many zeros in [- tJ]ΠX.
Zif) = [Z(f) Π ( [ - 1, - t] U [ί, 1]) U [Z(/) Π [~ ί, ί]] so Z(/) is compact.
Therefore Z(f)EZ[M].

(2) Suppose Z[®]^Z[sd] = Z[M]. Let

= /v0, and
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Then j + and j~ E 98, and Z(/+) Π Z(Γ) = Φ Now since Z[»] ^ Z[Jί]
there exist functions f, g EM such that Z(/+) CZ(/), Z(/~)CZ(g), and
Z(/)ΠZ(g) = φ. But Z0'+) = [- l ,0) and ZG") = (0, 1]. So
Cly[-l,O)nCly(O,l]CClyZ(/)ΠCLyZ(g) = φ since Y = w(Z[J/]).
But Cly[- l,0)ΠCly(0, l] = {0} so we have a contradiction and it
follows that Z[9t]^Z[sΛ].

Henriksen and Isbell [16] showed that S3 is a ring but we do not
know if it is a Wallman ring.

This example shows us that there is a Wallman ring si such that if <#
is a Wallman ring on X, ̂  is a sublattice of C(X) and si C % then si
and % are not equivalent, since any such Wallman ring would contain 38.

Example 3.19 eliminates the obvious procedure for attacking
another problem. Given an arbitrary Wallman ring we have shown there
is an equivalent Wallman ring which contains all the rational constants.
If we could state that the uniform closure of a Wallman ring is a
Wallman ring equivalent to the original, we would have shown that
every Wallman ring is equivalent to one which contains all the real
constants. However, a uniformly closed subring of C{X) is a sublattice
of C(X) and by example 3.19 there is a Wallman ring which is not
contained in any equivalent Wallman ring which is a sublattice of C(X).
This means that in general the answer to getting the real constants in a
Wallman ring does not lie in taking uniform closures. For now, we
cannot answer the question, "For an arbitrary Wallman ring, is there an
equivalent Wallman ring which contains all the real valued constant
functions?"

IV. Examples of Wallman rings on locally compact
spaces. In this section, we present a method for constructing exam-
ples of Wallman Rings on locally compact spaces. These Wallman rings
are determined by compactifications of the space which can be mapped
by a certain kind of retract map onto the remainder. H. L. Bentley [6]
has shown that theSe compactifications are Wallman; we show how they
arise from Wallman rings.

Throughout this section, X is assumed to be a locally compact
space.

4.1. DEFINITION. A closed subset L of X is called co-compact
provided C1 Y (X-L) is compact.

4.2. DEFINITION. If ̂ f is a family of closed subsets of X, then the
compact modification of 3€ is the family

CM(%) = {(H Π L) U β : H E^,L is co-compact, and B is compact}.
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4.3. DEFINITION. (Borsuk [10].) A continuous map /: Y-*K is
called a retract map provided K is a subspace of Y and f{x) = x for
each x E K.

4.4. DEFINITION. (Bentley [6].) If Y is a compactification of X,
K = Y - X, and /: Y -> X is a continuous map, then fmaps onto Kat &
provided f[L] = K for each co-compact subset L of X.

4.5. THEOREM. (Bentley [6].) Let Ybea compactification of the
locally compact space X, let K = Y - X, and let f: Y^K be a retract
map which maps onto K at oo. Let ffl = {X Π f~\E): E is a closed subset
of K}. Then CMiβt) is a normal base on X and w{CM{W)) = Y.

Our objective is to exhibit a Wallman ring si on X for which
w{Z[si]) = y, with Y as in the preceding theorem.

4.6. THEOREM. Let Y be a compactification of the locally com -
pact space X, let K = Y - X and let f: Y^>K be a retract map which
maps onto K at oo. Let Sft be the set of all ft E.C{Y) for which there
exists a co-compact set L C Xsuch that for all z E K, h[L Π f~\{z})] =
{ft (z)}. Let si be the set of all restrictions ft | X with ft E 33. Then si is a
Wallman ring on X and w{Z[sέ})= Y.

The proof of this theorem will depend on the following lemmas.
Let Y, K, /, 39 and si be as in Theorem 4.6 and let HC be as in Theorem
4.5.

4.7. LEMMA. Z[si] ^ CM(X)

Proof Let ft EsA, then ft has an extension ft' E C(F) such that
for some co-compact set L in X

ft'[L Π/"'({z})] = ft'(z) for all z 6 K

So
= [Z(ft') n c i x ( x - L)] u [Z(ft') n L ].
= [Z(ft') n c i x ( x - L )] u [Γ'(Z(ft') n K) n L ].
= [Z(ft') n c i x ( x - L)] u κ/-!(Z(Λ') n K) n X) n LJ.

Now Z(ft') Π C1X(X- L) is compact, L is co-compact, and Z(ft') Π K
is a closed subset of K, so Z(ft)E CM($f) and

4.8. LEMMA.
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Proof. Let F,, F2E CM{W) such that FXΓ\F2 = φ. There are sets
Lx and L2 which are closed and co-compact in X, subsets Bx and B2 of X
which are compact, and subsets Ex and F 2 of K which are compact,
such that Ft = (L( Π f~ι(Ei)) U £,, for / = 1,2. Also F, Π F 2 = φ implies
[L, Π /-'(£,)] Π [L2 Π f'ι(E2)] = φ. So have L, Π L2 Π /"'(E, Π E2) = φ.
Since / maps onto K at o°, and LXΠL2 is co-compact, we conclude
EιΓ)E2 = φ.

K is completely regular so there exists uu w2EC*(K),
I I , : K - > [ 0 , 1 ] , M2:K-^[0,l], such that E,CZ(iι,), £ 2 C Z ( M 2 ) , and
Z(W l)nZ(M2) = φ. Let /! = «,*/, and/ 2=w 2o/. Then/ ί , / 2 E C(Y),
/',: Y ^ [ 0 , l ] , / 2 : Y-+[0,l].

If JC E L, ΓΊ / ι(Ei)9 then /(JC) E F t and since uκ = 0 on F,, it follows
that x E Z(/: for / = 1,2. Also Z(/',) Π Z(/2) = φ.

Now {[L, IΊ /"'(F,)] U £,} Π {[L2 Π Γ !(F2)] UB2}=φ and these two
sets are elements of a normal base for Y so

ciy{[L, n /-'(£,)] u β,} n ci r{[L2 n Γ\E2)] U B2} = φ.

Therefore there exist closed sets Gλ and G2 in Y such that Cly{[L, Π
/^F,)] U β,} C IntyG/, for i = 1,2. Bλ and B2 are disjoint compact sets
in X, so there are disjoint compact sets d and C2 in X such that
Bi C IntχC ι' = l,2. Then C Π G, is a compact set in X which contains
B, in its interior and is disjoint from [Q Γ) Gj] U [L, Π /"'(E/)] for ιV j
i = 1,2; j = 1,2.

Now define Λ, = 0 on Bu hx = 1 on Cly(Y - (C, Π G,)). These are
disjoint closed sets in Y so we can take hx to be a continuous function
on y, ft,: Y-^[0,l]. Similarly define ft2: Y^[0,1], ft2 = 0 on β2, ft2= 1
on c i y ( y - ( C 2 n G2». So z(ft,) n z(ft2) = φ.

Now we have no assurance that Z(/2) ΠZ(hx) = φ or that
Z(/ί) ΓΊ Z(ft2) = φ so we modify /', and /2.

f~\Z(ux)) Π (C2 Π G2) is a compact set in X disjoint from f~\Ex) Π
Lx, a closed set in X. Therefore since X is locally compact there exists a
compact subset Dx of X such that

f-\Z(ux)) Π C2 Π G2 C IntxD! C D , C X - (/-'(F,) Π Lx).

Similarly there exists a compact subset D2 of X such that

2)) ΠCXΠGXC IntχD2 C D2 C X - (Γ(E2) Π L2).

Since /"'[Zίiijjn C 2 ΠG 2 and C l y ( y - D , ) are disjoint closed
subsets of Y and since Y is compact, hence normal, there exists a
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continuous function gx: Y-» [0,1] such that g{ is 1 on f~\Z(ux) ΠC2Π
G2] and gx is 0 on C\Y(Y - Dx). Similarly define g2.

Now let fx = f\vgx and /2 = /ίvg2. Then /„ f2eC{Y),
/,) Π Z(/2) = φ, Z(fx)ΠZ(h2) = φ and

Finally let α, = /, Λ /ii and α2 = /2 Λ ft2. Fi C Z(cti) since

/-'<£,) Π L C Z(/;) Π Z(gι) = Z{fx) C Z(α,)

and ^ C Z C / O C Z t α , ) . Similarly F 2 CZ(α 2 ) . Z(α,) and Z(α2) are
disjoint since:

Z(ax) Π Z(α2) = (Z(/,) U Z(Λ,)) Π (Z(/2) U Z(Λ2))

n z(/2» u (Z(f{) n z(Λ2» U (Z(Λ.) n z(/2»

α, G S3 since α, = /; on Cl rL, Π Clγ(Y - Dx) Π Cl y (y - (C, Π G,)),
a set whose intersection with X is co-compact. Similarly a2 E 39.

Therefore we have functions ax\X and a2\X whose zero sets
separate F, and F2, consequently

4.9. LEMMA. Z [ ^ ] W a lattice of closed subsets of X.

Proof If fgE S3, and Lf and Lg are the co-compact sets as-
sociated with / and g in the definition of 38 then / - g and fg satisfy the
condition for being elements of 58 on the co-compact set Lf Π Lg.
Consequently 38 is a subring of C(Y) so Z(38) is a lattice of closed
subsets of Y and hence Z(sd) is a lattice of closed subsets of X.

We are now in a position to prove Theorem 4.6.

Proof By Lemmas 4.7 and 4.8 Z[sέ] = CM(%) and by Lemma
4.9, Z|\sί ] is a lattice of closed subsets of X. Therefore by Theorem 2.12
Z|>Π is a normal base on X and w(Z|>£]) = w(CM(W)). But
w(CM(3ίf))s y, so we have w(Z[sί])= Y.

We note that the theorem is also valid when / is defined just on the
closure in Y of some co-compact subset of X.

The following corollary gives a Wallman ring which generates the
one point compactification of a locally compact space. This result was
earlier observed by Brooks [11].
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4.10. COROLLARY. // X is a locally compact space, then si =
{/ G C(X): there is a co-compact subset ofXon which f is constant) is a
Wallman ring on X and w(Z[sd]) is the Alexandroff compactification of
X.

Proof Let Y be the Alexandroff compactification of X. There
can be only one function mapping Y onto (Y-X) since there is just
one point in ( Y - X ) . Clearly this function maps onto (Y-X) at α>.
Therefore the hypotheses of Theorem 4.6 are satisfied. By examining
the set 39 as defined in the theorem, we see Sft ={he C(Y): h(L) is
constant for some co-compact subset L of X}. Consequently si is a
Wallman ring which generates the Alexandroff compactification of X.

The zero sets of this Wallman ring are precisely those zero sets of
X which are either compact or co-compact.

4.11. THEOREM. // X is a locally compact space and si-
{f EL C(X): there is a co-compact subset of X on which f is constant},
then Z[sd] = {F: F G Z(X) and F is either compact or co-compact}.

Proof Let / G si, then Z{f) G Z(X). Let F be the co-compact set
on which / is constant. Then Z(f) Π F = φ or F C Z(/). If Z(/) ΠF =
φ, then Z(/) C C1X(X - F) which implies Z(/) is compact. If F C Z(f),
then C l χ ( X - Z ( / ) ) C C l x ( X - F ) which implies that C1X(X-Z(/)) is
compact and Z{f) is co-compact.

Now let Z(/) be a zero set of X which is either compact or
co-compact, fEC(X). If Z(f) is compact, then let f = 1 Λ |/ | Then
Z(/) = Z(/'). Since Z(/) is compact and X is locally compact there is a
compact subset W of X such that Z(/) C l n t l V C l V C X Also there is
a function gEC(X) such that g[Z(/)] = {0}, g[X-Int W] = {1},
g: X -• [0,1]. Define h = /' v g. Then Z(/ι) = Z(/) and /ι is constant on
(X - Int W) which is a co-compact subset of X. Therefore Z(/) G

If Z(f) is co-compact, then / is constant on the co-compact set
Z(/), so / G st9 and Z(/) G Z\sί\.

We will now define a Wallman ring ,rf, on the open unit disc such
that w(Z[si]) is the closed unit disc.

4.12. EXAMPLE. Let X be the open unit disc in Euclidean 2-space
and let Y be the closed unit disc.

We will consider the elements of Y to be complex numbers. Let
K ={zG Y: \z | = 1}, let / = {z G Y: \z \ §!} and define a function
f.J^K by

/(z) = j—i for eaach z G /.
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Let 35 be the set of all functions h£C(Y) for which there exists a
co-compact subset L of X such that for all z G L Π /, h(z) = h(zl\z |).
Note that Sδ can equivalently be described as the set of all functions
hGC(Y) for which there exists t G[L 1] such that for all z with

As was noted after the proof of Theorem 4.6, that theorem is valid
if the retract map is defined only on the closure in Y of some
co-compact subset of X. In the present situation, J is such a closure.
Clearly, / maps J ΠX onto K at <». Therefore if we let si =
{h\X: h GSδ}, then si is a Wallman ring on X which induces a
compactification equivalent to the closed disc.
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MATRIX RINGS OVER POLYNOMIAL
IDENTITY RINGS II

E L I Z A B E T H B E R M A N

If A is a ring satisfying a polynomial identity, what identity

is satisfied by the matrix ring An ? Theorem: If A satisfies the

standard identity of degree fc, then An satisfies the standard

identity of degree 2kn2- n2+ 1.

Definition: Suppose that {r,, , rq) is a sequence of elements of a
ring. To parenthesize the sequence into j clumps is to insert / pairs of
adjacent, nonoverlapping parentheses. The subsequence within one
pair of parentheses constitutes a clump. It is odd or even, depending
on the number of entries. The value of the clump is the product of the
entries. If the value is zero, the clump vanishes.

In the following let Z represent the integers.

LEMMA 1. Let k, ra, and n be positive integers. Let {M,, ,MW}

be a nonvanishing sequence of matrix units eV] in Zn.
(i) If m - kn, there exists i such that the sequnce can be parenthe-

sized into k clumps, each of value eu.
(ii) If m =(kn - n + \)n, there exist i and j such that the sequence

can be parenthesized into k clumps, each of value eιh and each beginning
with ei}.

Proof of (/). Case 1. Suppose there exists i such that at least
k + 1 of the entries in the sequence have / as initial subscript. Call the
first k + 1 such entries y,, y2, , yk+\. Then parenthesize the sequence
as follows: start with y,. Enclose it in parentheses, together with all
entries to the right, if any, up to y2. Next parenthesize y2 with all
entries up to y3, etc. We form k clumps, each beginning with a
y. Since each clump has to the right an entry with i as initial subscript,
and the sequence is nonvanishing, each clump has value eή.

Case 2. Suppose that for all /, at most k of the entries have / as
initial subscript. Since the sequence has kn entries, every / from /
through n occurs exactly k times as an initial subscript.

Case 2a. The last entry is an idempotent eά. There are previous
entries y,, ,y*_,, each with i as initial subscript. Start with y, and
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enclose it in parentheses with all entries to the right, up to
y2. Continue, forming k - 1 clumps, each of value eih Then form a
final clump consisting of the single eu at the end.

Case 2b. The last entry is eih with iVj. Then there are k
previous entries yι, — -,yk with / as initial subscript. Parenthesize,
forming k - 1 clumps, beginning with y,, y2, , yk-u respectively. Then
form a final clump, beginning with yk and ending with the last eir The
result is k clumps, wach of value en.

Proof of (ii). Let m = (kn - n + \)n. Let {uu , um) be a non-
vanishing sequence of matrix units. Let t = kn - n + 1. By (i) there
exists i such that the sequence can be parenthesized into t clumps, each
of value eti. Let yu , yt be the first entries in these clumps. Each y
has / as initial subscript. The second subscript can be any integer from
1 through n. Now

t = kn -n + 1 =(k - \)n + 1.

Thus for some j , at least k of the y's have j as second
subscript. Suppose that y/(1), , ym are all eV]. Make new clumps as
follows: start with y/(1) and enclose it in parentheses together with all
entries to the right, up to y/(2). Continue, forming k - 1 clumps. In the
old parenthesizing yf(k) was the initial entry in a clump of value eu. Let
this old clump be the /cth clump in the new parenthesizing. The result
is k clumps, each of value eih and each beginning with £f/.

Theorem 3.2 of [2] established that if A is an algebra satisfying a
standard identity, so is An. The following theorem improves this result
in three ways: (1) the degree of the identity satisfied by An is much
lower. (2) The theorem holds for rings, not just algebras over
fields. (3) The proof is simpler.

THEOREM 1. If A is a ring satisfying the standard identity of degree
/c, then An satisfies thestandard identity of degree 2kn2-n2+ 1.

Proof Let

t = 2 / c n 2 - n 2 + l = (2k - I ) n 2 + 1.

Choose t simple tensors in A ® Zn of form a 0 ei}, where a G A, and eti

is a matrix unit. Evaluate on these simple tensors the standard
polynomial of degree t. Consider only nonvanishing terms.
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Case 1. Suppose that for some /, at least k simple tensors have
form

Lbt y - en. Call the remaining elements

Insert parentheses on the right side of each term: start with the first
y and enclose it with all z's to the right, if any. Similarly parenthesize
the next y with its z's, etc. The last y forms a singleton clump. Thus
k clumps are created, each beginning with eih and each of value e/f . If
there are any z's in the clump, call them the z sub-dump. It also has
value eή.

Let V be the number of even clumps, and let D be the number of
odd clumps. Then V + D = k. Each even clump yields two new odd
clumps: the initial y and the z sub-clump. The result is 2V + D
adjacent odd clumps, each of value eu. Note that 2 V + D ^ V + P = /c.

In each term find the first set of k adjacent odd clumps of value
e-a. Create a corresponding set of clumps on the left side. Call two
terms equivalent if the following conditions hold on their left sides:

1. The elements to the left of the clumps are the same elements in
the same order.

2. The k clumps are the same, but in any order.
3. The elements to the right of the clumps are the same elements

in the same order.
Consider a fixed equivalence class. The sum of the terms in the

class is a simple tensor whose right side has the common value for the
class. The left side is the product of the following:

1. The product of all elements left of the clumps.
2. The standard polynomial of degree /c, evaluated on the values

of the k clumps, in some order.
3. The product of all the elements right of the clumps. (Because

all these clumps are odd, Corollary to Lemma 4 of [4] ensures
correctness of signs of terms.) Since the second factor vanishes, the
conclusion follows.

Case 2. Suppose that Case 1 does not hold. Since there are
(2k - I)n 2+ 1 simple tensors, by Lemma 1 (ii) there exist ί and j such
that at least 2/c simple tensors have form a ® e xl. Evidently, i ̂  j . Let
Wu = βu + eη. Then wu is idempotent, and

e-ή = eu + ei}- eu = wa - eu.
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In each term replace e§ by wu - en. Let N be the original number
of e./s. Each old term, upon expansion, yields 2N new terms. Every
new term has on the right a monomial in w's and e's. If there are at
least k of the e^s in the term, it is suitable for Case 1. Otherwise there
are at least k of the wti 's. In this case, define new elements as follows:

WJJ = - ei} + en

w;ι = - βu - en + en + en.

If iVp^/, let

wpi = ep i + epj

WjP — — eip -r ^yp.

For the remaining integers from 1 through n, let wpq = epq.
The w's constitute another set of matrix units in Zn. Each old

matrix unit epq is a linear combination of the w's with integral
coefficients. Replace all the e's by w's. The conclusion follows by
the linearity of the standard polynomial and by Case 1.

DEFINITION. The unitary identity of degree k is

2J -̂ τr(l) * ' ' Xπ(k) = v,

where the sum is over all permutations IT of the integers 1 through k.

THEOREM 2. If Λ is a ring satisfying the unitary identity of degree
k, then Λn satisfies the unitary identity of degree kn.

Proof The proof uses Lemma 1 (i) and is similar to Theorem 1 of
[4].

THEOREM 3. If A is an algebra over a field with at least k elements,
and A satisfies xk = 0, then An satisfies xkn =0.

Proof The proof uses Lemma l(i) and is similar to Theorem 1.2 of
[3]. Note: That paper uses without definition the term "homogeneous
component" of a polynomial. If f(xu •• ,JC;) is a polynomial, the
homogeneous component of degree nλ in xu degree n2 in x2, etc., is the
sum of all terms with degree nx in xl9 etc.
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RINGS OVER WHICH CERTAIN
MODULES ARE INJECTIVE

A N N K. BOYLE AND K. R. GOODEARL

This paper is concerned with rings for which all modules in
one of the following classes are injective: simple modules,
quasi-injective modules, or proper cyclic modules. Such rings
are known as V-rings, Ql-rings, and PCί-rings,
respectively. First, some conditions are developed under which
the properties of being a V-ring, QJ-ring, or PCI-ring are
left-right symmetric. In the next section, it is shown that a
semiprime Goldie ring is a Ql ring if and only if all singular
quasi-injective modules are injective. An example is con-
structed to show that the class of QJ-rings is properly contained
in the class of noetherian V-rings. Also, it is shown that the
global homological dimension of a QJ-ring cannot be any larger
than its Krull dimension. In the final section, it is shown that a
V-ring is noetherian if and only if it has a Krull
dimension. Examples are put forward to show that a noether-
ian V-ring may have arbitrary finite Krull dimension.

1. Introduction and definitions. A ring R is said to be a
right V-ring provided all simple right R -modules are injective. Accord-
ing to Villamayor [16, Theorem 2.1], this is equivalent to the condition
that every right ideal of R is an intersection of maximal right ideals. In
particular, the Jacobson radical of any right V-ring is zero, and
consequently all right V-rings are semiprime. For further properties
and examples of V-rings, we refer the reader to Boyle [1], Cozzens [5],
Cozzens-Johnson [6], Farkas-Snider [9], Michler-Villamayor [16], and
Osofsky [17].

We recall that a module A is quasi-injective provided every
homomorphism from a submodule of A into A extends to an en-
domorphism of A. According to Johnson-Wong [13, Theorem 1.1], this
is equivalent to the condition that A be a fully invariant submodule of
its injective hull, which we denote by E(A). For example, any
semisimple module (i.e., a module which is a sum of simple submodules)
is quasi-injective. A ring R is a right Ql-ring provided all quasi-
injective right R -modules are injective. Inasmuch as all simple right
R -modules are quasi-injective, it follows that R must also be a right
V-ring. In addition, since all semisimple right I?-modules are quasi-
injective and thus injective, we see from Kurshan [15, Theorem 2.4] that
R is right noetherian. Therefore: every right QJ-ring is a right
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noetherian, right V-ring. For further properties and examples of
QJ-rings, we refer the reader to Boyle [1] and Byrd [2, 3].

The proper cyclic right modules over a ring R are those cyclic right
R-modules R/I for which R\lφ R. We say that I? is a right PCI-ring
provided all proper cyclic right R -modules are injective. If R is not a
division ring, then all simple R -modules are proper cyclic, from which
we conclude that every right PCJ-ring is also a right V-
ring. According to Faith [7, Theorems 14, 17], a right PCJ-ring is either
semisimple or else is a simple, right semihereditary, right Ore
domain. In view of this result, we shall only consider right PCI-
domains in this paper.

The reader is assumed to be familiar with the notions of singular
and nonsingular modules, as in [10], for example. Also we shall need
the notions of Krull dimension and critical modules as developed in
[11]. We remind the reader that a uniform module is one in which the
intersection of any two nonzero submodules is nonzero. Finally, we
use the notation soc(A) for the socle of a module, and r.gl.dim.CR) for
the right global dimension of a ring JR.

2. Left-right s y m m e t r y . In this section we consider condi-
tions under which a right V-ring (QJ-ring, PCJ-domain) is also a left
V-ring (QJ-ring, PC/-domain). These results are consequences of the
existence of a duality (i.e., a contravariant category equivalence)
between the categories of finitely generated singular right modules and
finitely generated singular left modules. We note that in general a right
V-ring need not be a left V-ring, as shown by an example of Michler
and Villamayor [16, Remark 4.5]. For ζ)/-rings and PCJ-domains,
however, the question of left-right symmetry in general remains open.

LEMMA 1. Let R be a right and left noetherian semiprime ring with
classical quotient ring Q, and let 3"R{R9) denote the category of all
finitely generated singular right (left) R-modules. If (QIR)R and

R(QIR) are both injective, then there exists a duality

Proof. Inasmuch as QR is nonsingular and injective, we observe
that Horn* (- ,(QIR)R) and ΈxtR(- ,RR) are naturally equivalent on
&R. Using this, it follows readily that ExtJ,( - , RR) and ExVR(-,RR)
define contravariant functors &R -» R2F and R3F->&R respectively, and
all that remains is to show that both compositions of these two functors
are naturally equivalent to the appropriate identity functors.
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In view of the above remarks, ΈxtR(ΈxVR(- ,RR), RR) is naturally
equivalent to Horn*(Exti(- ,RR), R(QIR)) on &R. Since R{QIR) is
injective by hypothesis, it follows from Cartan-Eilenberg [4, Proposi-
tion 5.3, p. 120] that HomR(Exti(- ,RR), R(QIR)) is naturally equivalent
to Torf(- ,HomR(RR9 R(Q/R))) on &R. Finally, we see by San-
domierski [18, Corollary, p. 119] that Tor?(- , QIR)is naturally equiv-
alent to the identity functor on Θ>R.

PROPOSITION 2. Let R be a right and left noetherian ring with
maximal right quotient ring ζ), and assume that R is a right V-ring. If
(QIR)R and R(QIR) are both injective, then all singular right and left
R-modules are semisimple and injective.

Proof. Since JR is a semiprime ring, Q is the classical quotient ring
of R. We thus obtain the duality between &R and R^ as in Lemma
1. Now 2FR and R&> are noetherian categories, hence it follows from the
duality that they are also artinian categories. Thus every object in
each of these categories has a composition series. Since R is a right
V-ring, we infer from this that every object in 3FR is semisimple, and
then it follows from the duality that the same is true in R3F. In
particular, RII must be semisimple for any essential right or left ideal /
of R. The proposition now follows from Goodearl [10, Proposition
3.1].

THEOREM 3. Suppose R is a right and left noetherian ring with
maximal right quotient ring Q, and assume that R is a right V-
ring. Then R is right and left hereditary if and only if (QIR)R and

R(QIR) are both injective.

Proof. As in Proposition 2, we see that R is semiprime and that Q
is the classical quotient ring of R. Thus QR and RQ are both injective,
hence if R is right and left hereditary we automatically obtain (QIR)R

and R(QIR) injective. Conversely, if Q/R is injective on both sides,
Proposition 2 shows that all singular right and left R -modules are
injective. According to Goodearl [10, Proposition 3.3], R is thus right
and left hereditary.

COROLLARY 4. Suppose that R is a right and left Ql-ring with
maximal right quotient ring Q. Then R is right and left hereditary if and
only if (QIR)R and R(Q/R) are both injective.

Proof. Inasmuch as I? is a right and left noetherian, right and left
V-ring, this is a direct consequence of Theorem 3.
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THEOREM 5. Let Rbea right and left noetherian ring with maximal
right quotient ring Q, and assume that (Q/R)R and R(QIR) are both
injective. Then the following conditions are equivalent:

(a) R is a right V-ring.
(b) R is a left V-ring.
(c) JR is a right Ql-ring.
(d) R is a left Ql-ring.

Proof Under any of the assumptions a,b,c,d,l? is a V-ring on
one side or the other and hence is semiprime. Thus we may as well
assume that R is semiprime to begin with. In this case Q is also the
maximal left quotient ring of R, and so our hypotheses are now left-right
symmetric.

a φ b : According to Faith [8, Theorem 31], £ is a finite direct
product of simple rings, hence we need only consider the case when R
itself is simple. If soc(*JR) φ 0, then soc(*l?) = R and R is a semisimple
ring, whence (b) is automatic. On the other hand, if soc(RR) = 0, then
all simple left R -modules are singular, hence it follows from Proposition
2 that 1? is a left V-ring.

b φ a : By symmetry.
a φ c : Inasmuch as R is right and left hereditary by Theorem 3,

this follows from Boyle [1, Theorem 5].
c Φ a: is automatic, and then b <£> d by symmetry.

COROLLARY 6. Let Rbe a right and left noetherian domain. Then
R is a right PCI-domain if and only if R is a left PCI-domain.

Proof. If R is a right noetherian PCI-domain, then according to
Boyle [1, Theorem 7] R is right hereditary. By Small [19, Corollary 3],
R is also left semihereditary and thus left hereditary. Letting Q
denote the classical quotient ring of R, we thus see that (QIR)R and

R(QIR) are both injective. Since R is in particular a right V-ring,
Theorem 5 now says that R is also a left V-ring. Thus Boyle [1,
Corollary 10] shows that R is a left PCJ-domain.

3. QI-rings. This section is concerned with several aspects
of the structure of QJ-rings. We begin by looking at semiprime Goldie
rings, in which case we show that I? is a QJ-ring provided only that its
singular quasi-injective modules are injective. Second, we give an
example to show that not all noetherian V-rings need be QI-
rings. Finally, we prove several results about the structure of modules
over a Ql-ring R which lead to the inequality r.gl.dim.i? g K.dim.l?.
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LEMMA 7. Let R be any right nonsingular ring. If RR is finite-
dimensional, then all faithful nonsingular quasi-injective right R-
modules are injective.

Proof Let A be any faithful nonsingular quasi-injective right
R -module. Since A is nonsingular, the annihilator of any subset of A
is an 5^-closed right ideal of R in the sense of [10, p. 14]. According to
Goddearl [10, Theorem 1.24], the finite-dimensionality of RR implies
that the 5^-closed right ideals of R satisfy the descending chain
condition. Thus A must have a finite subset {α,, ,αn} whose an-
nihilator is minimal among the annihilators of finite subsets of A, and
then we infer from the faithfulness of A that the annihilator of
{au - , an} is 0. Consequently the element (aί9 , an) E An has zero
annihilator, whence An contains an isomorphic copy of RR. Since An

is quasi-injective by Harada [12, Proposition 2.4], it follows easily from
Baer's criterion that An must be injective. Therefore A is injective.

Unforunately, the hypothesis of faithfulness cannot be omitted
from Lemma 7. For if R is the ring of all lower triangular 2 x 2
matrices over a field F, then its radical / is a minimal right ideal of R
and thus is a nonsingular quasi-injective right R -module. However,
since / contains no nonzero idempotents it cannot be injective.

Over a commutative noetherian nonsingular ring, faithfulness can
be dropped, as shown by Harada [12, Propositions 2.5, 2.6]. This result
carries over to semiprime Goldie rings, as the following theorem shows.

THEOREM 8. If R is a semiprime right Goldie ring, then all non-
singular quasi-injective right R-modules are injective.

Proof Let A be any nonsingular quasi-injective right R -module,
and let Q denote the classical right quotient ring of R, which is a
semisimple ring. Now E(A) is nonsingular and so is a right Q-module,
hence there exists a ring decomposition Q = Q{ 0 Q2 such that
E(A)Q, = 0 and E(A) is faithful over Q2. If / = R Π Q,, then / is a
two-sided ideal of i? such that E(A)I = 0. Since it suffices to show
that A is a direct summand of E(A), it follows that we need only prove
that A is injective as an (2?//)-module. Inasmuch as R/I is a semip-
rime right Goldie ring with classical right quotient ring ζ)2, we may thus
assume, without loss of generality, that E(A) is a faithful right
Q -module.

According to Lemma 7, it is enough to show that the annihilator
H = {r E JR I Ar = 0} is 0. Since E(A) is a faithful right module over
the semisimple ring Q, it must contain a finite subset {xu , *„} whose
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annihilator in Q is zero. There must be an essential right ideal J of R
such that xj ^ A for all ί, whence xJH = 0 for all /, and thus
JH = 0. Now HJ is a nilpotent two-sided ideal of i?, hence our
semiprime hypothesis implies that HJ = 0. Inasmuch as / is essential
in JR, we conclude that H = 0, and so A is indeed faithful.

COROLLARY 9. Let R be a semiprime right Goldie ring. Then R is
a right Ql-ring if and only if all singular quasi-injective right R-modules
are injective.

Proof Assume that all singular quasi-injective right JR-modules
are injective, and consider an arbitrary quasi-injective right R -module
A. The singular submodule Z(A) is a fully invariant submodule of A
and thus is quasi-injective, hence we obtain that Z(A) is
injective. Now A =Z(Λ)0[Λ/Z(Λ)] and so A/Z(A) is quasi-
injective, whence Theorem 8 says that A/Z(A) must be injective.
Therefore A is injective.

As we have remarked above, every QJ-ring is a noetherian V-ring,
and Byrd [2] has raised the converse question of whether every
noetherian V-ring must be a QJ-ring. The answer is no, as we now
show.

EXAMPLE. There exists a right and left noetherian, right and left
V-ring R which is not a right Ql-ring.

Proof Let F be a universal differential field of characteristic 0
with respect to two commuting derivations δi and δ2 (Kolchin [14,
Theorem, p. 771]), and let R = F[0,, 02] be the ring of linear differential
operators over F. We recall that the elements of R are noncommuta-
tive polynomials in the indeterminates 0i,02, subject to the relations
0i#2 = 020i and 0/α = aθt + δ,α for all α E F . It is easily seen that R is
a right and left noetherian ring. Cozzens and Johnson have shown in
[6, Theorem 1] that R is a left V-ring, and the same argument shows that
R is also a right V-ring.

In view of the relation 0,α = aθι + δ,a, we can extend δf to a
derivation of R by setting δ.r = 0,r - rθh Note that R = F[0,] [02], i.e.,
R is equal to the ring of linear differential operators over the differential
ring (F[0,1, δ2). Likewise, R = F[02][0,].

Inasmuch as R = F[0,][02] = F[0,] + Θ2R, we have R/Θ2R =F[0,]
as right F[0,]-modules. We compute that the right R -module action on
F[0,] is given by its right F[0,]-module action together with the rule
x * 02 = - δ2Λ\ Now F[0,] is a right and left noetherian domain, hence
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it has a classical quotient division ring Q. We extend δ2 to a derivation
of Q according to the rule 82(ab~ι) = (82a)b~ί - ab~\δ2b)b'\ and then
we make Q into a right I?-module by using its right R -module action
together with the rule x * θ2 = - δ2x.

Now Q is uniform as a right F[0i]-module and thus also as a right
R -module. Therefore E(QR) is an indecomposable right R-
module. Considering E(QR) just as a module over the noetherian
domain F[θ2] (which is a subring of R), it has a torsion submodule
which we shall denote by Γ. We proceed by showing that T is a right
R -module which is quasi-injective but not injective. Since T is an
F[02]-submodule of E(QR), and since JR = F[02][0,], T will be an
R-submodule of E(QR) provided Tθx C Γ. Given any t E Γ, we have
ta = 0 for some nonzero α E F [ 0 2 k Observing that δifl EF[02], we
compute that tθxa = ί(δ,α)E Γ, and thus f0, E Γ. Therefore Γ is
indeed an i?-submodule of E(QR).

Inasmuch as T is a fully invariant submodule of E(QR), T is a
quasi-injective right R -module. Observing that 1 * 02 = - δ2l = 0, we
see that 1 E T and thus TV 0. Since F is a universal differential field,
there must be an element a E F such that δ2α = 1. Then δ2(α + θx) = 1
also, from which we compute that δn

2{a + 0,)"1 = ( - l)nn !(α + 0,)"'"1

for all n > 0. We now infer that the elements (a + 0,)"1 * 02 in Q are
right linearly independent over F, i.e., (a + 0O"1 is not annihilated by any
nonzero elements of F[02]. Thus (a + 0,)'1 fέ Γ, and so 7Y F(Q*).

Now E(QR) is indecomposable and Γ is a nontrivial submodule of
E(QR), hence Γ cannot be injective. Since T is quasi-injective, R
cannot be a right Q/-ring.

PROPOSITION 10. [8, Proposition 32]. Let R be a right Ql-ring. If
E is any nonzero indecomposable injective right R-module, then A =
Horn* (E,E) is a division ring.

THEOREM 11. Let R be a right Ql-ring. If A is any nonzero
finitely generated right R-module with Krull dimension α, then all finitely
generated submodules of E (A) IA have Krull dimension strictly less than
a.

Proof First consider the case where A is critical, and suppose
E(A)IA has a finitely generated submodule BjA with K.dim.(J3/Λ)^
a. Since R is a right noetherian, there exist submodules Bo = A <BX<
••• <Bn= B such that each BkIBk-x is critical. We must have
KΔ\m.{BklBk-x) ^ a for some k. Thus, replacing B by Bk and setting
C = Bk-U we have modules A^C <B such that B\C is β-critical for
some β ^ a.
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Now let Q be the sum of all submodules P of E(A) for which
HomR(P,£CB/C)) = 0. We observe that Q is a fully invariant sub-
module of £(A), i.e., Q is quasi-injective. Since R is a right ζ)/-ring,
Q must be injective. Since A is critical it must be uniform, and thus
E(A) is indecomposable, so the only choices for Q are E(A) or
0. Inasmuch as the identity map on B/C extends to a nonzero map
E(A)-+E(A)IC~+E(BIC), we obtain Q^E(A) and thus Q = 0.

Since Q = 0, there exists a nonzero map /: A -*E(BIC), which
induces a nonzero map from Ao = f~\B/C) into B/C. According to
Gordon-Robson [11, Proposition 2.3], Ao is α-critical and all nonzero
submodules of B \C are β -critical. Inasmuch as β ^ α, it follows that /
must be a monomorphism, whence Ao is isomorphic to a nonzero

submodule £0/C of B/C. The map Bo-*£o/C->Ao extends to a

nonzero endomorphism g of £(A), and since gA = 0 we see that g
cannot be an isomorphism. But then the endomorphism ring of E(A)
is not a division ring, which contradicts Proposition 10.

Thus the theorem holds for critical modules. In general, A must
have an essential submodule K = X, 0 φ Kn, where each K, is
α, -critical for some a, ^ a. In view of the results above, every finitely
generated submodule of E(Ki)IKi has Krull dimension strictly less than
α,. It follows that every finitely generated submodule of E(K)/K has
Krull dimension strictly less than α, from which the theorem follows.

COROLLARY 12. If R is any right Ql-ring, then r.gl.dim.l? ^
K.dim.l?.

Proof. We need only consider the case when K.dim.J? = N <
oo. For any right R-module A, let φ(A) denote the supremum of the
Krull dimensions of all finitely generated submodules of A. Note that
φ(A) ^ N, and that φ(A) = K.dim.A when A is finitely generated. It
suffices to show that idR(A)^N for all nonzero right R-modules A,
where idR(A) denotes the injective dimension of A. We proceed by
induction to show that idR(A)^φ(A) for all nonzero A.

If φ(A) = 0, then since R is right noetherian all finitely generated
submodules of A must have composition series. Inasmuch as R is a
right V-ring, all such submodules of R must be semisimple, and thus A
itself is semisimple. Now A is quasi-injective and therefore injective,
whence ίdR(A) = φ(A).

Now let φ(A) = n>0 and assume that idR(B)^φ(B) for all
nonzero modules B with φ(B)<n. Choose an essential submodule of
A of the form X = 0 K α , where each Ka is finitely gen-
erated. According to Theorem 11, all finitely generated submodules of
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E(Ka)IKa have Krull dimension strictly less than K.dim.JKa, from which
we infer that φ(E(Ka)/Ka)< n. It now follows that φ(E(A)IΛ)< n,
and then idR(E(A)IA)<n by the induction hypothesis. Therefore
idR(A)^n, and the induction works.

4. V-rings. In this section we consider the Krull dimension
of V-rings. According to Michler-Villamayor [16, Theorem 4.2], a
right V-ring with right Krull dimension at most one is right noetherian,
right hereditary, and Morita-equivalent to a finite direct sum of simple
V-domains. In general, all positive integers are possible as Krull
dimensions of V-rings, and we exhibit examples of this. We also show
that a V-ring has a Krull dimension if and only if it is already
noetherian.

PROPOSITION 13. Let R be a right V-ring. Then R has right Krull
dimension if and only if R is right noetherian.

Proof. All right noetherian rings have right Krull dimension:
Gordon-Robson [11, Proposition 1.3]. On the other hand, if R is not
right noetherian then by using an argument of Faith in [7, Corollary 15B]
we infer that there exists a cyclic right R -module E whose socle is an
infinite direct sum of simple modules. But then E is not finite-
dimensional and so does not have Krull dimension, by Gordon-Robson
[11, Proposition 1.4]. Since E is cyclic, it follows that R does not have
Krull dimension.

COROLLARY 14. // R is a right PCl-domain, then the following
conditions are equivalent:

(a) R is right noetherian.
(b) R has Krull dimension.
(c) R has Krull dimension at most 1.

Proof. Since R is a right V-ring, a <=> b by Proposition 13. If (a)
holds, then I? is a simple, right hereditary ring by Faith [7, Theorem
14]. Inasmuch as R is a right PCI-domain, we see that all cyclic
submodules of any singular right R -module A are direct summands of
A. In case A is finitely generated as well, then it must be finite-
dimensional since R is right noetherian, and Goodearl [10, Proposition
1.22] shows that A is semisimple. In particular, R/I is semisimple for
all essential right ideals I of i?, whence Goodearl [10, Proposition 3.1]
shows that all singular right I?-modules are semisimple and
injective. It now follows from Michler-Villamayor [16, Theorem 4.2]
that K.dim.β ^ 1.



52 ANN K. BOYLE AND K. R. GOODEARL

It is an open question whether all right PC/-rings are right
noetherian. Corollary 14 might provide a means for attacking this
question.

Cozzens and Johnson [6] have constructed examples of noetherian
V-rings with arbitrary finite global dimension, and we shall show that
these examples also have arbitrary finite Krull dimension. Since these
examples are differential operator rings, we begin with two general
results on the Krull dimension of differential operator rings.

LEMMA 15. Let R be any right noetherian ring with a derivation
δ. Then the ring of linear differential operators R[θ]is right noetherian,
and

K.dim.l?[0]^K.dim.l? + l

Proof. Given any right ideal / of R[θ] and any nonnegative
integer n, let Jn be the set of all leading coefficients of elements of / of
degree n, together with 0. Then the collection {/0,/i, •} is an ascend-
ing sequence of right ideals of R, hence we can define a right ideal in the
ordinary polynomial ring JR[JC] by setting JQ + Jλx + J2x

2~\ . We thus
obtain a monotone map φ from the right ideal lattice of R[θ] into the
right ideal lattice of 1?[JC], and as in the Hubert Basis Theorem an easy
induction on degrees shows that φ is a strictly monotone map. Now
R[x] is certainly right noetherian, and K.dim.l?[x] = K.dim.l? + 1 by
Gordon-Robson [11, Theorem 9.2], from which the lemma follows.

PROPOSITION 16. If F is a field with a finite collection δ1? , δn of
commuting derivations, then the ring of linear differential operators
R = F[θu , θn] has Krull dimension n.

Proof By induction on Lemma 15, we see that R is a right
neetherian ring with K.dim.l? ^ n. Now set Jk = θkR + + θnR for
fc = l, ,n, and set /n + 1 = 0. We prove by induction on k that
K.dim.l? IJk g k - 1. Since R Ux ^ 0, we automatically have
K.dimJ?//,^0. Now let l^k^n and assume that K.dim.l?Uk §
k - 1. Inasmuch as the 0, all commute, we see that θΐJk+ι = Λ+i for all
m > 0. In fact, we compute that {r G R \ 07 r G Jk+ι} = Jk+1, from which
it follows that

i.e.,

(θm

kR+Jk+ι)l(θm

k

+1R
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Since K.dim.R/Jk ^ k - 1, it follows that K.dim.l?/Λ+1 ̂  k. Thus the
induction works, hence we obtain K.dim.l? ̂  n.

EXAMPLE. Given any positive integer n, there exists a right and left
noetherian, right and left V-ring Rn such that K.dim.J?n = n.

Proof. Let F be a universal differential field with respect to n
commuting derivations δ,, ,δn (Kolchin [14, Theorem, p. 771]), and
let Rn be the ring of linear differential operators F[θu , 0n]. Then Rn

is a noetherian V-ring by Cozzens-Johnson [6, Theorem 1], and
K.dim.i?n = n by Proposition 15.
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COVERING THEOREMS FOR FINITE NONABELIAN
SIMPLE GROUPS. V.

J. L. BRENNER, R. M. CRANWELL, AND J. RIDDELL

In the alternating group An, n = 4k + 1 > 5, the class C of
the cycle (12- n) has the property that CC covers the
group. For n = 16k there is a class C of period n/4 in An such
that CC covers An C is the class of type (4k)4.

1. Introduction. It was shown by E. Bertram [1] that for
n ^ 5 every permutation in An is the product of two /-cycles, for any /
satisfying [in /4] g / ^ n. Hence An can be covered by products of two
n-cycles and also by products of two (n — l)-cycles. But if n is odd the
n -cycles in An fall into two conjugate classes C, C, and similarly for the
(n — l)-cycles if n is even, so that the quoted result does not decide
whether

(1) CC = An.

The question was decided affirmatively for n = 4k + 2 and negatively
for n = 4k, 4k - 1 in [2]. The question is now decided affirmatively in
the remaining case n = 4k + 1, n^ 5.

THEOREM 1. For n = 4k + 1 > 5, the class C of the cycle (12 n)
has property (1).

The proof is in §§2-4.

Regarding the product CC, it was shown in [2] that CC covers
An (n ^ 5) if n = 4k, 4k-I, while if n = 4k + 1, 4k + 2, CC contains all
of An but the identity.

By an argument quite similar to the proof of Theorem 1, we have
proved

THEOREM 2. For n = 16/c, the class C of type (4k)4 in An has
property (1).

The proof and some related matters are discussed in §5. Note that
the class in Theorem 2 has period n/4.

2. The case n = 9. Let a = (123456789). For every class in
A9, a conjugate b of a can be found such that ab represents (lies in) that
class. This assertion is the substance of the table below.

55
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b ab

(193248765)
(176235894)
(132987654)
(134765289)
(132798465)
(184523796)
(137259486)
(123794865)
(132798654)
(189623574)
(132869745)
(132845697)
(159348726)
(186974532)
a

(125678934)

1
(14) (38)
(13) (25) (48) (79)
(193)
(18) (24) (379)
(174) (369)
(135)(274)(698)
(15) (276) (3849)
(1384) (2769)
(17693)
(13) (25)(47986)
(18764)(359)
(18746)(359)
(162495)(38)
(3598764)
(135792468) ~a
(315792468)

3 . A l e m m a . In §3 and §4, C will denote the class of the cycle
a = (12- n) in An.

LEMMA. If n =4k + l>5, then CC contains the type 22kV.

Proof. If n = 1 (mod 8), then x =

(nn - 3 n - 2 n - 1, n - 4 n - 7 n - 6 n - 5 ; ••• 9678, 5234; 1)

is conjugate to a and

ax =(13)(24)(57)(6 8) ( n - 4 n - 2 ) ( n - 3 n - 1).

If n = 5(mod 8), n > 13, then y =

(nn-3 n-2 n-\, n - 4 n -Ί n - 6 n - 5 ; 21 18 19 20,

17 14 15 16; 13 96 10, 12 78 11; 5234, 1)

is conjugate to a and

ay =(1 3)(2 4)(5 10)(68)(7 11)(9 12)(13 15)(14 16)

( n - 4 n - 2 ) ( n - 3 n -1).
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If n = 13 use the last 13 letters of the above y. (The pattern of y
differs from that of JC only in the last block of 8 letters between
semi-colons, 13 9 11, in which the number of reversals is odd,
whereas in every other such block of 8 letters in either x or y, the
number of reversals is even.)

4. The induction. The induction proceeds from n - 4 to
n = 4k + 1. The induction hypothesis is: For every permutation T in
Λπ_4, there are two (n -4)-cycles dx and d2, both in the class of the
(n - 4)-cycle (12 n - 6 n - 5 n - 4 ) , and also two other (n - 4)-
cycles d [ and d'2, both in the class of (1 2 n - 6 n - 4 n - 5), such that
T = dιd2 = d[d'2.

Let 5 ( ^ 1) be a permutation in An. To show that CC contains 5
we consider several cases. In each case we find a conjugate Si of 5,
and a certain permutation g in An9 such that T = Sig"1 fixes the letters
n, n - 1, n - 2, n - 3 and thus its restriction to 1,2, , n - 4 lies in An-4.

Case 1. 5 contains a cycle with 5 or more letters: take

g =(n n -I n-2n-3n-4).

Case 2. S contains no cycle with 5 or more letters, but 5
contains at least one cycle with 4 letters: take

g =(nn-l n-2 n - 3 ) ( n - 4 n - 5 ) .

Case 3. 5 contains no cycle with more than 3 letters, but S does
contain two 3-cycles: take

g=(nn-ίn- 2)(n - 3 n - 4 n - 5).

Case 4. 5 is of type V22k-2l2: take

g = ( n n - l n - 2 ) .

Now, if S contains no cycle longer than a transposition, either S is
of type 22k I1, whence CC contains 5 by the lemma, or we have

Case 5. 5 fixes 5 or more letters: take g = 1.
The argument in Case 5 is quite simple. Since S fixes 5 or more

letters, S has a conjugate Si that fixes n, n - 1, n - 2, n - 3. Hence by
the induction hypothesis Si = dxd2, where dx and d2 both fix
n, n - 1, n - 2, n - 3, and can be expressed
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dx = (axa2 - an-5 n - 4 ) , d2 = (bxb2- bn-5 n - 4 ) ,

where the permutation a, —• bt is an even permutation of the letters

1,2, , n - 5. Then 5j = d3d4, with

d3 = (ax a2 an-5 n n - 1 n - 2 n - 3 n - 4 ) ,

d4 = (bxb2 bn-5 n - 4 n - 3 n - 2 n - l n ) ,

and d3, d4 belong to the same class, be it C or C". If the other part of
the induction hypothesis is used in a similar fashion, the assertion that
CC contains S follows.

The details for Case 1 are as follows. Since T = Sxg~ι moves at
most the first n - 4 letters, we have by the induction hypothesis
T = dιd2 = d\d\ where dud2 [d\yd2] are from the same class in
An-4. Writing

dι = ( a ί a 2 aH-5 n - 4 ) , d2 = (bιb2- - bn-5 n - 4 ) ,

the permutation at —> bt is an even permutat ion of 1,2, , n - 5. N o w

S{=Tg = dzd4, with g = ( n n - l n - 2 n - 3 π - 4 ) a n d

d3 = (aλ - - αn-5 n - 2 n n - 3 n — 1 n - 4 ) ,

d 4 = ( b } bn_5 n n -3 n - I n -4 n -2).

Note that d3 and c/4 are in the same class, be it C or C", in Aπ. By again
using d\ and ί/2 in place of d{ and rf2, the proof is completed in this case.

In Case 2, S has a conjugate 5i such that T = S{g~ι fixes at least 5
letters. Hence without loss of generality the factors dud2[d'ud2] can
be chosen so that T = dλd2 = d\d2 with

dλ = (ax - an-6 n - 5 n - 4 ) , d', = (a\ af

n-β n - 5 n - 4 )

d2 = (fc, bn-6 n - 4 n - 5), d i = (fc 5 b f

n-β n - 4 n - 5)

and where α, —> fc, [ α ' - » b ' ] is an odd permutation of the letters

1,2, , n - 6. N o w Sx = Tg = d3d4, where

d 3 = (fli αn_6 n - 1 n-5n-3n-2nn-4),

d 4 = (&i fcn_6 n-5n-2nn-3n-4n-l).

The permutations d3 and d4 belong to the same class in An. Priming the
di and bi completes the proof in this case.
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In Case 3, S has at least two 3-cycles, and has a conjugate Si such
that T = S1g

ι fixes the letters n,n - l ,n - 2 , n - 3 , n - 4 , n - 5 . By
the induction hypothesis permutations dx and d2 exist such that T = dxd2

with

di = (n - 4 αi flk n - 5 αk+, αn_ 6),

d2 = (n-4 br- biΠ-5 bι+ι ibn_6),

and where d} and d2 are in the same class in An. (We cannot assume
that n - 4 and n - 5, which are fixed by Γ, are neighbors in dλ and d2, but
it is possible that k = 0 and / = n -6 or that k = n -6 and / = 0.) Now
Sι = Tg = d3dΛ, where

with h=(n-5n-3n- 2){n - 4 n - 1 n). Then d3 and d4 are both
n-cycles. It has only to be checked that they are in the same class in
An to do this is tedious, but straightforward. To complete the proof in
this case we observe that since S contains two 3-cycles and Si = d3d4,
the decomposition SΊ = d\d\ can be obtained by applying a certain outer
automorphism of An.

In the only remaining case, S fixes 2 letters, and therefore has a
conjugate Si such that T = Sig"1 fixes

n, n - 1, n - 2, n - 3, n - 4.

Again we have T = dxd2, where we can write

d, = (έi, an.6 n - 4 n - 5), d2 = ( ί v bn-6 n - 5 n - 4),

and where the permutation αt —> fct is an odd permutation of the letters
1,2, , π - 6. Then Sj = Γg = d3d4, with

d 3 = (tfi an-6 n - \ nn-3n-2n-4n-5),

d4 = (fci bn-6 n - 5 n - 4 n n - 2 n - 3 n - l ) ,

and these belong to the same class. By priming we again conclude CC
contains S, and the proof is complete in all cases. Hence Theorem 1.

5. Covering A 16k. By means of an almost identical argument
we have shown that the class C of type 4/j 4/2 4/3 4/4 (/t S 1) in
An(n =4Σ/,) has the covering property (1). The lemma required is
simpler: Let m =4/, b = (12 m). Taking JC =
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( m m - 3 ra-2m-l,m-4ra-7ra-6ra-5, •••,8567, 412 3)

gives

bx = (1 3)(2m)(4 6)(5 7) (m - 4 m -2)(m - 3 m - 1).

Hence if D is the class of type 4/, 4/2 4/Γ (r even) in An9 then DD
contains the type 2π/2.

In order to start the induction we had to prove that the class C of
type 44 has the property CC = Λ16. The calculations are too lengthy to
be included. (A copy can be had from any of the authors.) This
yields Theorem 2.

One can ask how small a period is possible for a class C with
property (1). The first result in this direction was that of Xu [4] who
found such a class with period n - 3 if n is odd and period n - 2 if n is
even. From the result of Bertram quoted in the introduction, it follows
that the smallest period of such C is ^3n/4. While Theorem 2 does
not give covering for all n, it nevertheless yields, among classes C in An

satisfying (1),

Λ. . r period of C _ 1
hm lnf - ^ T

n^» n 4

as opposed to Bertram's 3/4.
From the other direction we have shown [3] that for n > 6 there is

no class C in An having property (1) and period 2, and if n = 12/c -h 10
there is no such class of period 3. There may be such a class of period
4, however. More precisely, we conjecture that for n = Sk, the class
C = 42k has the covering property (1).
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THE SINGLE VALUED EXTENSION PROPERTY
ON A BANACH SPACE

JAMES K. FINCH

An operator T which maps a Banach space X into itself has
the single valued extension property if the only analytic function
/ which satisfies (λl - Γ)/(λ) = 0 is / = 0. Clearly the point
spectrum of any operator which does not have the single valued
extension property must have nonempty interior. The converse
does not hold. However, it is shown below that if λol -T is
semi-Fredholm and λ0 is an interior point of the point spectrum
of Γ, then T does not have the single valued extension property.

It will be convenient to use the following definition.

1. DEFINITION. Let T.X-+X be a closed linear operator map-
ping a Banach space X into itself, and let λ0 be a complex number. The
operator T has the single valued extension property at λ0 if / = 0 is the
only solution to ( λ l - T)f(λ) = 0 that is analytic in a neighborhood of
λ0. Also, T has the single valued extension property if it has this
property at every point λ0 in the complex plane.

2. THEOREM. Let T be a closed linear operator mapping the
Banach space X into itself. If T is onto but not one-one, then T does
not have the single valued extension property at λ = 0.

Proof. First we produce a candidate for /. Choose any x0 in X
with | | jco | |=l and Γxo = O, which is possible since T is not one-
one. Since T is a closed operator and is onto, it is an open
mapping. The open mapping theorem implies there exists a k > 0 such
that for any element x EX there is a y GX with Ty = x and | | y | | ^
k\\x\\. Now choose xn inductively so that Txn = xn-x and (|jCn|| =
k \\xn-i\\. Define /(λ) = Xxnλ

n. Since ||jcn \\ = kn, the sum converges for
|λ I < k~\ and / is analytic in this neighborhood of zero.

Now to show that (AJ- Γ)/(λ) = 0. Since T is a closed linear
operator, so is λ l - Γ . Each of the partial sums Σ£U*nλπ is in the
domain of λl - Γ, since each xn was chosen from the domain of
T. Furthermore

( λ l - Γ ) Σ x»λn
 = * N A N + 1

n=0

and

61



62 JAMES K. FINCH

But as N goes to infinity, fcN|λ|N+1 converges to zero for | λ | <
k'\ Since λl-T is a closed map, f(λ) = \imNΣn=oXnλ

n is in the
domain of λl - T and (A/ - Γ)/(λ) = limNxNλN+1 = 0.

The function /(A) obtained in the proof of Theorem 2 is certainly
not unique. However, it is typical of any function g satisfying
(λ/-Γ)g(λ) = 0 in the following sense: Suppose T is any closed
operator not having the single valued extension property at A = 0, and
that g is any analytic function defined near A = 0 satisfying
(A/-Γ)g(λ) = 0. Expand g in a Taylor series around 0:g(λ) =
2,xnλ

n. It can be shown that: (i) each xn is in the domain of T; (ii)
Txn+ί = xn for n = 0,1,2, •; and (iii) Tx0 = 0.

The above discussion holds also at points A 0 ^ 0 if we replace every
T by Γ-λ 0/, and every A by A -λ 0 .

There are more interesting ways to express Theorem 2: If T has the
single valued extension property, then T is invertible whenever it is
onto. Or again, if T has the single valued extension property, then λ0 is
in the spectrum of T if and only if λ0 - T is not onto. In particular this
is true for normal operators, spectral operators, etc.

3. COROLLARY. Let T be a closed linear operator on a Banach
space X and suppose Y is a cb sed invariant subspace. If TY = Y but
T is not one-one on Y, then T does not have the single valued extension
property at 0.

Actually, in Corollary 3, Y could be a linear manifold that is not
closed, provided that it can be given a new norm, larger than the
original, for which Y is complete (and hence becomes a Banach space).

4, COROLLARY. Let Y be the domain of a closed linear operator
S:X-^>Z, where Z is a Banach space. If TY = Ybut Tis not one-one
on Y then T does not have the single valued extension property.

5. COROLLARY. // there is a bounded linear operator on X which
is onto but not one-one, then the set of bounded operators that do not
have the single valued extension property at 0 has nonempty interior (in
the norm topology). And thus the set of operators without the single
valued extension property has nonempty interior.

A special case of the following result appears in Colojoara and
Foia§, Chapter 1.
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6. COROLLARY. Let T be a closed linear operator mapping the
Banach space X into itself, and assume that the domain of T is dense in
X so that the adjoint Γ* exists. If T is bounded below but is not onto,
then Γ* does not have the single valued extension property. Or
alternately, if the range of T is closed and T is one-one but not onto, then
Γ* does not have the single valued extension property.

Proof. If T is bounded below, its range is closed, and T is
one-one. Thus the range of Γ* is the orthogonal set to {0}, which is all
of X*; that is, Γ* is onto. Since T is not onto and the range of T is
closed, the null space of Γ* is not just {0}. Thus Γ* is onto but not
one-one, and so does not have the single valued extension property by
Theorem 2.

A point λ is in the limit spectrum of T if and only if there is a
sequence xn with ||xn || = 1 and (λJ - T)xn converging to 0.

7. COROLLARY. If the closed linear operator T has the single
valued extension property, then the limit spectrum of Γ* is the entire
spectrum of T*. Similarly, if Γ* has the single valued extension
property, then the limit spectrum of T is the entire spectrum of T.

A closed linear operator is semi-Fredholm if the range is closed,
and the dimension n(T) of the null space or the codimension d(T) of
the range is finite (or both). First we investigate the case where the null
space is finite dimensional, after a preliminary lemma needed in both
proofs.

8. LEMMA. Let T be a closed linear operator with closed range
mapping a Banach space X into itself, and let N be its null space. For
an arbitrary linear manifold M in X, if M + N is closed, then the image
T(M) of M is closed.

9. THEOREM. Let T be a semi-Fredholm operator mapping a
Banach space X into itself with n(T) finite. If the point spectrum of T
contains a neighborhood of zero, then T does not have the single valued
extension property at λ = 0.

Proof. Let Y be the subset of X given by the intersection of the
ranges of Tn for all n, that is,

y= n τnx.
n = \
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The proof consists of showing that Y is a closed invariant subspace of
X, that T maps Y onto itself, and that T is not one-one on Y. Then,
applying Corollary 3, we see that T does not have the single valued
extension property.

It is obvious that Y is a linear manifold in X and that it is invariant
under T. To show that Y is closed, we need only show that TnX is
closed for all n. Applying Lemma 9 to M = TΠX, it follows that
Tn+ι(X) = T(TnX) is closed if and only if TnX + N is closed. Now by
hypothesis N is a finite dimensional closed subspace of X, and ΓXis
closed. Since the sum of a closed subspace with a finite dimensional
subspace is always closed, T2X is closed. By induction TnX is closed,
and hence Y = Π (TnX) is also closed.

The next step is to show that T maps Y onto itself. Let
Rn = TΠX. For any y in y there is an xn in Rn with 7xn = y. Also,
xn - jcm is in N. Now K n Π N is a decreasing sequence of
subspaces. Since N is finite dimensional, this sequence is eventually
-constant. That is, for some m,RmΓ\N = RkΠN for all fcg
m. Thus xm - xk, which is in Rm Π N, is also in Rk. Since x̂  was
chosen in Rk, it follows that xm = JCΛ + (xm — jck) is in Jf?fc as well. That is,
xm is in i?k for all k ^ m therefore xm is in y = ΓΊ jRk. Thus Γ does
map y onto itself.

It remains to show that the restriction of T to Y is not one-one. It
is clear that if Tx = λx for some λ ^ 0, then x is in y. Thus any λ ^ 0
that is in the point spectrum of T is also in the point spectrum of
TI y. Hence by our hypothesis, for some r > 0, every A with 0 < | λ | <
r is in the spectrum of T\Y. Since the spectrum of Γ| Y is closed, it
also contains 0. But then since Γ| Y is onto, it cannot be one-one.

In summary, the resriction of T to Y maps Y onto itself but is not
one-one. Hence T does not have the single valued extension property.

Taylor (1966) has shown the following: Let T be an arbitrary linear
operator on a vector space (no topological properties are
necessary). If n(T) is finite, then Y = Π TnX satisfies TY =
y. This result can fail if n(T) is infinite.

A slight extension of this theorem is possible. We may replace the
assumption that the range of T is closed by: the range of Tk is closed
for some k. Since n(Tk)^kn(T) (see Taylor, 1966), we have that
n(Tk) is also finite. Then (using the notation of the proof of Theorem
9) y = (Ί TnX is also equal to Π (Tk)nX. The argument of the proof
applied to Tk shows that Y is closed and that TkY = Y, but Tk is not
one-one on Y. But of course this means that TY = Y and T is not
one-one on Y. Hence, by Corollary 3, T does not have the single
valued extension property.
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10. THEOREM. Let T be a closed linear operator mapping a
Banach space X into itself, and suppose that the codimension of the
range d(T) is finite. If the point spectrum of T contains a neighborhood
of zero, then T does not have the single valued extension property at
λ = 0 .

Note that if Γ is a closed operator and the codimension (the
dimension of X/R) of the range is finite, then the range is closed and so
T is automatically a semi-Fredholm operator. (See Kato, 1966, p. 233,
problem 5.7.)

Proof. The idea of this proof is similar to that of Theorem 9. Let
Y = Π TnX; it will be shown that Y is a closed subspace invariant
under Γ, and that T maps Y onto itself but is not one-one.

First we show that Y is closed; it is obviously a linear manifold that
is invariant under T. Let Rn = TnX. Since d(T) is finite, then
d(Tn) ^ nd(T) is also finite. It follows that Rn + ΛΓ = Rn 0 F Π where
Fn is a finite dimensional space. We now show that Rn is closed by an
induction argument: Rn+ι = T(Rn) = T(Rn + N). From Lemma 8, Rn+]

is closed if Rn+N is. But Rn+ N = Rn@Fn is closed since Rn is
closed and Fn is finite dimensional. Thus Y = Π Rn is closed.

Next it will be shown that T maps Y onto itself. It will be
sufficient to show that for some m,Rk Π N = Rm Π N for k ^ m for
then we complete the proof as in Theorem 9. For a proof of the
contrapositive, suppose that for an infinite number of n there is a zn in
Rn Π N but not in Rn+ι Π N. Then zn = Tnun, where un is not in
Rlm But the un are linearly independent. For if Σk=ιakuk = 0, then
taking Tκ and recalling that zk is in N, we get aκ = 0. Then recusively
we get ak = 0 for k = K - 1, , 1. Thus the un form an infinite linearly
independent set not in JR,. This contradicts the assumption that the
condimension of Rι is finite. Thus T maps Y onto itself as in the proof
of Theorem 9.

Finally, we show that T is not one-one on Y exactly.as in the proof
of Theorem 9.

In conclusion, Y is a closed subspace of X which is invariant under
T, and T maps Y onto itself but is not one-one on Y. Thus T does not
have the single valued extension property.

The two theorems above can be summarized to say that: // T is a
semi-Fredholm operator and the point spectrum of T contains a neigh-
borhood of zero, then T does not have the single valued extension
property at λ = 0.
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The requirement that T be semi-Fredholm in the above theorems
seems to be crucial. Even though the range is closed and the point
spectrum contains a neighborhood of zero, if n(T) = d(T) = «>, T may
still have the single valued extension property. (Certain normal
operators on a nonseparable Hubert space will work). An attempt to
extend the proofs of Theorems 9 and 10 to operators which are not
semi-Fredholm must encounter the following two difficulties: The
subspace Y = Π TnX may fail to be closed, or T may not map Y onto
itself.

In Theorem 2 it was shown that an operator T which is onto but not
one-one does not have the single valued extension property. Such
operators are semi-Fredholm operators with n(T) g 1 and d(T) = 0. A
rather natural extension of this theorem is now possible.

11. COROLLARY. Let T be a closed linear operator with closed
range mapping a Banach space X into itself. If the dimension n(T) of
the null space is strictly greater than the codimension d(T) of the range,
then T does not have the single valued extension property.

Proof. From the theory of semi-Fredholm operators, for suffi-
ciently small perturbations S,n(T + S)-d(T + S) = n(T)-d(T) (see
Kato, Theorem 5.22). Thus for small A,

n(λl -T) = n(T)- d(T) + d(λl - T)

That is, λl - T is not one-one for λ sufficiently small. Thus T is a
semi-Fredholm operator with point spectrum containing a neighborhood
of zero. By Theorem 10, T does not have the single valued extension
property.

One would like to show that if n(T) < d(Γ), then T does have the
single valued extension property (at least at 0). Unfortunately, this is
not true. For, if S is the right shift on Hubert space, then n(S) = 0 and
d(S)= 1; if T is any operator, then n(TφS) = n(T) and d ( Γ 0 S ) =
d(T)+l. In this way we may extend T to a new operator
Γ © S φ φ 5 with d arbitrarily large and n fixed, without affecting
the single valued extendibility (or lack of it).

For a closed linear operator T having a dense domain on a Banach
space X there is a unique adjoint operator Γ* defined on a total subset
of the dual space X*.
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12. COROLLARY. Let T be a semi-Fredholm operator on X with
domain dense in X. If n(T)<d(T)^™, then Γ* does not have the
single valued extension property at λ = 0.

Proof. For semi-Fredholm operators,

n(Γ*) = d(T), and d(T*) = n(T).

Hence d(T*) < n(Γ*), and by Theorem 11, Γ* does not have the single
valued extension property.

13. COROLLARY. // T is a closed linear operator on a Banach
space with dense domain and closed range, and if both T and T* have
the single valued extension property, then n(T) = d(T).

14. COROLLARY. Let T be a closed linear operator on a Banach
space with dense domain and with n(T) = d(T) finite. Then Thas the
single valued extension property near λ =0 if and only if T* does.

Proof. Since d(T) is finite and T is a closed operator, it follows
that the range is closed and hence T is a semi-Fredholm operator. If T
does not have the single valued extension property near 0, then
n(λl - T) > 0 for λ in a neighborhood of zero. Then

d(λl -T) = d(T) -n(T) + n(λl- T)

= n(λI-T)>0.

Thus n(λl* - Γ*) = d(λl — T) is strictly positive in a neighborhood of
zero. But then T* is a Fredholm operator whose point spectrum
contains an open set, and so by Theorem 10, T* does not have the single
valued extension property.

Conversely, suppose T does have the single valued extension
property. Then from Theorem 10, n(λl - T) = 0 in a deleted neighbor-
hood of zero (using the fact that n (λl - T) is constant in a deleted
neighborhood of a point where λl - T is semi-Fredholm). Hence
d(λl - T) = 0 in this neighborhood. This implies that Γ* has the single
valued extension property near λ = 0.

Two more concepts are useful at this point. Consider the iterates
T\k = 0,1,2, , of the operator T. The null space N(Tk+ι) always
contains N(Tk) and may be strictly larger. But if for some
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p, N(Tp+ι) = N(Γ P ), then for all k > p, N(Tk+1) = N(Γfc). The smallest
p satisfying the above is the ascent of Γ. It may happen that the
equation is not satisfied for any p ; in this case the ascent is
infinite. The descent is defined in a similar way with the ranges of T
instead of the null spaces. It is the smallest q with Tq+]X = TqX, and
is infinite if no such q exists.

15. THEOREM. Let T be a semi-Fredholm operator on X. Then
Thas the single valued extension property near 0 if and only if the ascent
of T is finite.

Proof. If the ascent is finite, then certainly T has the single valued
extension property near 0. For if (λl - T)f(λ) = 0 and /(λ) = Xxnλ

Λ

9

then xn is in N(Tn+ι) but not in N(T"). Hence N ( Γ n + V N(Γ") for
any n.

Suppose that the ascent is infinite. Since T is semi-Fredholm, if
the nullity n(T) is infinite, then the deficiency d(T) is finite; and, by
Theorem 11, T does not have the single valued extension
property. Thus assume that n(T) is finite, and let

y= n τ*x.
= 1

As was shown in the proof of Theorem 9, Y is a closed, invariant
subspace, and T maps Y onto Y. Since n(T) < », the null space N in
finite dimensional, and so (TkX) Π N is eventually constant. Since
the ascent is infinite, (TkX) Π N^ (0), for all k. It then follows that
y f l N ^ ( O ) ; that is, T is not one-one on Y. From Corollary 3, Γ does
not have the single valued extension property.

16. COROLLARY. If T is a semi-Fredholm operator with domain
dense in X, then Γ* has the single valued extension property if and only if
the descent of T is finite.

Proof. Since the range of Tk is closed for all k (as was shown in
the proofs of Theorems 9 and 10), the null space of Γ*k is the set of x*
orthogonal to the range of Γ\ Hence the ascent of Γ* is the descent of
T, and the conclusion follows by Theorem 15.

Acknowledgement. This paper is based on the author's Ph.D.
dissertation at the University of Illinois.
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A GOLDIE THEOREM FOR DIFFERENTIABLY
PRIME RINGS

JOHN R. FISHER

The main goal of this paper is to prove analogues of the
Goldie theorems for associative rings with derivations. It is
shown that a differentiably prime ring, with suitable chain
conditions, has a differentiably simple Artinian total ring of
quotients, and, conversely, that a differential subring which is an
order in a differentiably simple Artinian ring is a differentiably
prime ring which has the chain conditions referred to above. A
similar theorem concerning differentiably semiprime rings
which are orders in differentiably semi-simple rings is also given.

Suppose that A is an associative ring and that D is a set of
derivations of A, a derivation of A being any function d on A such that
d(a +b) = da + db, and d(ab) = (da)b + a{db) for all a,b EA, An
ideal I of A is a D-ideal provided d(I)Cl for all d ED. A is D-prime
provided HI - 0 implies H = 0 or / = 0 for any D- ideals H and / of
A. A is D'Semiprime provided A has no nonzero nilpotent D-
ideals. A is D-semisimple provided there are no nonzero D-ideals
contained in the Jacobson radical of A. A is D-simple provided A2 ^ 0
and A has no proper D-ideals. Finally, A is said to be differentiably
prime (resp. semiprime, semisimple, simple) provided A is D-prime
(resp. semiprime, semisimple, simple) for some set of derivations D,
hence for the set D = derA of all derivations of A.

The ring A is D-prime if and only if the left (right) annihilator of a
nonzero left (right) D-ideal is zero. Another equivalent is that if
(δa)b(δ'c) = 0 for all products δ, δ' of derivations in D, and for every
b E A, then a = 0 or c = 0. Other easy consequences of the definitions
are that differentiably prime implies differentiably semiprime, and that
differentiably simple implies differentiably prime.

It is straightforward to show, using arguments suitable for prime
rings, that every differentiably prime ring has characteristic zero or a
prime number. If A is a differentiably prime ring of characteristic
zero, and satisfies a suitable chain condition (Corollary to Lemma 2 in
§2 below), then A must be a prime ring. This is analogous to the fact
that a differentiably simple ring of characteristic zero with a minimal
ideal must be simple [3, Corollary to Thm. 4].

The ring Q is a total ring of left quotients for the ring A provided
A C Q, every nonzero-divisor (regular element) in A is invertible in Q,
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and each q G ζ) can be written q = b~λa for some a,b ELA, with b a
regular element in A. It will also be said that A is a subring and left
order in Q. A has a total ring of left quotients if and only if A satisfies
the (left) Ore condition: a,b G A with b regular implies there exist
c,e G A with e regular such that ea = cb.

The following fact is crucial to the main theorems of this paper:
Suppose that A has a total ring of left quotients Q, and that d is any
derivation of A. Then d extends in a unique fashion to give a
derivation d of Q. If q G Q is written q = b']a, then dq =
-b'\db)b'xa + b~\da). To prove this, it must be shown that d is
well-defined, additive, and obeys the product rule on Q. This is
tedious, but can be done using the Ore condition and the definition of
d. Note that db~x = -b~\db)b~\ which will be found to be necessary
if d is applied to both sides of the equation b'xb = 1, and one solves for
db~\ If A has a total ring of left quotients Q and D is a set of
derivations of A, let D = {d | d G D} where d is the extension to Q as
above.

A is a left Goldie ring provided A has no infinite ascending chain of
left annihilators, and no infinite direct sum of left ideals. The two main
theorems of this paper can now be stated. The proofs are in §2.

THEOREM 1. Assume that A is a D-prime ring, that the nil radical
N of A is nilpotent, that A satisfies the ascending chain condition on
right annihilators, and that both A and A IN are left Goldie rings. Then
A has a total ring of left quotients Q which is a D-simple, left Artinian
ring. Conversely, assume that A is a D-closed subring and left order in
the D-simple, left Artinian ring Q. Then A is D-prime, where D =
{d \A I d G D}, the nil radical N of A is nilpotent, A satisfies the ascending
chain condition on right annihilators, and both A and A IN are left
Goldie rings.

THEOREM 2. Assume that A is a D-semiprime, left Noetherian
ring. Then A has a total ring of left quotients Q which is a D-
semisimple, left Artinian ring. As a partial converse, if A is a D-closed
subring and left order in the D-semisimple, left Artinian ring Q, then A is
D-semiprime, where D = {d \A \ d G D}.

If A has characteristic zero then the statements of Theorems 1 and
2 reduce to versions of the Goldie theorems. This observation uses the
Corollary to Lemma 2 proved in §2. Of course, if D is the empty set,
then the theorems again reduce to the Goldie theorems. It should be
noted, however, that the Goldie theorems (and proofs contributed by
various authors) are used in the proofs of Theorems 1 and 2.
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A differentiably simple ring Q with a minimal ideal is either simple
or there exists a simple ring S of prime characteristic, and a positive
integer n, such that Q = 5®JBn where the tensor product is over Zp (p
the characteristic of S) and Bn denotes the (commutative associative
with unit) truncated polynomial algebra ZP[XX, - ,Xn]l(Xι

p, •• ,XΠ

P), by
[1, Main Theorem]. Hence Q is Artinian if and only if 5 is. An
example of a differentiably prime, but not prime, ring would be one of
the form P(g)Bn where P is a subring and left order in 5.

A differentiably semisimple, left Artinian ring Q is a direct sum
Q = Q\ Θ ' * Θ Qk where the Qt are differential ideals of Q and each Q,
is a differentiably simple, left Artinian ring [1, Th. 8.2, Cor. 8.3]. Using
this expression for Q and the type of example used for a differentiably
prime ring in the previous paragraph, one can construct examples of
differentiably semiprime rings which are not differentiably prime.

The left orders in a simple Artinian ring are characterized in the
Faith-Utumi Theorem. In analogy, it could be asked whether a differ-
ential subring and left order in 5®B« need be of the form P 0 Bn

where P is a subring and left order in S. The following is an example,
for any prime characteristic p, of a commutative differential subring and
order A in a differentiably simple Artinian ring of the form B^E),
where E is some field of characteristic p, such that A is not of the form
β,(/) for any subring / of A which is an integral domain consisting of
differential constants of A.

Let B = Zp[u,v], the polynomial ring in commuting indeterminants
u and v, and let A = B[(u/v) + x] considered as a subring of BX{E)
where E is the field of quotients of B. Consider BX(E) as E[x] where
xp = 0 and let d = d/dx denote differentiation by x. Then A is a
d-subring and order in BX{E), but straightforward calculation shows
that A cannot be written B{{I) for any suitable / described at the end of
the discussion in the preceding paragraph.

2. Proofs of the theorems.

LEMMA 1. Assume that A is a D-semiprime ring and that the nil
radical NofA is nilpotent. Then a + Nis regular in A IN implies that a
is regular in A.

LEMMA 2. Assume that A is a D-prime ring, that the nil radical N
of A is nilpotent, and that A has the ascending chain condition on left
annihilators and on right annihilators. Then the ideal divisors of zero
of A are nilpotent, A IN is a prime ring, and a regular in A implies that
a + N is regular in A IN.
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COROLLARY. If, in addition to the hypotheses in Lemma 2, A is
assumed to have characteristic zero, then A must be a prime ring.

Proof of Lemma 1. Suppose that a + N is regular in A IN but that
ab = 0 for some b in A. Then b E N, and, for any derivation d of A,
0 = d(ab) = {da)b + a(db), or a(db)= -(da)bEN, and so dfc EN,
since again α + N is regular in A IN. This proves the first step of the
following induction. Suppose δb E N for every string of derivations
8 = dr '' dk of length k. If a string of derivations of length k + 1 is
written in the form dδ where d is a derivation and δ is a string of length
k, then 0 = dδ(ab) = Σ(διa)(δ2b) +a(dδb) where δ,,δ2 are strings of
derivations of length at most fc, hence each δ2b E N, and so a (dδb) E N
and so dδb E N. Thus, if δ is any string of derivations of A, then
δb E N. This implies that the differential ideal I of A generated by b
is contained in N, hence that ί is a nilpotent differential ideal of
A. Since A is D-semiprime for some set of derivations D, it must be
the case that / = 0, hence b = 0. A similar argument shows that ba = 0
implies that b = 0.

Proof of Lemma 2. Suppose that aB = 0, where a is a nonzero
element of A, and B is an ideal of A. Then B DB2D B3D - - is a
descending chain of ideals of A and ^(B) C /(B2) C /(B3) C where
/(£) denotes the left annihilator of 2? in A. If £/ is the union of all the
€{B% then U is a differential ideal of A, since if xEί{Bι) then
dx E^CB'+1) for any derivation d of A. Since A has the ascending
chain condition on left annihilators, U = £{Bk) for some k, and since
a Eί(Bk), €(Bk)^0. But £{Bk)Bk =0, and since A is D-primeior
some set of derivations D, it must be the case that Bk = 0. A similar
argument using the ascending chain condition on right annihilators
shows that Ba =0 implies B is nilpotent.

The proof that A IN is a prime ring is straightforward.
Now suppose that a is regular in A but that ab ELN for some b in

A. If N = 0, then ab = 0, so b = 0. If NV 0, then αWV*'1 = 0 where
Nk~] ^ 0, Nk - 0. Thus foiV*'1 = 0 since a is regular, so b is contained
in an ideal divisor of zero, hence b E N. Similarly, ba E N implies
bEN.

Proof of Corollary. By [3, Proof of Thm. 4], if A is a primary ring
(ideal divisors of zero are nilpotent) whose additive group is torsion
free, then da lies in a nilpotent ideal if a does, for every derivation d of
A. This would imply that N is a nilpotent differential ideal, hence
N = 0, since A is D -prime for some set of derivations D. Thus
A = A IN is prime by Lemma 2.
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Proof of Theorem 1. Assume the hypotheses on A in the state-
ment of the theorem. The proof of the first part of the theorem is
separated into parts.

(i) The existence of Q. For this it is shown that A satisfies the Ore
condition. By Lemmas 1 and 2, it follows that a = a -f N is regular in
A = A IN if and only if a is regular in A, and that A is a prime Goldie
ring. First we show that if α, b E A are both regular then there exist
c,e EA with c regular such that ea = cb. Let_ M =
{x E A \xb EAa}. We claim that M, the image of M in A, is an
essential left ideal of A. Note that M is essential in A if and only if for
every left ideal L of A, M Γ) L C N implies LCJV. So suppose that
MΠLCN. Then AaΠLbCN since if y eAa D_Lb, then y = ua =
vb or v EM Γ)L CN, thus y = vb E N. But Aa = A α is essential in A
by [2, Lemma 7.2.3, p. 174], since a is regular in A, and A is a prime
Goldie ring. Hence Lb C N. Since b is regular in A, L C
N. Therefore M is an essential left ideal in A, hence there exists a
c"6M with c regular in A by [2, Lemma 7.2.5, p. 175]. Thus there
exists a c regular in A such that cb = ea for some e E A.

Next, the above is used to show that the full Ore condition holds for
A. Suppose a,b E A with b regular in A. Since A is a prime Goldie
ring, and hence satisfies the Ore condition, there exist e, c in A with e
regular in A, so e is regular in A, such that ea = cb or ea = cb + n for
some n EN. Let w = c - £, and write ea - ub + (eb + n). Now
(eb + ft) + N = d? + N is regular in A so eb 4- n is regular in A. Using
the preceding paragraph, there are r, s in A with r regular in A such that
r(eb + n) = sb. Hence rea = rwb + r(eb + n) = rab + sb = (ru + s)b
or (re)α = (ru + s)b which gives the Ore condition since re is regular in
A.

(ii) If N, is the nil radical of ζ>, then N, = QN and N =
N, Π A. N, Π A is a nil ideal of A so JV, Π A C N. Since (QN)* C
QNk and N is nilpotent, QN is nilpotent, thus QNCJVh and so
N C Q N C N , . Hence N = N , Π A Now N, C QN since if
b"ιmENu then b(b~ιm) = m G N, Π A = N, and so b-]mEQN.
Hence N, = QN.

(iii) A /N /s α prime Goldie ring whose total ring of left quotients is
isomorphic to QINλ. Hence QIN} is a simple, left Artinian ring. Let
Q(A IN) denote the total ring of left quotients of A IN, and let φ be the
map from Q to Q(A/N) defined by φ(b~xa) = (b + JVΓ!(α + N). It is
straightforward to show that φ is well-defined and a homomorphism
onto Q(AIN) with kernel N,.

(iv) Q is D-simple. Suppose that / is a nonzero D- ideal of
Q. Then IDA is a nonzero D- ideal of A. IΠA£N since A is
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D-prime. Hence I£NU Thus (I + NO/N, is a nonzero ideal of
Q/JV,. Since Q/N, is simple, I + N^Q. If / ^ Q then / contains
only non-invertible elements of Q. From the statement Q = / + Nx it
will be shown that no element of Q is invertible, which is not possible,
hence I = Q. Now suppose that x E / + NΊ is invertible in Q,
/y Q. Write JC = a ~'b + n where n e NΊ and 0 "!fe E /. Since α ~λb is
not invertible, fo is not regular in A. So there exists a nonzero z in A
such that bz = 0 or zb = 0. The element αx = b + an must also be
invertible. Using bz = 0, axz = anzEN]. Since ax is invertible,
z E Ni. Let z* be the smallest nonzero power of z such that anzk =
0. Then axzk = bzk + anzk = 0, which is impossible since ax is inverti-
ble and zVO. A similar argument can be given for the case zb =
0. Hence no element of / + N, can be invertible if Iφ Q.

(v) Q is left Artinian. This will be proved by showing that Q has a
minimal ideal. For in that case Q is a differentiably simple ring with a
minimal ideal. Thus by [1, Main Theorem], Q must either be simple, or
there exists a simple ring S of prime characteristic and a positive integer
n such that Q = S (g) Bn. If Q is simple, then N = N, = 0, so Q =
Q/0~Q(A 10) is left Artinian since in this case A is a prime ring. On
the other hand, if Q = S 0 B n , then S = Q/N,, so S is Artinian by (iii),
and so Q = S 0 Bn is also left Artinian.

It can be assumed that Q is not simple. Hence H =
{q E(? |Niq = 0} contains a nonzero element m. Then QmQ is a
nonzero left Q/N,-module using the action qy = qy for all
q E Q, y E QmQ. This action is well-defined since Nx(QmQ) =
0. Moreover, the Q/N,-submodules of QmQ are just those left ideals
of Q contained in QmQ. QINi is a simple, left Artinian ring, so QmQ
is a completely reducible left Q/N,-module. Hence QmQ is a direct
sum of minimal left ideals of Q. But Q contains no infinite direct sum
of left ideals since A does not. Hence QmQ is a finite direct sum of
minimal left ideals of Q, so QmQ is an Artinian left QINr

module. Therefore, QmQ, being an ideal of Q itself, must contain a
minimal ideal of Q.

Now assume the hypotheses on Q and A stated in the converse of
the theorem. Then A is D-prime by an argument similar to one that
can be given to show that a subring and left order in a simple Artinian
ring must be prime, as in [2, Thm. 7.2.3, p. 177]. That the nil radical N
of A is nilpotent, and that both A and A IN are Goldie rings follows
from [4, Part II, §2]. Since Q is left Artinian, Q satisfies the descend-
ing chain condition on left annihilators, hence so does A since A is a
left order in Q. Thus A satisfies the ascending chain condition on right
annihilators. This shows that A must satisfy all of the chain conditions
used in the first part of the theorem.
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Proof of Theorem 2. If A is a D-semiprime, left Noetherian ring
then, using Lemma 1 and [4, Part II, §1], A has a left Artinian total ring
of left quotients Q.

To show that Q is D-semisimple, suppose that H is a D-ideal of Q
contained in the Jacobson radical of Q. Since Q is left Artinian, the
Jacobson radical of Q is nilpotent. Thus if is a nilpotent D-ideal of
Q. Hence HΠA is a nilpotent D-ideal of A, and so HΠA =
0. Consequently, H = 0, and thus Q is D-semisimple.

For the partial converse, assume that A is a D-closed subring and
left order in the D-semisimple, left Artinian ring Q, and let D =
{d \A I d E D}. Then Q = Q, 0 0 Qk where the Qf are ύ-ideals of
Q and D-simple rings, by [1, Thm. 8.2, Cor. 8.3], so that any i)-ideal of
Q must be a sum of some of the Q, . To show now that A must be
D-semiprime, use an argument just like one that can be given to show
that a subring and left order in a semisimple, left Artinian ring must be
semiprime [2, Thm. 7.2, p. 177], only using differential ideals instead of
ordinary ideals.
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ON ONE-SIDED PRIME IDEALS

F. HANSEN

This paper contains some results on prime right ideals in
weakly regular rings, especially V-rings, and in rings with
restricted minimum condition. Theorem 1 gives information
about the structure of V-rings: A V-ring with maximum
condition for annihilating left ideals is a finite direct sum of
simple V-rings. A characterization of rings with restricted
minimum condition is given in Theorem 2: A nonprimitive right
Noetherian ring satisfies the restricted minimum condition iff
every critical prime right ideal ^(0) is maximal. The proof
depends on the simple observation that in a nonprimitive ring
with restricted minimum condition all prime right ideals /(0)
contain a (two-sided) prime ideal ^(0). An example shows that
Theorem 2 is not valid for right Noetherian primitive
rings. The same observation on nonprimitive rings leads to a
sufficient condition for rings with restricted minimum condition
to be right Noetherian.

It remains an open problem whether there exist nonnoetherian
rings with restricted minimum condition (clearly in the commutative
case they are Noetherian).

Theorem 1 is a generalization of the well known: A right Goldie
V-ring is a finite direct sum of simple V-rings (e.g., [2], p.
357). Theorem 2 is a noncommutative version of a result due to Cohen
[1, p. 29]. Ornstein has established a weak form in the noncommuta-
tive case [11, p. 1145].

In §§1,2,3 the unity in rings is assumed (except in Proposition 2.1),
but most of the results are valid for rings without unity, as shown in §4.

Of basic importance for the following is Lambek's and Michler's
work [8] from which also most notions have been taken.

1. Basic concepts. A right ideal L of the ring R is called
prime (semiprime), if xRy (xRx) C L implies x EL ox y EL {x EL)
for all JC, y ER. As in the two-sided case an equivalent definition is:
ΛBCL(A2CL) implies A or BCL(ACL) for all right ideals
A,BQR.

A right ideal M of R is called critical, if R/M is a "supporting
module" [3, p. 35] for a hereditary torsion theory, i.e., if there exists a
hereditary torsion theory (Γ,F) such that R/M E F, but R/N ET for

79
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all Np M. An important among under the critical right ideals are the
ί-critical ones. A right ideal L is 1-critical, if R/L is not Artinian, but
RIN for every NDL. It is easy to see that then R/L is a supporting
module for the hereditary torsion theory, generated by the class of
simple R -modules.

A ring R satisfies the proper restricted minimum condition, if (0) is a
1-critical right ideal of R. If additionally R is allowed to be right
Artinian, R satisfies the restricted minimum condition.

A right ideal L of a ring R is irreducible (indecomposable), if every
submodule τ̂ (O) of R/L is essential (if R/L is indecomposable).
Every critical right ideal is irreducible. The following facts are
needed:

(a) Every prime (semiprime) right ideal L contains a two-sided
prime (semiprime) ideal, namely R'ιL. The proof is not hard.

(b) If L is an irreducible right ideal of the right Noetherian ring R,
there is a critical prime right ideal of the form s ' L , s ER\L [8, p.
370].

(c) Every irreducible semiprime right ideal is prime [8, p. 370].
(d) Any ring JR with proper restricted minimum condition is a

right Ore domain [11, p. 1149].
For a subset T of a ring R and a right or left ideal L QR one

defines T]L: ={x<=R; TxCL}, LT'U. = {xGR;xTCL}.

2. Weakly regular rings and V -rings.

LEMMA 2.1. The following conditions for a ring R are equivalent:
(a) L = L2 for every right ideal L of R.
(b) Every right ideal is semiprime.
(c) Every right ideal is the intersection of prime right ideals.
A ring satisfying these equivalent conditions is called weakly

regular.

Proof, (a) => (b). Let N be any right ideal. xRx C N implies
xRxR C N, so xR C N, i.e. x G N.

(b) φ (c). Every right ideal is the intersection of irreducible
semiprime right ideals. In view of §1, (c) these are prime.

(c) => (a). The intersection of prime right ideals is semiprime. V
semiprime implies V = L.

Besides the regular rings the best known weakly regular ones are
the simple rings and the V-rings. A ring R is called V-ring, if every
homomorphic image of RR has zero radical. Equivalently all simple
JR-modules are injective (see (10)).
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PROPOSITION 2.1. A ring R with maximum condition for annihilat-
ing left ideals and x ExR for all x ER has a right unity.

Proof. Let be Le = {x - ex JC E R}, e E R\ OL;1 is maximal for
some e. Assume 0L~ιCR, i.e. yLe^(0) for some y&R. Then
(y -ye)R^(0) and so y - y e ^ O . There exists an e'ER, such that
y -ye =(y -ye)e'\ y = y/ with / = e + e ' - e e ' , so y EOL}1; z EOL;1

implies z = ze, thus z = zf, i.e. ZEOL71. Altogether one has
OLΓ COL71, but this is impossible. Because of OL;1 = 1?, (r - re)l? =
(0) for all r ER, that means e is a right unity.

The proof is essentially the same as the one of A. Kertesz [5, p. 237]
for: A left Noetherian ring has a right unity, iff x E xR for all x E R.

PROPOSITION 2.2. A ring R with maximum condition for annihilat-
ing left ideals is weakly regular, iff it is a finite direct sum of simple rings.

Proof. Let / be an ideal of R and L a right ideal of the ring
I. Then LR = LRLR C L J C L , i.e., every right ideal of / is a right
ideal of R. Let b e O ^ x E / , Z b e the ring of integers. Zx + xl is a
right ideal of /, therefore of R. Now x E Zx + xl = (Zx + JC/)2 =
Zx2 + x2/ + xfx +JC/JC/ = *J. Because of Proposition 2.1 there is an
idempotent e El with le = Re = /; ex - xe for all x ER, otherwise
there were an y E R with / 3 z = ey - ye^ 0, thus eze = ez =
0. Therefore (0) = RezR = IzR D (zRf = zR. This is a contradiction.
It follows that the second summand in R = I φ R(\ - e) is an ideal, and
the assertion is true because of a basic argument.

COROLLARY 2.1. A weakly regular ring with maximum condition
for annihilating left ideals is a simple ring, iff it is prime.

According to (7) the simple rings are just these ones, in which every
right ideal is prime.

A consequence of Proposition 2.2 is

THEOREM 1. A V-ring R with maximum condition for annihilating
left ideals is a finite direct sum of simple V-rings.

COROLLARY 2.2 [2, p. 357]. A right Goldie V-ring R is a finite
direct sum of simple rings.
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Proof. R satisfies the maximum condition for annihilating left
ideals [e.g. 4, p. 173].

The same argument holds for left Goldie (right) V-rings.

3. Rings with restricted minimum condition.

LEMMA 3.1. If R is a ring with restricted minimum condition, R is
primitive or every indecomposable prime right ideal Φ (0) is maximal.

Proof. Let L be any prime right ideal ^ (0). As R \L is Artinian,
it contains a minimal submodule E/L. If R is not primitive, Er C L
holds for some 0-έrER, i.e. E~lL^(0); xR + L = E for some
JC e E\L E'XL C L, for y G E~ιL implies (JCJR + L)y = xRy + Ly C
L, thus y G L L D JR ~'L = E'XL^ (0), because every ideal contained in
L is contained in R~ιL the other inclusion is obvious. By §1, (a) E~ιL
is a prime ideal, so maximal, as R/E~ιL is an Artinian ring. As L is
indecomposable, R/L is an indecomposable R/E~ιL-module, thus
simple. This means, L is a maximal right ideal of R.

LEMMA 3.2. IfR is a right Noetherian ring and every critical prime
right ideal φ (0) maximal, R satisfies the restricted minimum condition.

Proof. Suppose the assertion is false. Then there is a right ideal
L^(0), maximal with respect to RIL is nonartinian. Therefore L is
1-critical. Because of §1, (b) a critical prime right ideal N of the form
N = s ~ιL, sfέL9 exists. R Is ~ιL = (sR + L )/L is nonartinian. This is
a contradiction, as in a right Noetherian ring every right ideal of the
form 5τ lL, L^(0), s&L, is different from zero.

THEOREM 2. In a nonprimitive right Noetherian ring R the follow-
ing conditions are equivalent:

(a) Every critical prime right ideal ^ (0) is maximal.
(b) Every irreducible prime right ideal ^ (0) is maximal.
(c) Every indecomposable prime right ideal Φ (0) is maximal.
(d) JR satisfies the restricted minimum condition.

REMARK. Compare it with Theorem 3.6 (a noncommutative ver-
sion of the Krull-Akizuki Theorem) in [8, p. 373].

The following example shows that there are primitive right Noeth-
erian rings which satisfy the restricted minimum, but contain a critical
nonmaximal prime right ideal τ^(O): Let K{z) be the ring of rational
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functions over a field K with Char(K) = 0 and R be the ring of
differential polynomials in one indeterminate x over K(z), i.e. x/ =
fx + /', / G K(z); R is known to be a simple principal left and right ideal
domain. Hence it is a ring with proper restricted minimum condition
[see 11, p. 1149]. Since every right ideal is prime, it is enough to find a
critical nonmaximal right ideal. L ={z+x)xR is not maximal; it is
properly contained only in R and (z+x)R\ for (go + g\X)(hQ + htf) =
(z)x + x\ go, gi ^ 0, ho, hλ G K(z), leads to /lit + k' = 0, /ι + k = z with
A =(go-gί)gϊ\ /c=g1/i0. The only solution in K(z) is Λ = z, fc =
0. It follows (go + g\X)R = (z + x)R. To show that R/L is a support-
ing module for the torsion theory generated by the simple module
E = Rl(z + JC)JR, E?£F = R/xR must be proved: There is an element
e Φ 0 in F, e.g., e = 1 mod(xR), with ex = 0, but no such an element in E
it can be checked by similar methods as above.

In (7) and (9) it was stated: Any ring is right Noetherian iff every
prime right ideal is finitely generated. An easy consequence of this is:

PROPOSITION 3.1. A nonprimitive ring R with restricted minimum
condition is right Noetherian iff the square of every principal right ideal
is finitely generated.

Proof If R is Artinian, it is always Noetherian. Alternatively R
satisfies the restricted minimum condition. It was already proven
(Lemma 3.1) that every prime right ideal L^(0) contains an ideal
RxR^(0). L modulo RxR is finitely generated, as R/xR is right
Noetherian. RxR itself is a finitely generated right ideal, because
RxR = (xRY as R-modules; thus L is finitely generated, too. The
other direction is trivial.

4. The results for rings without unity. Clearly the
definition of a prime (semiprime, irreducible, indecomposable) right
ideal is the same as in rings with unity. Torsion theories on Mod-1? can
be regarded as torsion theories on Mod-JRi, where Rλ denotes the usual
unitary overring of R. So the other concepts are defined, too. Setting
R~ιL ΠL instead of R'^L, §1, (a) remains true, (b) only holds for
rings with unity, (c) only for rings R with x G xR, x G R. (d) can be
generalized in the following way:

PROPOSITION 4.1. Any ring R with R2^(0) and proper restricted
minimum condition is a right Ore domain and can be imbedded as an
ideal into a unitary ring with proper restricted minimum condition.
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Proof Let be 0 ̂  JC G R and (0) / {JC}"Ό. Then xR = R l{x}~l0 is
an Artinian I?-module, so must be zero (otherwise RlxR Artinian
implies R Artinian), i.e. 0R~l/(0). The intersection of any two
nonzero right ideals M,L cannot be zero by a similar argument. It
remains to show that R2 = (0), if OR1 ^ (0): OR1 is a trivial I?-module,
hence as a group nonartinian with Artinian proper homomorphic
images. It is easy to see that OR ~ι must be some proper subgroup of Q,
the additive group of the rational numbers. Every 0 ̂  r G &R ~! defines
a group homomorphism RI0R ~ι —» 01? ' by JC —> xr. It obviously is well
defined and monic, so the additive group of OR'1 is a subgroup of
Q. No proper subgroup ^ (0) of Q is the additive group of an Artinian
ring [e.g., 5, p. 225], hence R/OR1 must be zero, i.e., R2 = (0).

Let K be the (right) quotient field of R and E be the subring
generated by 1; E=Z or E=Z(p)\ I? is a right essential ideal in
S = E + JR, and every right ideal of JR is a right ideal of 5. If
Char (K) = 0, then xR Π xE^ (0) for all 0 ̂  x G R, otherwise the trivial
right JR -module (xE + xR )/xR = xE l(xR Π xE) were not
Artinian. Thus there is an r G R and an 0 / n G E such that xr = xn
hence 0 ̂  r = n G 1? Π E, and SIR = EI(R Π E) is finite, especially an
Artinian S-module. The same follows immediately, if Char(K) = p.
(R+L)IL=RI(LΠR)έR is Artinian for all right ideals L of 5,
likewise SI(R + L ) . So S/L is an Artinian 5-module, and the asser-
tion is proved.

Lemma 2.1, Proposition 2.2 and Corollary remain true for rings
without unity, as easily can be checked. Because of Proposition 2.1 in
Proposition 2.2 the existence of the unity follows necessarily.

There is a great difference between V-rings with and without
unity. The latter are not weakly regular in general (and the simple
modules need not be injective), as is shown by the ring R with four
elements and exactly two right unities; it also is a counterexample that
the next Theorem remains valid for OJR"1 = (0).

THEOREM Γ. A V-ring R with R~ι0 = (0) and maximum condition
for annihilating left ideals is a finite direct sum of simple V-rings with
unity.

Proof R2QM for any maximal right ideal M DR3, otherwise
R2 + M = R implies MDR3 + MR = R2. So R* = R2=:S. The ring
5 has a unity: xS = Π N, where N denotes the set of maximal
R -submodules of 5 containing xS 5 D S Π NS~ι D N 5 Π NS~ι ^ 5,
as S = S2£N, therefore SnNS-'=N. Now xESn(xS)S~ι =
Π (S Π N S 1 ) = Π N = xS this holds for all xGS. Because of Prop-
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osition 2.1 5 contains a right unity e. If y = er — re^ Q, 0 = Seye —
Sey = Sy. This is impossible, as S n S"Ό C JR "!(JR "!0) = 0. So e is the
unity of S. Now 1? = S 0 ί ( l - e ) , and the ideal JR(1 — ^) is isomor-
phic to RIR2 as a ring. R(l-e) = (0), as R(\ - e)R(\ - e) =

- e)) = (0) and jR"Ό = (0). Theorem 1 completes the proof.

Proposition 3.1 remains true for rings R with 2?V(0). This
follows from Proposition 4.1 and from the fact that the unitary overring
5 of R is nonprimitive, right Noetherian with restricted minimum
condition and the square of every principal right ideal finitely generated
iff R is.
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PRODUCT INTEGRALS AND THE SOLUTION OF
INTEGRAL EQUATIONS

JON C. HELTON

Functions are from R to N or R x R to N, where R denotes
the set of real numbers and N denotes a normed complete
ring. If β > 0, H and G are functions from R x R to N, / and
h are functions from R to N, each of H, G and dh has bounded
variation on [a, b ] and | H \ < 1 - β on [α, fc ], then the following
statements are equivalent:

(1) / is bounded on [a,b], each of [ H, [ G and

(LR) I (fG +fH) exists and
Ja

j X (fG+fH)

for ά ^ x ^ b, and
(2) each of *IΓ(1 +ΣJL, H ' ) , *ΓΓ(1 + G) and

exists for <2 ̂  JC < y ^ >̂ and

+ (R) £* dA (l + 2 H') ,Π*(l + G) (l + | j H1

for α ̂  JC ̂  /?.

This result is obtained without requiring the existence of inte-
grals of the form

G~ΪG=0 and Γ 11 + G - Π(l + G)\ = 0.

This article is part of a sequence of results on the solution of
integral equations initiated by two papers by H. S. Wall [28] [29] on
continuous continued fractions and harmonic matrices. He studied
certain techniques for solving integral equations which are associated
with product integration and his results have been extended in various
directions by J. S. MacNerney [18] [19] [20] [21] [22], J. W. Neuberger

87
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[24] [25] [26], T. H. Hildebrandt [13], J. R. Dorroh [41, B. W. Helton
[5] [6] [7], D. B. Hinton [14], J. V. Herod [11], C. W. Bitzer [2] [3], D. L.
Lovelady [16] [17] and J. A. Reneke [27]. The results here connect
closely with those of B. W. Helton [5, §5, pp. 307-315].

B. W. Helton [5, Theorem 5.1, p. 310] solved the integral equation

(a) ΓifG+fH)
J a

by using product integral techniques. In his development, the exis-
tence of integrals of the form

(b)
Γ G-IG=0 and Γ \ 1 + G - Π(l + G)| = 0

plays an important part. For real valued functions, A. Kolmogoroff

exists and[15, p. 669] has shown that if G exists, then J G - I

is zero. Further, W. D. L. Appling [1, Theorem 2, p. 155] and B. W.
Helton [5, Theorem 4.1, p. 304] have shown that there exist other classes

of functions such that the existence of G is sufficient to assure that

G
- / •

f
J a

exists and is zero. Also, B. W. Helton [5, Theorem 4.2, p.

305] has shown that for some settings the existence of xΐl
y(ί + G) for

Γb

a ^x <y ^b is sufficient to assure that 11 + G - Π(l 4- G)\ exists
J a

and is zero. However, it has been shown by W. D. L. Appling [1,
Theorem 2, p. 155] and the author [8, pp. 153-154] that the existence of

G and xY\y{\ + G) for a ^x < y ^b is not sufficient to imply the

existence of the integrals in (b). In the following, we solve the integral
equation in (a) without requiring the existence of the integrals in (b).

All integrals and definitions are of the subdivision-refinement type,
and functions are from either R to N or R x R to N, where R denotes
the set of real numbers and N denotes a ring which has a multiplicative
identity element represented by 1 and a norm | | with respect to which
N is complete and | 1 | = 1. Lower case letters are used to denote
functions from R to JV, and capital letters are used to denote functions
from R x R to N. Unless noted otherwise, functions on R x R are
assumed to be defined only for elements {a, b) of R x £ such that
a<b. If D = {xq}

n

q=0 is a subdivision of [a,b], then D(/) =
{[xq-\,xq]}ϊ=u U = / U i ) and Gq = G(xq-uxq). Further, {xqr}

Λr%} repre-
sents a subdivision of [xq-nxq] and Gqr = G(xq,r-hxqr).
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ίThe statement that G exists means there exists an element L of

N such that, if e >0, then there exists a subdivision D of [a,b] such
that if / is a refinement of D, then

<€.

The statement that αΠb(l + G) exists means there exists an element L of
N such that, if e >0, then there exists a subdivision D of [a,b] such
that if / is a refinement of D, then

< 6.

The statement (LI?) (JG +fH) exists means C exists, where
J a J a

C(r,s) = f(r)G(r,s) + f(s)H(r,s).

We adopt the conventions that

ΓG=0
J a

and

Further,
i i

Σ Gq — 0 a n d Π
q = i q=i

where i > j .
The statements that G is bounded on [α, b], G E OP° on [α, b] and

GEOB° on [α, b] mean there exist a subdivision D of [a,b] and a
number B such that if {xq};=0 is a refinement of D, then

(1) \Gq\<B for <j = 1,2, ••-,*,
(2) JΠUO + G , ) ! ^ f o r i ^ i ^ j ^ n , and
(3) Σ q % | G j < B ,

respectively. Similarly, statements of the form \G\<β are to be
interpreted in terms of subdivisions and refinements. Observe that
every function in OB° is also in OP°.

The statement that G G OM* on [a, b] means ,Πy(l + G) exists for
fl^x<y^fc and if e > 0 then there exists a subdivision D of [a, b]
such that if {xq}

n

q=0 is a refinement of D and 0 ^ p < ( j g n , then
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Also, GEOL° on [a,b] only if limx_p+G(p,Jt), limx_p G(x,p),
limxy^p G(JC, y) and limxy^p G(x,y) exist for a ̂ p ^b, and G G OA°

on [a, b] only if I G exists and I G - \ G exists and is zero. For

additional background with respect to this paper, see work by B. W.
Helton [5] [6] and J. S. MacNerney [20]. Further, additional back-
ground on product integration is given by P. R. Masani [23].

LEMMA 1. If G is a function from R x R to N and G GOB° on

[a,b], then G exists if and only if xΐl
y(l + G) exists for a ̂ x <y ^b

J a

[10, Theorem 4].

LEMMA 2. If Hand G are functions from RxRtoN,He OL° on

[a,blGEOB° on [α, b] and either f G exists orxΠ
y(l + G) exists for

J a

a^x<y^b, then ΓHG and ΓGH exist and Xΐl
y(l + HG) and

,Π y(l + GH) exist for a^x<y^b [10, Theorem 5].

LEMMA 3. // G is a function from RxRto N,G G OJ3° on [a, b]
amixΠ

y(l + G) exists for a ^x<y^b, then GeOM* on [a,b] [10,
Theorem 1].

LEMMA 4. Ife>0,H is a function from RxRto N and H G OL°
on [a9b]> then there exist a subdivision {ίt}f=0 of [a,b] and a sequence
{/cy}f=, such that if l ^ j g p and ί M < x < y < th then

\H(x,y)-kί\<€

[6, Lemma, j). 498].

LEMMA 5. If Hand G are functions from RxRtoN,H G OL° on
[a,b] andG(EOA° and OB° on [a,b], thenHGEOA0 on [a9b] [6,
Theorem 2, p. 494].

LEMMA 6. If F and U are functions from RxRto N9F and U are
inOB0 on [a,b], F G OA° on [a, b], xYίy(I + U) exists for a ̂ x<y g
b and

(R) Γ F 5 I P
J X
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exists for a S x <y g fc, then

ί (R) P F S Γ P ( 1 +t/)-F(x, y)
Ja Jx

exists and is zero [5, Lemma, p. 307].

The main result now follows.

THEOREM. // β > 0, H and G are functions from R x R to N, / and
h are functions from R to N, each ofH, G and dh is in OB° on [a, b ] and
\HI < 1 - β on [a, b], then the following statements are equivalent:

Γb rb

(1) / is bounded on [a, b], each of \ H, \ G and
J a J a

(LR) Γ(fG+fH)
J a

exists and

fX (fG+fH)

for a ^ x ^ b, and
(2) each of XW(\ +Σj=lH

i), xW(l + G) and

(R) j " dh (l + Σ #') SΠ'(1 + G) (l + Σ H'

exists for a ^ x < y ^ b and

j = 1

+ (R) j X dh (l + Σ H') ,Π*(1 + G) (l + 2 H')

/or α ^ x i f e .
Before proving the theorem, we point out the results of considering

left and right integrals, respectively. If H = 0, then we have the
integral equation

(a) Γ fG.
J a
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This equation involves only a left integral, and its solution is

(b) f(x) = h(a)aIlx(l + G) + (R) Γ dhsll
x(\ + G).

J a

On the other hand, if G = 0, then we have the integral equation

(c) f(x) = h{x) + (R) [ fG
J a

This equation involves only a right integral, and its solution is

(d) f(x)^h(a)aU
x(\ + ΣHi) + (L) ΓdhrU'll + ΣH').

\ j=\ I Ja \ j=l

If z is in N and \z \ < 1, then 1 +ΣJL| z] exists and is (1 -z)'\ Thus, in
(d) and in the theorem itself, it is possible to substitute (1 - H)~ι for
1 + ΣJL, H!. To obtain some feeling for why invertibility-related condi-
tions are placed on H but not on G, consider the first approximations to
equations (a) and (c). For (a), we have that

f(x)±h(x) + f(a)G(a,x);

while for (c), we have that

and hence that

f(x)±h(x)[l-H(a,x)Γ.

For additional discussion of product integrals, inverses and integral
equations, the reader is referred to papers by J. V. Herod [12] and the
author [9].

The main result is now established.

Proof. To simplify notation in the following work, we use the
interval functions Γ, U and V to denote

,=\ i=\
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and
00

•f 'V "l T T i

respectively. Further, we use C to denote the interval function

Proof (1)^(2). Since f H exists and HGOB° on [a,b], it

follows that HEOL° on [ α , H and hence, 1 + ΣΓ-iHJ f ε OL° on
[a,b]. Thus, the existence of

ΓbI
Ja a j=\

follows from Lemma 2. Therefore, the existence of XΓFV for a ^ x <
ygf) follows from Lemma 1. Also, Lemma 1 implies the existence of

xΐl
y(l + G) for a ^ x < y ^ b from the existence of G. Lemma 2

J a

can be used to establish the existence of G ΣJL, H*. Therefore, since
J a

each of
fb fb » fb 00

G, Σ W and G 2 tf'
J a J a ] - \ J a / = 1

exists, we have that 1/ exists, and thus, the existence of X ΠT for
J a

α g x < y S b can be established by applying Lemma 1. Finally, since
V(r,s)sYlyT is in OL° on [α,ft], the existence of

(£) P<#tV$ΓFΓ
J X

fb

for fl g x < y g fc can be obtained from the existence of dh through
J a

the use of Lemma 2.
Suppose a g x ^ ft. We now show that

/(JC) = /t(0)αΓPΎ + (R) Γ dh VSWT.
J a

If a = x, the result follows immediately. Therefore, suppose α < JC.
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L e t £ > 0 . Since \H\< 1-/3 on [a,x], G, H and dh areinOB°on
[a,x] and / and V are bounded on [a,x], there exist a subdivision D, of
[a,x] and a number B such that if {JC,}?,0 is a refinement of D,, then

(1) | H , | < l - / 3 for i = \,2,- ,n,
(2) Σ?
(3) Σ?

(4) Σί. < B, and

(5) I V, ΠjU+1 Tk I < B for / = 1,2, , n.
Since rΓFΓ exists for a^r^s^x and UEOB° on [a,x], it

follows from Lemma 3 that there exists a subdivision D2 of [a,x] such
that if {jt,}Γ=0 is a refinement of D2 and 0 ^ p < q i n , then

(l) Urr«r-n;Lp+l:r|<e(i6B)-,
(2) |Π?_p + 1Γ i- ΐ,Π I Γ|<e(16B)~I, and
(3) \h(a)aU

xT

Since (/?) I rfΛ Vs IP Γ exists, there exists a subdivision D3 of [α, x ]
J a

such that if {JCJΓ-O is a refinement of D 3, then

J α vsu
xr- <€/8.

Since V(r, 5)SΠ
X Γ is in OL° on [Λ, JC], it follows from Lemma 4 that

there exist a subdivision D 4 = {U}Uo of [α, JC] and a sequence {/c;}f=1 such
that if l ^ j g p and fM < r < 5 < ii5 then

\V(r, s)sU
x T - kj

ίSince C E OB° on [α,x] and C exists, there exist subdivisions

jf+o1 and {sjpo1 of [α,jc] such that
(1) tM < η < Sj < tj for / = 1,2, ,p, and

(2) -ί"
Jx>.k-\

<e[8J3(p-hl)Γ 1 for / = l,2, ,p and

each refinement {Xjk}ϊ2o of {s/-i,ίj-i,f}}.
Further, for / = 1,2, ••,/?, there exist subdivisions Ey of [rh Sj] such that
if Ĵ  is a refinement of Eh then

Σ Σ c - ί 1

J = l F;(/) Jr,

Let D denote the subdivision

U A U {riJtf U {sjpo1 U JB,
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of [a, x ], and suppose {JC, }Γ=0 is a refinement of D. For / = 1,2, , p, let
Kj be the set such that i G Jζ only if η < JC,- S s, . Let K and L denote
the sets

U Ks and {ι}Γ,,- U ^ ,
j=\ /=!

respectively.
We now establish two inequalities that are necessary to complete

the proof. First,

ΓdhV.TFT-ΣdhtVt Π Γft|
Ja i = ] k=i + \

dh,vlxιn'τ-5jdhiv, Π
\ i = l <c=i + l

(I?) Γ dhV.ΐΓT-Σdh,Vlxιn'T
J a i = l

Second,

Π*Γ- fl €/8

i\c,-ί" c]vi Π τk

Γ civ, Π
xi-i J k=ι + l

μ Σ Q-Γ c v, Π
iGL Jx,_1 fc = i +

Σ\C-Γ civ, Π

Σfc,-Γ cl viβπ

Σ|fc i -Γ τk-x,wτ

€/8
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< - Γ c]viXlwτ
Jx,-, J

Vίx,ΓFΓ e/4

\ - ί C\k

l,?Jc~£,c

<Σ

If we employ the iterative technique used by B. W. Helton [5, p.
311], we have that

' - c] v, iΐ
J k = i + \

i=1 ί = l

Thus,

h(a)aU'T + (R) (XdhV,U'T-f(x)
J a

h(a)eWT-h(a)tlTt
i

+ (R) Γ dhVsWT-Σ dh, V, Π Tk
Ja i = l k=i + \

Σ\C,-\ C\V, Π 7
1 = 1 L Jx,-i J k=/ + l

Therefore, (1) implies (2).
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Proof (2)—>(1). It follows from the bounded variation of the
various functions involved that / is bounded on [a, b]. Since ΣJLi H' G
OB° on [a,b]9 it follows from Lemma 1 that

Γb oo fb

Ja )=\ Ja

exists. Recall that (1+ ΣJL1H'Γ1 exists and is \-H. Thus, since
ίb

\~HEOL° on [α,fc], it follows from Lemma 2 that H
J a

exists. Further, it follows from Lemma 1 that G exists. The
J a

Γb Γb Γb

existence of C now follows from the existence of G and H by
J a J a J a

applying Lemma 2.
Suppose a ^ JC ̂  b. We now show that

t* (fG+fH).
Ja

If α = JC, the result follows immediately. Therefore, suppose a <x.
Let e >0. There exist a subdivision D, of [a,x] and a number B

such that if {x,}"=0 is a refinement of Dx, then
(1) | H i | < l - / 3 for i = 1,2, - ,n,
(2) Σ?., |G, |<B,
(3) ΣΓ., |H, |<B,
(4)
(5)

Since G exists and Σ;=,ίί' e 0L° on [α,f>], it follows from

Lemma 2 that G Σ^, W exists. Thus, the existence of U follows
J a J a

from the existence of

Γ G, f * Σ Ĥ  and Γ G Σ ^J

J α J a j = l J a j = l

Therefore,
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exists f o r α ^ r g ί g j c by Lemma 1. Now, it follows from Lemma 3
that U G OM* on [α,x]. Hence, there exists a subdivision D2 of [α, x]
such that if {x;}Γ=o is a refinement of D2 and O^p < q ^ n, then

i=p +
< e(6BΓ

Since dh is in OA° and OJ3° on [a,x] and V G OL° on [α,x], it
follows from Lemma 5 that dh V G OA° on [α,x]. Thus, since 1/ G
OB° on [0, x] and , ΓΓ T exists for a ^ 5 < ί ^ x, it follows from Lemma
6 that

Jα Ju
(R)\ dhVsn

vT-dh(v)V(u,v) = 0.

From the existence of this integral and the fact that U G OM* on [a, x],
it follows that there exists a subdivision D3 of [α, x] such that if {JC,}Γ=0 is
a refinement of D3 and O g p < ί ^ n , then

(1) ΣΓ-.

(2) LΠ-

(R)Γ dhVsU
xT-dhiVi

Jxi-i
<€{\2B2Y\ and

Thus, if {JCJ}Γ=O is a refinement of D, U D 3 and 0 < p § n, then

(R)j'P dh VsΠ*- T - g dΛ« V, t Π Γt

(Λ) ί^ dh VsTF>T-Σ dh, VixιIF-T
J a i = 1

P P

i-Σl^v i x,πx-r- π rt

Σ ί (*) ί" dh Vs IT'T - dh v] *, IF* T
i-i L J*,-, J

HB[e(12B2)-']

(Λ) fX' dh V.TΓ T-dhtV,
JXi-X

Σ
1-1

'] + e(12B)-' = €(6B)'.
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It follows from the existence of the integrals involved that there
exists a subdivision D4 of [a,x] such that if {JC,}Γ=O is a refinement of D4,
then

<elβ

and

ΣdfcV, Π Tk-(R)ίXdhV,IΓT
i = l * = / + ! Ja

<e/6.

Let D denote the subdivision U U\ A of [a,x]. Suppose {Xi}Γ=o is a
refinement of D. Observe that

± (H
j=m \fc=m

Further,

$dh,V, Σ (Π τ

and

Σ (fl τ

These identities can be established by induction and are used in
subsequent manipulations.

We now work out a further identity to aid in establishing the



100 JON C. HELTON

existence of the desired integral. By employing the previously stated
identities, we have that

)ok+ Σ
/ ki l

Σ
k=i +

i = l i = l <c=i + l \j = i + l

Σ^v; Σ (fl r,)ft
/=! fc=ι+l \/=i+l /

/ = 1 i = 1

ftfciVi f t
A = / + !

k=j + \

(«) Γi + ± (H rfc) α + ± ( ή τfc) «I
L «=i \k=i / i=ι \k=i /

dΛ/V, f t Γtl G,
J

Σ (fl Γt) G, +/(α) Σ (fl Tk) H,
i = 1 V#c = 1 / i = l \k = \ I

iVi ft\Σ
i = 2 L / - 1
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Now, by employing the identity developed in the preceding parag-
raph, we have that

h(x)

<

ί = l

- [/(«) ft Tt+Σ dh, V^n+i 7i] I + e/6 + 6/6

i=2 L/ = k=j+l

/(α)αff-Γ-/(α)ΠΓk

e/3

\(Ji

\HA

+ Σ (R) ί ' d h v° n*'-'τ - Σ dh, v,
i=2 Ja j=\ k

+ Σ (J?)|a

IIldAv1,π j i'Γ-ΣdAJvitl
il

€/3

iαι

= 6.

Therefore, (LR) I (fG+fH) exists and is f(x)-h(x). Hence, (2)
implies (1). Ja

B. W. Helton states three additional theorems on the solution of
integral equations by product integration [5, Theorems 5.2, 5.3, 5.4, pp.
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313-314]. The techniques used in the present paper to avoid requiring
the existence of the integrals

Γ G-\G = 0 and Γ | l + G-Π(l

can also be applied to these results.
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THE RANGE OF A NORMAL DERIVATION

B. E. JOHNSON AND J. P. WILLIAMS

The inner derivation δA implemented by an element A of
the algebra MVM) of bounded linear operators on the separable
Hubert space W is the map X -* AX - XA (X G ® (W)). The
main result of this paper is that when A is normal, range
inclusion Jί(δB) CιM(δA) is equivalent to the condition that
B=f(A) where Λ(z, w) = (/(z)-/(w))(z - w)"1 (taken as 0
when z = w) has the property that Λ(z, w)t(z, w) is a trace class
kernel on L2(μ) whenever ί(z, w) is such a kernel. Here μ is
the dominating scalar valued spectral measure of A constructed
in multiplicity theory. In order that a Borel function / satisfy
this condition it is necessary that / be equal almost everywhere to
a Lipschitz function with derivative in σ(A) at each limit point
of σ(A) and it is sufficient (for A self-adjoint) that / G C(3)(R).

For such operators B there is a>o a factorization δB = δAτ = τδA by
an ultraweakly continuous linear map r from 38($?) into itself satisfying
τ(A']XA'2) = A\τ(X)A'2 for X e » ( I ) and A\,A'2 commuting with A.

When 2C is finite dimensional (X, Y) = trace (XY*) is an inner
product and 38(20 = 9t(δA)®{A*}' is the orthogonal direct sum of the
range of δA and {A *}' = { Y G 38 (30 : YA * = A * Y}, the commutant of
the adjoint of A. This simple fact suggests that ^(δ^) is a natural
subspace, like the commutant, associated with A. The orthogonal
decomposition also shows that range inclusion &ί{δB) C0ί(δA) holds for
a pair of operators if and only if B G {A}'\ or equivalently, if and only if
B is a polynomial in A. In this case δB = δAτ = τδA with r as above.

When $f is infinite dimensional the situation is less clear. We do
not know whether 9t (δA) Π {A *}' = 0 in general. The sum
S2(SA) + {.4*}' is always weakly dense in 38 (X) but is rarely norm
closed; in fact for A normal it is closed if and only if A has a finite
specturm [1].

The condition BG{A}" is neither sufficient for 0l{δB)C0i{δA)
(even if A is positive and compact [19]), nor necessary [Yang Ho,
private communication].

If A G 38 (20 and B = /(A-), where / is analytic in a neighborhood
of the specturm of A, then 3#(δB) C<3i(δA) but range inclusion does not
imply B = f(A) for some analytic / [20]. Finally, if {A}' contains no
nonzero trace class operator then the norm closure of 3l{δA) contains
the ideal of compact operators [22]. In this case there are operators
B£ {A}" with 0l(δB)CSk(δA)". There are normal operators A with this
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property (multiplication by x in L2(0, 1) for example) and compact
operators [16] but none that is both normal and compact. (See the
remark following (2.1) below).

As byproducts of our study of the range of a normal derivation we
obtain improvements of the results of [19, 20] and a simpler proof of the
theorem of [1] mentioned above. Our results also yield solutions to
some asymptotic commutativity problems raised in [3].

1. Auxiliary results. If E,F,G are Banach spaces, SG
35 (F, G) and T E 35(F, G), then the closed graph theorem implies that
Θi(S) C$(Γ) if and only if there is JR E 33(F,F/Ker(Γ)) with S = TR,
where f is the element of 3S(F/Ker(Γ),G) associated with T. In
particular, range inclusion <3l{δB)C@l(δA) of derivations on 33(20
amounts to a factorization 8B = 8Aσ with σ a bounded linear operator
from 3δ($0 into 3δ($0/{Λ}'. Our first goal is to show that if A is
normal this trivial factorization can be sharpened to: δβ = 8Aσ for some
ultraweakly continuous linear operator σ from 39 (ffl) into itself. For
this and later applications we need some simple facts about range
inclusion in general.

LEMMA (1.1). // S,T E 3δ(F, F) the following are equivalent:
(1) There exists a constant c such that \\Sx | |g c \\Tx \\ for all

xGE.
(2) There exists a constant c such that for each fEF* there is a

gEF* with \\g || ̂  c 11/11 and S*f = T*g.
(3) $(S*)$(Γ*)

Proof Suppose that (1) holds, and fix / E F*. Then Tx -+ (5x, /)
extends to a bounded linear functional on F by the Hahn-Banach
theorem and therefore there is a vector g E F * with ||g || S c \\f\\ such
that (SxJ) = (Tx,g) for all x E E. Hence 5*/= Γ*g so that (2) is
satisfied.

Clearly (2) implies (3). Suppose that (3) holds. If fEF* then
S * / = Γ * g f0Γ some g<ΞF* and therefore |(Sx,/)| = |<x, T*g)\ S
|| g Illl Tx || for each x E E. The uniform boundedness theorem implies
that there is a constant c such that |<£x,/>| ̂  c ||7JC ||| |/|| for all x E E
and all / E F*. Then ||5x \\^c\\Tx \\ so that (1) holds.

COROLLARY (1.2). J/S, Γ E S8(F,F) then0l{S**)cgi{T**) if and
only ifSk{S)C0i{T^) where <31{S) is identified with its canonical image
in F**.

Proof. Since S** is an extension of S the necessity is
trivial. Suppose 3?(S) C^(Γ**). If JC E F then there is ξ E E** with
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Sx = T**ξ and hence |<x,S*/>l = |<Γ *£J>|S| |£| | | |Γ /II for
fEF*. Hence by the uniform boundedness theorem there is a con-
stant c such that |<X,S*/")| = C | | JC | | | |Γ*/ | | for xGE and / E
F*. Consequently | | S * / N c IIΓ*/II and so $(S**)C$(Γ**) by
Lemma (1.1).

COROLLARY (1.3). 7/ S, Γ E 3&(E9 F) these are equivalent:
(1) ^(S*)$(Γ*)
(2)
(3)

Proof. Conditions (2) and (3) are equivalent by Corollary
(1.2). Also (1) trivially implies (2). Suppose (2) holds. If / E F* then
S*f = j***ξ for some ξ^F***. Now each such ψ has the form
£ = £o + £i where ξ0 E F° and ξ, F*. Also Γ*** extends T* and maps
F°into F° and so 5 * / - Γ*f, = Γ***£0E F * Π F° = {0}. Thus 5*/ =
Γ*£i E 3?(Γ*). Therefore (2) implies (1).

In the next result and in several subsequent arguments we shall
make use of the duality relations between the Banach space % = JK{^€)
of compact operators on Sίf, equipped with the usual sup norm, and the
Banach space 3~ = S'i'X) of trace class operators on $?, equipped with
the trace norm || ||̂ . Recall [4, 14] that ?f may be isometrically
identified with the conjugate space of X and that 33 ($ί) is the conjugate
space of 3~. The canonical bilinear form here is (X, Γ) = trace (XT) =
trace (TX) for T E SΓ and X belonging to either 3δ (?O or to X. Finally,
the ultraweak topology on 38 (X) is the weak* topology σ(

COROLLARY (1.4). These are equivalent for A,B E
(1) There exists a constant c such that \\ δB (X) || g c || δΛ (X) || for all

(2) There exists a constant c such that for each T E SΓ{%) there is
SΓ(W) with \\Sy^c\\T\\rindδB(T) =
(3)
(4)

Proof Conditions (3) and (4) are equivalent by Corollary (1.3)
with S = (δa IX) and T = (δA\ X). Also (1) and (3) and (2) and (4) are
equivalent by Lemma (1.1).

COROLLARY (1.5). These are equivalent for A,B E
(1)
(2)
(3) There exists a bounded linear map σ from $($?) into
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St(X)l{A}' such that δB = δAσ where δA : &(%)l{A}'->9t(δA) is the
canonical map associated with δA.

(4) There exists a constant c such that | |δβ(Γ)| | j ^ c \\δA(T)\\<r for
all T

Proof. Conditions (1) and (4) are equivalent by Lemma (1.1)
applied to S = (δB\2Γ) and T = (δA\SΓ). Conditions (1) and (2) are
equivalent by Corollary (1.2) applied to the restrictions of δA and δB to
3ΐ, and (1) and (3) are equivalent by the remark preceding Lemma (1.1).

2. N o r m a l derivations. In this section we show that if A is
a normal operator on a Hilbert space Sίf (assumed to be separable here
and in the remainder of the paper) then range inclusion 3ί{δB) C9l(δA)
holds only for operators B E{A}". We use the fact that there is a
projection P of norm one from 33(20 onto {A}' with the property
P(A5X4 J) = A \P{X)A'2 for X G &(%) and A \9A'2 in {A}'. In fact any
projection of norm one onto the commutant has this commutativity
property [17]. The existence of such projections is a standard fact in
the theory of von Neumann algebras [2; Chapter 2]. A simple way to
obtain one is to choose a unitary operator V with {V}' = {A}' and set
P(X) = glim^oc V*nXVn where glim is a fixed generalized limit on /"
and the equality is in the weak (inner product) sense. (See [23])

The commutativity property of P immediately implies 0l(δA)C
$fc(l - P) but one does not have equality here in general since for A
normal, $l(δA) + {A}' is norm closed only in the trivial case in which the
spectrum of A is finite [1]. The following fact is sufficient for our
needs here:

LEMMA (2.1). ί%(δΛ) and ̂ ( 1 - P) have same ultraweak closures.
Hence if Aξ = λξ and Aη = λη for ξ, η E X then ((1 - P)(X)ξ, η) = 0.

Proof. We have 0l{δA)C^ί{\-P) so that by considering an-
nihilators in SΓ(^) it suffices to show that ((1 - P)(X), Γ> = 0 for each
trace class operator T that commutes with A. Now for such a T we
have the polar factorization T = ί7(Γ*Γ)^ where U is a partial isometry
and both factors belong to {A}'. Since P(XU) = P(X)U it suffices to
consider the case T ̂  0. In fact, by the spectral theorem we need only
show that <(1 - P)(X),E) = 0 for X G 98(30 and E E{A}1 a projection
of finite rank. Now for the projection P constructed in [12] this can
easily be verified since P(X) is obtained from the operators V*XV with
V unitarv in {A}". However we can also prove the assertion assuming
only th< existence of P as follows: With respect to the decomposition
^ = 3$ ' : ) θ ^ ( £ ) i = % θ ^ ι simple calculations with two by two
operatr matrices show that P induces a norm one projection p from
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'Q onto the commutant of A0 = (A\ 3€0) such that (X - P(X), E) =
trace(Xo-p(Xo)), where X0 = E(X\W0), and this last quantity is 0
because the formula &(%*) = 9%(δΛo) + {A$}f shows that 9t{\-p) =
$(δAo), that is, Xo-p(Xo) is a commutator.

The second assertion of the Lemma follows from the first by
obserivng that the operator ξ (g) η defined by (ξg) η)(ζ) = (ζ9 η)ξ is a
trace class operator commuting with A so that 0 =

REMARK. A similar duality argument shows that if A is normal and
compact and if B G 38(30, then » ( δ B ) C » ( δ Λ ) " if and only if B - λ G
(A}" Π 3ίf for some scalar A.

The next result appears in [7; Theorem 3.2]:

LEMMA (2.2). If A is a normal operator on 3€ then

n » {o}
zee

Although we shall make no use of the fact, it is worth observing
that (2.2) implies a stronger version of itself.

COROLLARY (2.3). Let μ be a (positive, regular) Borel measure on
C with compact support and let A be the operator f(z)-+zf(z) on
L\μ). If fE0l(A-zl) for μ almost every z EC then / = 0.

Proof. Let {Kn} be a sequence of compact sets with limμ(KJ =
|| μ || and / G 98 (Λ - zl) for all z G Kn. If Pn is the spectral projection
corresponding to Kn then PjE^iiPJiA - λI)Pn) for all λEKn and also
for λ EC\Kn because σ(PnA\PnH)CKn. Thus Pnf=0 for all n and
consequently / = 0.

We shall also need the following result of Korotkov. For a proof
see [10, 21]:

LEMMA (2.4). Let μ be a Borel measure on C of compact
support If ΓGS3(L2(μ)) has &(T)CL"(μ) then T is a Hilbert-
Schmidt operator with kernel t G L\μ x μ) satisfying

ess sup i |ί(z, H>)Nμ(H>)=iK2

where K is the norm of T as an operator from V to L00.

We come now to the main result of this section.
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THEOREM (2.5). // A is a normal operator on X then
contains no nonzero left or right ideal of 3&(W). Hence if B E
and m(δB)C0l(8A) then B <Ξ{A}".

Proof Observe first that for any S, Te®(%) the identity
Xδs(T') = δs(XT') - δs(X)T implies that if &(δs) C0l(δτ) then 9t(δτ)
must contain the left (and dually, also the right) ideal of 58(20 generated
by δs(Tr) for each T" commuting with T. Hence if ί%(δτ) is known not
to contain any left or right ideal ideals then 5 E {Γ}". Thus the second
assertion of the theorem is a simple consequence of the first.

For ξ, η E $? let ξ g) η denote the operator ζ -H> (ζ, η )ξ. Every left
ideal contains an ideal $f(g)τj and so it is enough to show that
Sίf (g)τj C*3l(δA) implies η = 0. (The assertion for right ideals follows
on taking adjoints.)

By restricting to the smallest reducing subspace of A that contains
η we can suppose that A is the operator f(z)-+zf(z) in ft = L2(μ) for
some regular Borel measure μ on C of compact support. Let P be a
projection of norm 1 from 38($?) onto {A}'.

For ξEL2(μ) let γ(ξ) be the unique element of &(%) with

The operator γ is continuous by the closed graph theorem and if
Mh E <k{dt€) is the multiplication operator on 5ίf induced by h EL*(μ)
then γ(Mhξ) = Mhγ(ξ) because δA(Mhy(ξ)) = MhδA(y(ξ)) = Mhξ®η
and P(Mhy(ξ)) = MhP(y(ξ)) = O. In particular, γ(Λ) = MΛ(γ(l)) for

If ft e L » , £EL2(μ) then \\Mhy(ψ\\ = ||γ(Λ)ίNllrll IIΛ ||2||^ ||2
so that /ι -^Mhγ(l)£ = ft γ(l)^ is continuous in the V norm, and
therefore y (l)ξ E L°°(μ) with | |γ(l)f ||β ^ || γ || ||ξ ||2. By Lemma (2.4) the
operator γ(l) is Hilbert-Schmidt with kernel t(z,w) satisfying
ess sup/|ί(z, w)\2dμ(w) = X2<oo. Fix a vector ξEL2(μ). Then
there is a measurable set E = Eξ with μ(E') = 0 and

= J (z -
for z ELE. Since δA(y(l))ξ = (1 ® η)ξ = (£, 17), the Cauchy-Schwarz
inequality gives

/ r \ / r \

for zEE. Therefore \(ξ9η)\^K\\(A-zI)ξ\\ = K\\(A-zl)*ξ\\almost
everywhere, and consequently, for all z Eσ(A) by continuity of the
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right side of this inequality. It follows from this that η E0l(A - zl)
for each z G C (see the proof of Lemma (1.1)) and therefore η = 0 by
Lemma (2.2).

COROLLARY (2.6). Let A be a normal operator on X. If B G
35($f) and 0l(δB)Cίft(δA) then δB = δAσ = σδA for some ultraweakly
continuous linear operator σ from 58($?) into itself with the property
σ(A\XA'2) = A\σ{X)A 2 forXG^(X) and A\, A f

2 commuting with A.

Proof Suppose 3#(δβ) C3#(δΛ). Then by (1.5) we can factor
δB = δAτ0 for some r 0 : &(%)-+&(2e)l{A}'. Making use of a projec-
tion P of norm 1 from £$ (SO onto {A}' we can replace τ0 by τ E
&(&(%)) to get δB = δAτ. Thus for X G 38(20, τ(X) is the unique
operator satisying P(r(X)) = 0, δΛ(τ(X)) = δβ(X). Since B G {A}" it is
easy to check that r inherits the commutativity properties of P, that is

We now replace T by an ultraweakly continuous σ with the desired
properties by the following device: the map (τ\X) from JC into
$ ( $ 0 = 3ίf** has adjoint (τ\X)* from 3ίf*** into X*. For Γ G J =
%* C3ίf*** we therefore obtain an operator a{T) = (r |35f)*(Γ) in ST. It
is clear that a G 38(5"), that (δA \ 3~)a =a(δA\SΓ) = (δB | J") and that
δβ = α*δΛ = δΛα:*. Since α* G S8(Sδ(Sf)) agrees with r on 3ίT we also
have a*(A\XA'2) = A\a*(X)A2, first for X G 5ίf, then by ultraweak
continuity of α* and of multiplication by a fixed element of έS($?), for
all X in the ultraweak closure of 5ίΓ which is 38(5ίf). Thus σ = α*
satisfies the requirements of the Corollary.

3. On a separable space an operator B in the second commutant
of a normal operator A must be a bounded Borel function of A. In this
section we determine which such functions are admissible for range
inclusion of the corresponding derivations. For this we need to
develop some background information about Hadamard multipliers.

DEFINITION (3.1). A matrix (γ0) is a Hadamard multiplier of
if there is an orthonormal basis {£} of 3€ such that for each X G
there is an operator Γ(X) G 38 (30 with (Γ(X)& £) = γίy (X& £) for all /, j .

Thus (γ/;) is a //-multiplier if the Hadamard product of (γt7) and the
matrix of any bounded operator is again the matrix of a bounded
operator. I. Schur [15] gives several sufficient conditions that (γί7) be
an //-multiplier, among them being that (γ0) is itself the matrix of an
operator.

LEMMA (3.2). (1) The condition that (γl7) be an H-multiplier is
independent of the choice of orthonormal basis of $f.
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(2) // (γ 0) is an H-multiplier then X—»Γ(X) defines a bounded
linear operator on 35 ($?). Moreover Γ is ultraweakly continuous and is
the adjoint of the H-multiplier on ίf($f) induced by the transpose of (γ,7).

(3) Let {Γn} be a sequence of H-multipliers. If s u p j Γ j < » and
if (Γn(X)ξh fi)-> α<,(Λ£, ξ,) for each Xe®(W) and each i,j then (α/y) is
an H-multiplier.

(4) Let aa = \Q γ > ' Then (ai}) is not an H-multiplier on

for π = /2(Z) or for W = /2(Z+).

Proof (1) If {TJ,} is another orthonormal basis of $? and if
(Γ(X)ηh η,) = γ^Xηy,i,,) then Γ(X) = U*Γ(UXU*)U where ί/ is the
unitary operator defined by Lfy; = ξh

(2) That Γ is bounded on 35 ($0 is a simple consequence of the
closed graph theorem. The other two assertions of (2) are easy to
verify.

(3) The hypotheses imply that for each XE$(3€) the map
T -*limn(Γn(X)9T) is a bounded linear functional on the subspace of
ίT(ffl) consisting of finite linear combinations of the operators
ξi<g)ξj. Since the dual of 3~ is Sδ(^) there is an operator Z £$(%)
such that (Z,Γ) = limπ<Γn(X),Γ) for any T of the form £(g)£. It
follows that (aaiXξjjξi)) is the matrix of Z and thus that (αf/) is an
//-multiplier.

(4) Consider first the case in which (αί7) is a doubly infinite matrix
(ί,/GZ) and let ξ}(eiθ) = eiiθ be the usual basis of L2(0,2τr). If Mφ

denotes the operator f-*φ f on V for a given φ EL00, then the
Hadamard product of (αiy) and the matrix of Mψ is the matrix associated
with MΦ where φ is the function whose Fourier coefficients (φ,ξn)
vanish for n < 0 and agree with those of <p for n g 0. Since there are
φ EL" for which φ £ L00 it follows that (atj) cannot be an //-multiplier of
L2(0,2π) and consequently cannot be an //-multiplier of /2(Z) either.

Consider now the matrix βi} = 1 or 0 depending on whether or not
i^ j for i, jGZ+ . Then (&) cannot be an //-multiplier of /2(Z+)
because the doubly infinite matrix (α(/) just mentioned is the sum of the
direct sum (β^φίβ-, , , ) and a matrix which is an obvious //-multiplier
of /2(Z).

There is another, perhaps more natural, way to see that the doubly
infinite matrix (αiy) of (4) is not a Hadamard multiplier of /2(Z) that we
now sketch. It is enough to show that (αo ) does not induce an operator
a on j he trace class matrices SΓ on /2(Z). Now & is isometric with
/2(Z)(g)/2(Z) so the convolution product gives rise to the map (ρS)k =
Σj_, «fc*ϊ of 3Γ into Λ(Z) and in fact A(Z) is isometric with J*/Ker(p).
Clearly a (Ker (p)) C Ker (p) so a lifts to a' G 38 (A (Z)). Here a' is the
operation of multiplication by the characteristic function of Z+ and it is
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well known that A(Z) is not closed under this operation. (V(Ί) is not
closed under the Hubert transform.) The harmonic analysis used here
appears in [13; pp. 80-81] and [9; p. 64].

Hadamard multipliers are important for studying the range of a
derivation mainly because of the following simple fact: (Recall that a
diagonal operator is an operator for which there is an orthonormal basis
of eigenvectors.)

LEMMA (3.3). Suppose A ESft(ffl) is a diagonal operator with
matrix diag(λ1? A2, •) with respect to the orthonormal basis {£}. If
BE®(2e) then5fc(δB)C$ίl(δA) if and only if B = diag(/z,,μ2, •) with
respect to {£} and (γή ) is an H-multiplier of 38(20 where

= ( μ ι μ i ) ( ι / r / , ^ ,
Ύii 1 0 if λ, = Ay *

Proof Suppose Θl(δB)C0l(δA). Then Be {A}" by (2.5) and
hence B has a diagonal matrix with respect to the given basis. If
X E 38(20 there is Z E 38(20 with δB(X) = δA(Z). Computing (/,/)
entries yields (μ{ - μ})(Xξh£) = (A, - λ}){Zξh£). Now we can choose
Z so that P(Z) = 0 where P is a norm one projection from 53(20 onto
{AY For such a choice Lemma (2.1) shows that (Zξh £) = 0 whenever
λ i = λ j and therefore {Zξh ξt) ^ yή{Xξh ξ,) with γl7 defined as in the
statement of the Lemma. This proves that the multiplier condition is
necessary for ί%(δβ)Cί%(δΛ) and it is clear that it is also sufficient.

LEMMA (3.4). Let μ be a finite measure on C and let A be the
operator h{z)-+zh{z) on L\μ). Suppose that f E C(σ(A)) and that
£%(δ/(Λ)) CM(δA). If B is a diagonal operator with distinct eigenvalues
λ,,λ2, inσ(A) then

Proof Let {£} be an orthonormal basis of X such that JB£ = λ(£
for ί = l,2, •••. Fix an integer n > 0 and let <pu<p29'—9<pn be the
normalized characteristic functions in L\μ) of disjoint neighborhoods
NuN2, ,Nn of the λh each having diameter at most n~\ Finally let
U = Un be a partial isometry from ffl into L\μ) with

By (2.6) there is a map α from SΓ = J{L\μ)) into itself such that
(δ/(Λ)|̂ ") = a(SA \3f) = 8Aay and this induces a map β from #"(30 into
itself, namely β(T) = U*a(UTU*)U. An easy calculation gives
0(6
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)-1 f ί λ(z,w)dμ(z)dμ(w) 1 ̂  ij g n
β\i}=[ JN> J * i>n or j>

and λ(z,w) = (f(z)-f(w))(z- w)~\l-δz,w). Now if Γn is the
Hadamard multiplication on SΓ{ffl) associated with the matrix (β ;

n)) it
follows that Γn and β agree on the operators ξt (g) § and since both
operators are ultraweakly continuous we have ||Γn|| = \\β | |S
| |α | | . Hence the matrix (γjj0) defined by yf = βf- 8φf has mul-
tiplier norm at most 2||α||. Since γ^-^γo where

- λ, ) ' for 17̂  j
Ύii 1 0 f o r / = /

it follows from (3.2) that (γo ) is an //-multiplier on SΓ(ffl) with multiplier
norm at most 2\\a ||. Thus (δ/(β)| &) = aB(8B \ 3Γ) = δBaB for an operator
aB on 2Γ(d€) with norm at most 2| |α| | so that <Ά(δHB))C0l(δB).

Our next result shows that the question whether ^(δ / ( A ))C^(δ Λ )
depends only on the values of / on σ(A) and not on the normal operator
A itself:

COROLLARY (3.5). Let A and f be as in the statement of the
Lemma. If B is any normal operator with σ(B)Cσ(A) then 0t(8f(B)) C

Proof. Any normal operator B on ffl is a countable direct sum of
operators h{z)->zh{z) on V spaces and each of these is uniformly
approximable by diagonal operators (approximate the identity function
by a simple function.) Hence B itself is the uniform limit of a
sequence {/?„} of diagonal operators on %C and clearly we may also
choose the Bn to have distinct diagonal entries for each n. Now for
each n there is an operator an on 5"($?) with (8HBn)\SΓ) = an(δBn \SΓ) =
8Bnan and supn || an \\ < oo by the proof of the Lemma. Fix XEffl(ffl)
and let Zn =α*(X). Since the Zn are bounded we can pass to a
subsequence if necessary to insure that the sequence {Zn} converges
ultraweakly to some Z G 38 (^). Then

δfiB)(X) = (f(B) - f(Bn))X + (Bn-B)Zn + (BZn -ZnB) + Zn(B - Bn)

+ X(f(BΛ)-f(B))

so that, taking ultraweak limits, 8f{B)(X) = 8B(Z) G9t(δB) as required.

THEOREM (3.6). Let Abe a normal operator on $? with dominating
scalar spectral measure μ (see [5; Theorem 10, p. 916].). IfB G
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then 3l(δB)C0i(δA) if and only if B =f(A) where /eC(σ(A)) and
(at)(z, w) = {f(z)-f{w))(z - w)~ιt(z, w) (taken as 0 when z = w) is a
trace class kernel with respect to μ whenever t(z, w) is such a kernel.

Proof. Suppose first that A is the operator /z(z)—>z/i(z) on
L\μ). If 0i{δB)C0ί{δA) then B e {A}" by Theorem (2.5) so that
B = f(A) for some /GL°°(μ). Also, by (2.5) there is an operator a
from the trace class operators SΓ on L2(μ) into itself such that
(δB ISΓ) = a(δA 12Γ) = (δA 13T)a. If t(z,w) is the kernel of a trace class
operator on L2(μ) then (z - w)(at)(z, w) = (/(z)- f(w))t(z, w) almost
everywhere μ x μ. Now if μ has mass at z0 and ξ0 is the corresponding
normalized characteristic function, then (at)(z0,z0) = (ξo®£o,at) =
(« *(£o ® £o), 0 = 0 because the range of a * is contained in the range of
1 - P, where P is the projection of 33($?) onto {A}' used to construct a,
and therefore 0 = Pa *(ξo <g)ξo) = (x *(P(ξo Θ ξo)) = a *(ξ0(g) £0). Thus
(αOfe w) = (/(z)-/(w))(z - w)"!ί(z, w) (taken as 0 when z = w) and
this holds μ x μ almost everywhere. To complete the proof we appeal
to Theorem (4.1) below which implies that the multiplier condition on /
just established forces / to be equal μ, a.e. to a continuous function on
σ(A).

Conversely, if at is a trace class kernel for each trace class kernel t
then t —> at defines a bounded operator on the trace class by the closed
graph theorem and a(δA)t(z, w) = (/(z)-/(w))ί(z, w) = δf(A)t(z, w) for
z φ w by definition of a and for z = w since both sides of the equation
are 0. Thus δB = δΛα* and &t{δB)C0l(δA).

Consider now the general case. If 0l(δB)C0i(δA) then there is a
reducing subspace % of ffl on which A is unitarily equivalent to the
operator h (z) —» zh (z) on L2(μ). The subspace 3ίf0 reduces B and since
δB(2ί?o)CδΛ(^o) t h e first P a r t of t h e argument shows that B=f(A)
where / has the asserted properties.

Conversely if B = f(A) with / of the given form then ^(δβjC
^(δΛ o) where A0,B0 are the restrictions of A,B to Xo. Corollary (3.5)
then implies that $ί(δB) C&ί(δA) where A, B are the direct sum of
countably many copies of Ao and Bo respectively. Since A is the
restriction of A to a reducing subspace it follows that 01 (δB) C 91 (δA).

COROLLARY (3.7). Let A be a normal operator on %C and let
B E9S(X). Then 0ί{δB)C0ί(δA) if and only if there is a constant c
such that \\δB(X)\\^c\\δA(X)\\ for all X<

Proof. Suppose || δβ (X) \\^c\\ δA (X) || for all X. Then BE {A}"
so that B = f(A) for some bounded Borel function /. Also if T E 3~
then δB(T) - δA(S) for some S G J by (1.4) and, in the notation of (3.6),
at is the kernel of the trace class operator Si satisfying
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for all KeX, i.e., S, = S-(P*(S)|3Γ). Thus 9KδB)C9l(δA). The
converse is clear from (2.6).

4. We now consider the problem of determining the elements of
C{σ{A)) that satisfy the multiplier condition of Theorem (3.6). It
seems that, just as there is no satisfactory way of recognizing which
periodic functions have absolutely convergent Fourier series, so no
easy description of the class of functions in Theorem (3.6) exists.

THEOREM (4.1). Let μ be a finite measure on C of compact
support and let f G L°°(μ) satisfy the criterion of Theorem (3.6). Then f
is equal a.e. μ to a continuous function which satisfies a Lipschitz
condition and is differentiable relative to σ{A) at each nonisolated point
ofσ(A).

Proof Let Λ(z, w) = (f(z)-f(w))(z - w)~ι for z/ w and Λ(z, z) =
0. The function Λ is μ -measurable and if ξ, η are unit vectors in L\μ)
then the trace class norm of the operator with kernel Λ(z, w)ξ(z)η(w) is
no less than its Hilbert-Schmidt norm

Uf\A(z,w)\2\ξ(z)\2\η(w)\2dμ(z)dμ(w)γ

for which the upper bound as ξ, η vary is K = ess sup |Λ(z, w)\. Thus
Λ G L\μ x μ) and | f(z) - f(w)\ ^ K \z - w | for almosf all (z, w). Put

E ={z GSupp(μ): \f(z)-f(w)\ ^ K \z - w | for almost all

wGSupp(μ)}.

The complement of E is of measure 0. If zί9z2EE we have

except for values of w in a set of measure 0. If μ ({zj) = 0 then we can
find a sequence of values of w outside this exceptional set converging to
z, so | / ( z , ) - / ( z 2 ) | ^ K | z , - z 2 | . If μ({z,})^0 we get the same ine-
quality from the fact that z2 belongs to E. As E is dense in Supp(μ)
and / is uniformly continuous on E there is a continuous function g on
Supp(μ) equal to / on E, that is, equal to / a.e. By continuity
\g(z)-g(w)\^K \z - w\ for z, w in σ(A).

Suppose now that λ is a nonisolated point of σ{A) and that g is not
differentiable at λ. Then, as g is a Lipschitz function, we can find a
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sequence {λ, } ( - oo < ϊ < oo) of distinct points in σ(A) - {λ} with A, —• λ
as i -» ± oo and

\im

Replacing g by h(z) = (g(z)-pz)(q - p)~ι if necessary we can assume
that p = 0, q = 1 since g satisfies the criterion of Theorem (3.6) if and
only if h does.

If

= ί(g(λi)-g(λj))(λi-λj)-] for iV/
γ " 1 0 for ί = j

then (γo ) is an Hadamard multiplier of $ (/2(Z)) by (3.3) and (3.4). This
implies that the matrix (β/7) where βi7 = y-u for i,j g 1 is an //-multiplier
of ^(/2(Z+)). Indeed if {<pt: -oo</<oo} is an orthonormal basis of
/2(Z) and {ξi: i '^ 1} is an orthonormal basis of /2(Z+) then the operator Γ'
on S3(/2(Z+)) corresponding to //-multiplication by (βί7) is given by
Γ(X) = V*Γ(VXU*)U where Γ is the operator on 38(/2(Z+)) associated
with (γn) and U, V are the isometries from /2(Z+) into /2(Z) defined by
l/6=φ. , V$=φ_ t f o r / δ l .

Fix a positive integer n. Since

lim lim ft, = 0, lim lim β/y = 1

we can find one-to-one maps π, σ from Z+ into itself such that

\ β ^ i ) M i ) - l \ < n - ] for i > / δ l

10^0)1 o r 1 for l^i^/.

(See [8; p. 694].) Since (β^o.σo)) i s clearly an //-multiplier with
multiplier norm at most equal to the multiplier norm of the matrix (jf̂ -),
and since n can be taken arbitrarily large here, it follows from (3) of
Lemma (3.2) that (α0) is a Hadamard multiplier where

_ ί 1 for i > j
10 for ί ^ Γ

This contradicts (4) of Lemma (3.2) and completes the proof.
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COROLLARY (4.2). Suppose that f is continuous on the closed unit
disk D and that £%(δ/(Λ))C£%(δΛ) for some normal operator A with
σ{A) = D. Then f is analytic at each point of D. In fact, f and its
derivative f belong to if00,/ satisfies the Lipschitz condition \f(eia)-
f(eiβ)\ i K \a - β I on the unit circle, and the Taylor series of f is
absolutely convergent on D.

Proof That / and /' belong to H00 is clear from the theorem. The
other assertions about / are consequence of these, a theorem of Hardy
aad Littlewood, and Hardy's inequality. See [6; pp. 48, 78].

There is a natural anti-involution τ->τ* on 55 ($(20) defined by
τ*(X) = τ(X*)* for X e 38(30. With respect to this involution it is
easy to check that δΛ and (δΛ)* commute if and only if A is normal so
that the term "normal derivation" is unambiguous. It is known [2] that
normal derivations on 3δ($?) exhibit some of the properties of normal
operators on 3ίf, for example the orthogonality of range and kernel
mentioned earlier. But Theorem (4.1) indicates that whereas a normal
operator on $f and its adjoint always have the same range, this property
fails in general for normal derivations, even those induced by diagonal
operators, because z —»z is not analytic. (However, the ranges of δA

and δΛ* have the same norm closure. In fact, $fc(δB)CSfc(δAy for any B
in the C*-algebra generated by the normal operator A.) This fact can
be expressed in a slightly different way to provide a negative answer to a
question raised in a conversation with the authors of [3].

COROLLARY (4.3). There exist a diagonal operator A (with distinct
eigenvalues) and a sequence {Xn} in <3l(3€) such that \\AXn - XnA ||—>0
but | |AΛΓ*-X*A||>1 for each n = l,2, .

Proof. There exists a diagonal operator A with 0ϊ(δΛ*) not
contained in 2fc(δA) by the preceding remarks. For such a choice of A
Corollary (3.7) implies that for each n there is an operator Zn with
|| δΛ * (Zn) II > n || δA (Zn) ||. Then δΛ (Zn) ̂  0 by the Fuglede theorem so
the choice Xn = Zn/n \\δΛ(Zn)\\ satisfies the required conditions.

REMARK. The sequence {Xn} cannot be chosen to be uniformly
bounded however [R. L. Moore, private communication.]

In [3] a counterexample is constructed to show that if A is a normal
operator on $f and P is a projection in {A}", then in general one cannot
find a positive number δ corresponding to each e > 0 so that the
conditions X E S& (%), \\ AX - XA || < δ imply || PX - XP \\ < e. Or e-
quivalently, by (3.7), the condition P G {A}" is not sufficient for 3$(δP) C
έ%(δΛ). Theorem (4.1) helps to explain this situation more fully:
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COROLLARY (4.4). Let A be a normal operator on $f with spectral
measure E( ) and let P be a projection on X. Then &(8P)C0l(8A) if
and only if there are disjoint closed sets Δo, Δi with Δo U Δi = σ(A) and
P = £(Δ,).

Proof If 9i{8P)CSk{8A) then by (4.1) there is a continuous
function / on σ(A) with P = f(A). The spectral mapping * theorem
implies that σ{A) is the union of the disjoint closed sets Δo = /"'(0) and
Δ, = /-!(1). Also P = f(A) = Jf(λ)dEk = E(Δ,).

Conversely if P = f?(Δi) where Δo, Δj are disjoint closed sets whose
union is the spectrum of A then by the Riesz-Dunford functional
calculus P - f(A) for some function / that is analytic in a neighborhood
of σ(A). Hence 94(δP) = &(δ/(A))C94(δΛ) by (3.6) or by the result of
Weber [20] mentioned in the Introduction.

The sufficiency of the condition on P may also be established
directly by considering the decomposition 3€ = 2?(Δ0)3ίf 0f?(Δ,)$ί and
appealing to the theorem of Lumer and Rosenblum [11] on the solvabil-
ity of the operator equations AιZ-ZA0 = X9 A0Y-YAX= W for
operators AQ,A\ with disjoint spectra.

A theorem of Anderson [1] shows that if N is a normal operator
then 0l(8N)C U 2fc(8A) where the union is taken over the set of all self
adjoint operators A in £$($?). That is, any commutator of the form
NX-XN can also be written AY-YA for some A = A* and
YεS8(Sif). Theorem (4.1) implies that one cannot improve this to:
gi{8N)C<3l{8A) for some A = A*. Indeed if σ(N) has infinite one-
dimensional Hausdorff measure then we cannot have σ(N) = /(σ(A)),
and hence cannot have N - /(A), for any self-adjoint A and Lipschitz

/.
Theorem (4.1) also permits a somewhat simpler proof of the

theorem of Anderson and Foias [1] which determines when the range of
a normal derivation is closed.

COROLLARY (4.5). Let Abe a normal operator on $f. Then 9h (δΛ)
is norm closed in 8ft (2£) if and only if the spectrum of A is finite.

Proof Suppose that 34 (δΛ) is norm closed in 9i(3€). If P is a
norm 1 projection of 35 ($ί) onto the commutant of A then there is a
constant c > 0 such that | |δ Λ (X) | |^ c \\X\\ for all X e » ( l - P ) . For
B E {A}" and X G &(%) we have P(BX -XB) = BP(X) - P(X)B = 0
and so 94(δB)C94(l-P). Hence

c || δB ( X ) || ̂  || δ Λ ( δ B ( X ) ) II = II δB (δA ( X ) ) II έ II δ B IIII8A ( X ) II.
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Therefore &ί(δB)Cίk{δA) by (3.7) so that B = f(Λ) for some
continuous function / by (3.6). Thus {A}'\ the von Neumann algebra
generated by A, coincides with the C*-algebra generated by A. It
follows that σ(A) is extremally disconnected and therefore is a finite
subset of C.

Conversely if σ(A) is finite then A is a linear combination of
orthogonal projections and this easily implies that δΛ has closed range.

REMARK. With a different argument one can show that if A is
normal with infinite spectrum then 2ft(δA) + {A}r is not norm dense in
38(30. (See [2].) Hence 0t(δA)£9t(l -P) for any projection P of
norm 1 from 38(30 onto {A}'.

We conclude this section with an example that confirms a remark of
J. Taylor [18; p. 29].

EXAMPLE (4.6). Let A be the operator of multiplication by the
sequence λ, = /"I(iV0), λ0 = 0 in /2(Z), and let / be the Lipschitz
function f(χ) = χ+ = \(χ + |JC|). Then 9l{δίiA))(tS/i{δA). That is, there
does not exist a constant c such that \\f(A)X - Xf(A)\\^c\\AX - XA ||
for all operators X on /2(Z).

This follows at once from (4.1) since / is not differentiate at
x = 0. The result can also be proved directly by observing that

„ = ί ( / ( I ) / ( i ) ) ( ί λ / ) - 1 if IVJ
Ύii l O if i = j

cannot be an //-multiplier of 35(/2(Z)) because this would imply that the
matrix (JO'+jT1) is an //-multiplier of 39(/2(Z+)) which is impossible
because of the relations

lim /(/+/)"• = 1, lim j(ί + j)"1 = 0.

(See the proof of (4.1).)

5. We conclude by giving a condition which is sufficient for / to
satisfy the criterion of Theorem (3.6) for self-adjoint operators.

THEOREM (5.1). Let f be a complex valued function on R with
continuous third derivative. If A is a self-adjoint operator on X then

Proof. By (3.5) it is sufficient to prove the theorem for the case in
which A is the operator f(x)^>x - f(x) on L\I) where / is a compact
subinterval of R. Define
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x = y .

Then Λ is a C(2) function on R x R and, without altering Λ in a
neighborhood of σ{A) x σ(Λ) we can assume that Λ is doubly periodic

with periods p,q say. The Fourier coefficients λkl =p~ιq~ι \
Jo Jo

Λ(JC, y)exp2ττi(/cjcp"1 + lyqι)dxdy satisfy {k2λkl} E /2(Z2), {/%} G /2(Z2)
because d2A/dx2 and <92Λ/<9y2 belong to V. Since {(fc2 + Z2)'1}E /2(Z2) it
follows that {λkl}El\Z2).

Now if t (x, y) is the kernel of a trace class operator T on L2(/) then
(akιt)(x,y) = t(x,y)exp(-2τri(kxp~ι + lyq"*)) is the kernel of the
operator UTV where U and V are unitary so au is an operator of norm
1 in ί$(ίf). Hence a = Σwλwαw is an operator in £$(50 and this is
t —>Λf because A = Σλw exp(- 2πi(kxp~ι + /yq"1)). Thus At is a trace
class kernel whenever ί is and it follows as in the proof of Theorem (3.6)
that 9t(δfiA))C9t(δA).

Note that now that we know <3i(δnA)) C$t(δA) Theorem (3.6) shows
that / also satisfies the multiplier condition of that theorem. That is,
the function Λ(z, w), taken to be 0 when z — w, rather than /'(z), also
multiplies trace class kernels.
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A DYNAMICAL CRITERION FOR
CONJUGATE POINTS

KURT KREITH

This paper presents a technique for establishing the ex-
istence of conjugate points for real fourth order differential
equations defined on an interval [α,0 0). The point β > a is
conjugate to a if there exists a nontrivial solution y(x) of the
equation which satisfies

An important feature of this technique is that it is not limited to
equations of selfadjoint type and that the general theory applies
to nonlinear equations as well.

For the special equation

(1.1) l[y] = (P2(t)y")" + Po(t)y=O (p2(O>0)

criteria for the existence of conjugate points have been established by
Leigh ton and Nehari [4] under the additional assumption po(t)<
0. Subsequent studies (see [6]) have e.xtended parts of this theory to
the general real selfadjoint equation

(1.2) l[y] ^(P2(t)y'T-(Pi(t)yΎ + Po(t)y = 0

or the general real equation

(1.3) l[y] s (p2(t)y"-qM)yΎ-(Pι(t)y' - <?i(f)y)' + Po(t)y = 0.

replacing hypotheses on the coefficients with hypotheses specifying the
nonexistence of solutions with certain orders of zeros. In this way,
properties of solutions of (1.1), which were established in [4], became
hypotheses which allowed the consideration of more general equations.

The present paper follows a similar pattern. In §2, we consider a
second order system which can be used to represent equations of the
form (1.2) or (1.3) and allows a simple dynamical interpretation in terms
of a particle of unit mass in a force field. By making a number of
qualitative assumptions regarding this force field which are motivated
by (1.1), we demonstrate the existence of conjugate points for such
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systems. In §3, we establish conditions on the coefficients of the
differential system which assure that these qualitative assumptions are
satisfied; these conditions on the coefficients of the system are trans-
lated to conditions on the coefficients of the related fourth order
equation in §4.

2. A related second order system. In this section we
assume that the fourth order equation in question is represented by the
second order system

(2.1) y"=

whose coefficients are continuous in [α,o°). It has been shown by
Whyburn [7] that the self adjoint fourth order equation (1.2) can be
represented in the form (2.1) with b(t)= Hp2(t)>0 and a(t) =
d{t). The author [1] has shown that the general real linear fourth order
equation (1.3) can also be reduced to the form (2.1), with the nonselfad-
jointness reflected by the inequality of a (t) and d(t). In particular, the
equation (1.1) can be represented in the form (2.1) with b(t) = l/p2(t),
c ( 0 = -Po(0, and a(t) = d(t) = 0.

It will be helpful to interpret (2.1) as representing the motion of a
particle of unit mass in the (JC, y)-plane with t denoting time. Our
objective is to impose conditions on the force field

F(t) = (Fx(ί), Fy(t)) = (c(ί)y + d(t)x, a(t)y + b(t)x)

which assure the existence of a conjugate point — i.e., the existence of a
trajectory C in the (JC, y)-plane which is tangent to the x-axis at t = a
and t = β.

This problem can be normalized by considering initial conditions of
the form

Physically this corresponds to firing a particle of unit mass from
(x, y) = (l, 0) tangent to the x-axis with velocity v0 in the positive x
direction. The resulting one-parameter family of trajectories will be
denoted by C(v0). We also denote by I, II, III, and IV the open
quadrants of the (JC, y)- plane.

Motivated by the system representation of (1.1), we consider the
following conditions on the force field F:
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(A) If for some ίo = α the quantities y(t0), y'(ίo), x(h) and x'(t0)
are all nonnegative (but not all zero), then y(t), y'(t),x(t) and x' t) are
all positive for t > tQ.

(B) No trajectory C(v0) can remain in II for arbitrarily large
values of t.

(C) No trajectory in I satisfies
(i) JC(O l*o^O and y(t) f oo as ί-*<*>,•

or
(ii) y(Olyo^O and JC(OT°° as f->oo,

nor can any trajectory in I tend to a finite limit point (xθ9 y<>) in the
closure of / as t -»oo.

(D) No trajectory can go directly from II to I to II.

LEMMA 2.1. There exist values of vQ such that C(vQ) enters the
closed lower half plane

Proof. By [1] the system (2.1) represents a fourth order linear
differential equation of the form l[y] = 0. If {y, (f)} (i = 1, ,4) rep-
resents a fundamental set of solutions, one can find a linear combination
y(t) = Σf=i cyXt) having three preassigned zeros. In particular for any
β > a, there exists a solution y(t) satisfying y(α) = y'(α) = y(j3) = 0.

THEOREM 2.2. If conditions (A)-(D) are satisfied, then there
exists a nontrivial solution y(t),x(t) of (2.1) satisfying y(a) = y'(α) =
0=y(β) = y'(β) fora <β<cc.

Proof. Solutions of (2.1) depend continuously on the initial data,
and for the normalized problem under consideration the only initial
parameter is v0. It follows that in any compact interval [α, γ], C(v0)
can be approximated uniformly by trajectories of the form C(v0 + e) for
16 I sufficiently small. Consider first

V, = {vo\C(co) enters III UIV}.

By Lemma 2.1 there are trajectories C(v0) which are either tangent to
the x-axis or enter the lower half plane, and we may therefore assume
that V, is not empty. Furthermore, (A) implies that if υ0 g 0, then C(v0)
is "trapped" in I for all t > α, so that Vx is also bounded above by
zero. Finally the continuous dependence of C{vQ) on v0 implies that V,
is an open subset of R. Consider next

V2 = {VQ\C(VQ) remains in the open upper half plane for all t >a}.
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By (A), V2 contains [0,o°) and is therefore not empty. We shall show
that V2 is also open. Since by (B), C(v0) cannot remain in II for all
t > γ, and by (D) no trajectory can go from II to I to II, we may restrict
our attention to trajectories C(v0) for which there exists γ > a such that
C(v0) remains in / for t > γ. Condition (C) rules out limit points in / as
well as asymptotic trajectories for which x'(t) and y'(t) have opposite
signs for all t > γ, so that every trajectory which remains in / eventually
has positive values of y(t)9y'(t),x(t)9 and x'(t). Because of the
continuous dependence of C(u0)

 o n the parameter ι?0, it follows that
neighboring trajectories will also eventually have positive values of
y(0, y'(t),x(t)9 and x'(t) and that V2 is an open subset of R.

Consider now ΰ = sup Vx. Since ϋ belongs to neither VΊ nor V29 it
follows that C{ϋ) lies in / U IF but not in / U // — i.e., C{ϋ) must be
tangent to the x- axis for some x = β > a. This completes the proof.

3. Criteria for conjugate points. We now consider the
task of imposing conditions on the system (2.1) such that properties
(A) - (D) are satisfied. A basic assumption which will be made through-
out is that the coefficients of (2.1) are positive in [α,«). The reason for
this assumption is the following.

THEOREM. 3.1. If the coefficients of (2.1) are positive in [α,»), then
(A) is satisfied.

Proof This follows readily from the integral representation

f Γ [a(τ)y(τ) + b(τ)x(τ)]dτds

f Γ [c(τ)y(τ) + d(τ)x(τ)]dτds
to Jto

for solutions of (2.1).
In order to establish (B), we introduce a vector representation

(3.1) Y" = A(t)Y

for (2.1) where

-(d{t) C{t))
" U ( 0 α(ί)/
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Also H will denote a constant vector

and inner products will be denoted by ( , •) so that

etc.

THEOREM 3.2. / / c ( ί ) δ a(t)>0 and b(t)^ d(t)>0 in [α,«>) and
the equation

(3.2) un + πάn{b(t)-d(t), c(t)-a(t)}u = 0

is oscillatory at t -&>, then (B) is satisfied.

Proof. If y is a nonzero element in // then x < 0, y > 0 and

(fί, y) = y - x > 0 .

Also

~(H,AΫ) = (b - d)(-x) + (c - a)y ̂ nάn{b - d, c-α}(y-x)δθ.

Therefore

(3.3) -%Aγ) ~ m i n { b -d>c~a}

for all Y e /I
Define m(ί) = min{ft(ί)~d(O, c(i)-«(O} and let ί , < ί 2 < be

the zeros of an oscillatory solution of (3.2) where tk f α>. If Y(t)
remains in II for all t g γ , then (H, Y(t))>0 in [γ,00) and a direct
calculation yields

dt[UU u (H, Y)\ m u U (H, Y)+Γ U(H,Y)\

If 4+i >, tk ^ γ we have
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with equality if and only if u (t) = </f, Y(t)"> in (tk, tk+ι). Since (H, Y(t))
is assumed positive in [γ, oo) the above inequality must be strict. But
this contradicts (3.3) and completes the proof.

Condition (C) requires that we preclude certain asymptotic paths
and paths of finite length in /.

THEOREM 3.3. If

Γ oo /*oo

(3.4) tb(t)dt=*> and I tc{t)dt=™

then condition (C) is satisfied.

Proof. Consider first an asymptotic trajectory in / for which
y(Olyo = 0 and jc(ί)T°° a s f-*00- Since J C " > 0 in I there exist
positive constants k and γ such that x(t)^kt for t ^ γ. Since
y"^b(t)x(t) in / we have

Γ
Jt

tb(t)dt.
to

Thus the first part of (3.4) is inconsistent with such asymptotic trajec-
tories, and the second part of (3.4) similarly precludes asymptotic
trajectories for which x(t) j J C 0 S 0 and y(ί) f » as ί —>».

To deal with paths of finite length which might terminate in /, we
note that x" > 0 and y" > 0 at every point of I except (0, 0). Thus the
origin is the only equilibrium point in I and the only point at which finite
paths might terminate.

There are two cases to consider in completing the proof:
(i) The trajectory never leaves L In this case y" > 0 for all t > a

and y(ί) is bounded away from zero in [γ,«) for every γ > a.
(ii) The trajectory leaves I and re-enters. In this case xf or y' is

positive at the time the trajectory crosses into / and the positivity of x"
and y" precludes the possibility of the trajectory approaching the origin.

Finally we note that a very similar argument to that used above
establishes (D). If a trajectory enters I from // at time ί0, then
x'(to) > 0 when C(v0) enters /. Since x" > 0 in I, Jt'(ί) is positive as long
as C(v0) remains in I and therefore C(v0) cannot return directly to //
from /.

Collecting all the conditions imposed above on the coefficients of
(2.1) we can state our principal result.
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THEOREM 3.4. If the coefficients of (2.1) satisfy
(i)
(ii)

in [α,0 0) and
(Hi) u" + min{b(O - d(t),c(t)-a(t)}u =0 is oscillatory at t = »,

/* 00 /" 00

(iv) I ί b ( ί ) Λ = l tc(t)dt=™,

then there exists a nontrivial solution y(t)yx(t) of (2.1) satisfying
y(a) = y'{a) = 0 = y(β) = y;(jS) /or .some β > α.

4. Application to fourth order equations. In [1] the
author shows how to reduce (1.3) to the form

(4.1) l[y] s (p 2(ί)yΎ-(Pi(Oy')' + qx{t)y' + po(ί)y = o

and that there is a one-to-one correspondence between equations of the
form (4.1) with p2(t) > 0 and systems of the form (2.1) with sufficiently
regular coefficients and b(t)>0. This correspondence is obtained by
defining

Λ . ( f ) = 1 ..»,., ait)

and setting

P . - I <7i
a=—r^

2p2

Pi

2p2
*

p"-q\
2



130 KURT KREITH

These equations can be solved for p2,P\,Po, and q, to yield

a + d
Pι = ~b~

d-a\
b

ad

This transformation makes it routine to apply Theorem 3.4 to the
equation (4.1), though the transformation required to represent (1.3) in
the form (4.1) makes the general application more involved.

It is of interest to examine the hypotheses of Theorem 3.4 for the
special case a(t) = 0 and d(t) = 0 where our considerations reduce to
the fourth order equation

(4.2) (P2(t)yT + Po(ί)y = 0 (p0(O<0)

considered by Leighton and Nehari in Part 1 of [4]. Condition (iii) of
Theorem 3.4 is then satisfied if

(4.3) w" + m i n { ^ , -p o (ί )}n=O

is oscillatory at <». By the Sturm comparison theorem, (4.3) oscillatory
implies that both u" + (\lp2(t))u = 0 and u"-po(t)u = 0 are oscillatory
at oo, but one would not expect the converse to be true without some
further hypotheses regarding the asymptotic behavior of p2(t) and
Po(t). By a well known oscillation criterion of Kneser, (4.3) is oscillat-
ory if

(4.4) lim mf |V min { ^ , - P o(ί)}] > \

and this gives some measure of allowable rates of decay for l/p2(0 and

Condition (iv) of Theorem 3.4 becomes
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While these conditions also put limits on the rate of decay of l/p2(O and
p0(0> they are not sufficient to assure the oscillatory behavior of
u"+llp2(t)u = 0 and u"-po(t)u=O. For example, w"+l/4f2 is

nonoscillatory at <» but yet I ί/4tdt = α>.

A special case of Theorem 6.2 of [4] assures the existence of a
conjugate point for any a < °° if

(4.5) liminf ί 2 — ^ - > 7 and liminf * 2 (-Po(0)>7
t-+°° P2\t) 4 '—°° 4

while it precludes the existence of conjugate points for sufficiently large
a if

lim sup t2 —γ— < -7 and lim sup t \ - p0(O) < 7
ί->00 P2\t) 4 f-̂ QO 4

While (4.4) is slightly stronger than (4.5), the two conditions are roughly
equivalent, and this comparison therefore suggests that the results of
Theorem 3.4 are reasonably sharp even in this special case.

One is tempted to conjecture that the oscillatory behavior of both

=0 and u"-po(t)u=O

should insure the existence of conjugate points for (4.2) for all a < ».

5. Concluding remarks. The techniques presented here
are not quite as sensitive as those of [4] in the special case of equation
(4.2). Their principal virtue is that they apply to non self adjoint
equations such as (4.1) and (1.3).

Several authors have used comparison theorems to establish lower
bounds for conjugate points of nonselfadjoint equations of order 2n,
and have thereby also established criteria for this disconjugacy (see for
instance [5], [6], and [7]). However, I know of no results which
establish upper bounds in the nonselfadjoint case if n > 1.

Theorem 3.4 at least gives criteria for the existence of a conjugate
point in the nonselfadjoint case. The question of how to obtain
specific upper bounds for such conjugate points unfortunately remains
unanswered, but it is hoped that these techniques may also prove useful
in this connection.
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BAIRE SPACES AND HYPERSPACES

ROBERT A. M C C O Y

This paper examines the question as to when the hyperspace
of a Baire space is a Baire space, and related questions. An
answer is given in terms of a certain product space's being a
Baire space.

A hyperspace of a space X is the space of closed subsets of X
under a natural topology. In this paper we investigate what happens to
Baire spaces in the formation of hyperspaces. The first section is
devoted to a discussion of the basic concepts. In the second section
some characterizations of Baire spaces are given which will be useful
while working with hyperspaces, the study of which occurs in the third
section. In particular, we shall be primarily concerned with two basic
questions. If X is a Baire space, when is the hyperspace of X a Baire
space? If the hyperspace of X is a Baire space, when is X a Baire
space? We also look briefly at Baire spaces in the strong sense and
pseudo-complete spaces.

1. Basic definitions and properties. A Baire space is a
space in which every countable intersection of dense open subsets is
dense. It can also be defined as a space such that every nonempty
open subspace is of second category. The usual definition of a space
of first category is one which can be written as a countable union of
nowhere dense subsets (i.e., subsets whose closures have no interior
points). A space is of second category then if it is not of first
category. Also second category spaces can be characterized as spaces
in which every countable intersection of dense open subsets is
nonempty.

We now Hst a few of the properties which the Baire space concept
enjoys. Of course the Baire Category Theorem gives a sufficient
condition for a space to be a Baire space. That is, every complete
metric space is a Baire space. Also every locally compact Hausdorff
space is a Baire space. Clearly every nonempty open subspace of a
Baire space is a Baire space. In fact a space is a Baire space if and only
if every point has a neighborhood which is a Baire space. A useful
property of Baire spaces is that every space which contains a dense
Baire subspace is a Baire space.

The question as to which products of Baire spaces are Baire spaces
has been a difficult one. There have been very few different examples
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discovered of Baire spaces whose product with itself is not a Baire
space (see [9] and [6]). In §3, we shall be interested in having Xω be a
Baire space. This then will be the case for most known Baire spaces
X. In fact it will always be true that Xω is a Baire space if X is a Baire
space having a countable base. On the otherhand if Xω is a Baire
space, then X will always be a Baire space, since an open continuous
image of a Baire space is a Baire space. A thorough investigation of
the properties of Baire spaces can be found in [5].

When working with hyperspaces, we shall use the notation and
terminology in [7]. Briefly, if X is a topological space with topology
3Γ, 2X denotes the set of all nonempty closed subsets of X and ̂ (X)
denotes the set of all nonempty compact subsets of X If Ui9 , Un

are subsets of X, then

<£/„.. , and

A n Ui ̂  0 for each f = 1, , n\ .

The finite topology (or Vietoris topology) on 2X, denoted by 2*, is the
topology generated by the base

The topology S'c on %{X) is the topology generated by the base
$ c = {<!/„ , Un) Π <g(X) I Ui G F9 i = 1, , n}. It is easy to see that
<G(X) is a dense subspace of 2X for Γrspaces X

If X is a Γ r space, then the natural map from X into 2X which takes
each x onto the element {x} of 2* is a closed embedding. Also if X is a
7V space, so is 2*. An investigation of the properties of hyperspaces
can be found in [7]. Two such very basic properties which we shall
implicityly use are the following.

<l/1, ,t/n>C<V1, ,Vm> if and only if UΓ-i UtC U?>, Vi

and for each V} there exists a ty such that ULCVr, and
C\{(UU , Un)) = (Uu , ί/n> (where C1U and C7 both de-
note the closure of U).

We shall occasionally be concerned with quasi-regular spaces, that
is, spaces such that every nonempty open set contains a closed subset
with nonempty interior. It is not difficult to see that if X is quasi-
regular, then 2X and ̂ (X) are quasi-regular.
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2. Characterizations of Baire spaces. In §3, we shall
need ways of looking at Baire spaces other than our definition. In this
section, we establish the needed characterizations.

Let X be an arbitrary topological space. By a pseudo-base for X
is meant a collection of nonempty open subsets of X such that each
nonempty open subset of X contains a member of this collection.

Let 5δ be a pseudo-base for X, Define

S(X, 38) = {/: 3δ -> 9t \f(U) C U for every U G 3δ}, and

RS(X,®) = {f: 95-^28 \f(U)CU for every l/e&}.

If U E m and /, g e 5(X, B) or Jί5(X, 38), define

[L7,/,g], = g(l/), and for i > 1,

Γ f ί f , = {/([[/,/, gL-i), if i is even,
L^,7,^J. l ' . ' r r / ^ g ] ^ if/is odd.

The following theorem can be found in [5], and similar theorems
can be found in [6] and [8]

THEOREM 2.1. The following are equivalent.
(i) X is a Baire space.
(ii) There exists a pseudo-base 5δ for X such that for every U G 5δ

and f G S(X, $ ) , f/im? ex/sίs α g G 5(X, Sδ) swc/i that

(iii) For βi ̂ ry pseudo-base Sδ /or X and ei ery t7 G $β and f G
δ), there exists a g G5(X,Sδ) such that ΠΓ=1 [ί/,/,g]( ̂ 0 .

There is an analogous result for spaces of second category.

THEOREM 2.2. 77ιe following are equivalent.
(i) X /s o/ second category.
(ii) 77zere ex/sίs α pseudo-base Sδ /or X ,swc/ι that for every

f G 5(X, Sδ), ίΛ^r^ ejc/5ί5 α [7 G Sδ and g G S(X, Sδ)

(iii) For every pseudo-base $β for X and every f G S(X, Sδ),
[/GSδ and gES(X^) such that Π7-ι[U9f,g]ιj£0.

The characterization which we actually use in the next section is
given in the following theorem.
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THEOREM 2.3. Let X be a quasi-regular space, and let 38 be a
pseudo-base for X. Then the following are equivalent.

(i) X is a Baire space.
(ii) For every UEB and f E S(X,S3), there exists g G #S(X, S3)

such that nr-i[l/,/,g]i^0.
(iii) For every UE@ and /Gl?S(X, S3), there exists g E

RS(X93S) such that Π7=, [t/,/,g],^0.
(iv) For every U E 3$ and f E RS(X, S3), there exists g E S(X,S3)

such that n7-ΛU,f,glέ0.

Proof For every t/efl5, /,?eS(X,») with f(U)?U and
g(U)CU, define /; g G £S(X, S3) as follows. Since X is quasi-regular,
for every V 6 « , there exists /(V)eB such that ]{y)Cf(V). If
V = /([J7, JUk-,) for some Λ = 1,2, , let g(V) = [£/,/,g]2n+1; if V =
17, let g(\Q = g(V); and otherwise let g(V) be an element of $ such
thatΛ g(V)CV. Now observe that [t/,/,g], = g(U) = g(U) -
[t/,/,g],. Suppose that [t/,/,gk-i = [l/,/,gk-i for every k =
l, ;,π. Then [ϋJ,ίL, = ί(ffflίJ,ί]taJ = ίpl/,/,gU)«
[[/,/,g]2π+1. Therefore by induction [L/,/,g]2n_, = [l/,/,^]2«-i for every
n.

To see that (i) imples (ii), suppose that (ii) does not hold. Then
there exists U E 53 and / G S(X, S3) such that for every g G #S(X, S3),
nΐ=ί[UJ,gl = 0 . Let g be an arbitrary element of S(X,$l We
may assume without loss of generality that f(U)^U and g(U)C
U. Now nr=,[l/,/,gL = nΓ=i[t/,/,gL = 0 , so that X cannot be a
Baire space by Theorem 2.1.

Clearly (ii) implies (iii) and (iii) implies (iv), so that it remains to
show that (iv) implies (i). Suppose X is not a Baire space. Then there
exists ί / ε « and /G5(X,S8) such that for every gG5(X, S3),
Π Γ-i [U, /, g]i = 0 . Let g be an arbitrary element of 5(X, S3). Again
we may assume without loss of generality that f(U)^U and g(U)C
U. Then n r = , [ U , / , g ] i = n r = i [ ί / , / J ] ί = 0 , which establishes the
negation of statement (iv) by Theorem 2.1 again.

Just as Theorem 2.1 has Theorem 2.2 as an analog for spaces of
second category, Theorem 2.3 has its analog for spaces of second
category, which we shall not state since it can easily be induced.

3. Applications to hyperspaces. First we establish that
for a Γrspace X, if the hyperspace of X is a Baire space, then X must
be a Baire space. Since the following two theorems have essentially
the same proofs, we only give the proof for the second theorem.
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THEOREM 3.1. If^(X) is a Baire space (space of second category,
respectively), then X is a Baire space (space of second category,
respectively).

THEOREM 3.2. IfXis a Trspace and 2X is a Baire space (space of
second category, respectively), then X is a Baire space (space of second
category, respectively).

Proof. Suppose that X is not a Baire space. Then there exists an
open U in X and a sequence {C/J of dense open subsets of X such that
U n ( n Γ-i Ut) = 0 . Let G = <[/>, and for each i, let G, = (l//>. To
see that each G, is dense in 2X, let (Vι, — 9Vn) be an element of
mx. Now each VJΠί/,^0 for / = 1, ,n. So let x, EVjΓiUi for
each such j , and let A ={JC,, ,jcn}. Since X is a ΓΓspace, A E
2X. Also A is easily seen to be in G,? Π (Vx, , Vn), so that each G, is
dense in 2X. Finally, it is clear that G Π (Π 7=i G, ) = 0 , so that 2* could
not be a Baire space.

COROLLARY 3.3. IfXis a first category space, then so is ̂ (X). If
in addition X is a Trspace, then 2X is a first category Trspace.

The Γj-space hypothesis in Theorem 3.2 cannot be omitted since
the space of natural numbers, N, with the topology consisting of right
rays is a space of first category, while 2N has the indiscrete topology, so
is a Baire space. Note that this is also an example of a space X such
that 2X is quasi-regular, but X is not quasi-regular.

Before examining the converses of Theorem 3.1 and 3.2, we wish to
introduce a new space. Let Xω denote the Cartesian product of a
countably infinite number of copies of X. Instead of putting the usual
product topology on Xω, we shall need to consider a topology if* on Xω

which lies strictly between the product topology and the box
topology. If Uu- ,Un are subsets of X, let U(U{, , Un) denote the
subset (ΠΓ-, ϋi) x (ΠΓ=Π+1 (U U Uj)) of X\ Let

® * = {Π(l/,, , Un) I 17, is open in X, i = 1, , n}.

Finally, let 5"* be the topology on Xω generated by 35*.

LEMMA 3.4. The family ffl* is a base for (Xω, J*).

Proof. Let U = U(UU- , Un) and V = Π(Vx, , Vm) be arbitrary
members of ^ * . We may suppose that n^m. Then
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u n v = π (u, n v,, , um n vm, um+l n ( y v,), , un

n (,Q
which is a member of S3*.

Lemma 3.4 now gives us the following fact.

LEMMA 3.5. Each projection map on (Xω, 3~*) is continuous and
open.

It is easy to see that open continuous functions preserve Baίre
spaces and spaces of second category (see [4]). The next lemma then
follows from Lemma 3.5.

LEMMA 3.6. // (Xω, 2Γ*) is a Baire space (space of second cate-
gory, respectively), then X is a Baire space (space of second category,
respectively).

A modification of the proofs of 2.5 and 2.6 in [9] establishes the
following fact.

LEMMA 3.7. // X is a Baire space (space of second category,
respectively) having a countable pseudo-base, then (Xω,β*) is a Baire
space (pace of second category, respectively).

We now introduce some notation which will be used in the proof of
the next two theorems. We shall be working with the three spaces
(XVT*), (2X,2^), and (<€(X),?ΓC) having bases $ * , $ * , and ®c,
respectivley. If U = 11(17,, •• , Un) G S3, then define Ux =
(Ux,- ,Un), which is an element of 33*, and define Uc =
(Ul,'",Un)n

c€(X), which is an element of ST. On the other hand if
U = (Uλ,' ',Un)E:®x or U = (Uι,'-,Un)nc€(X)E^c, define 17* =
Π({7,, , Un), which is an element of S3*. Also for each /G
RS(Xω,®*), define fx ERS(2X, ®x) and f ERS(C€(X),^C) as
follows. If U = (Uι, -,Un) is an arbitrary element of ®x, define
fx(U) = (f(U*))x, and if U = <C7,, , Un) Π «(X) is an arbitrary ele-
ment of ®c, define fc(U) = (/(Z7*))c. Finally, for each f ERS(2X, ®x)
or fERS(c€(X),mc), define /* G RS(Xω, $*) as follows. Let / G
£S(2*, mx). lfU = {Ux,: , Un) E®x, then we may assume that f(U)
is written as <V,, , Vm>, where m^n and for each i ^ l , ,n,
V; C Uh Now if 17 = Π(C7,, , Un) is an arbitrary element of S3*, then
define /*(17) = (f(Ux))*. A similar definition is to be given for /* if
f<ΞRS(<β(X),®c).
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THEOREM 3.8. If X is quasi-regular and (Xω, ZΓ*) is a Baire space
(space of second category, respectively), then 2X is a Baire space (space
of second category, respectively).

Proof Let U e ®x and let / e RS(2X, ®x). Since (Xω, ^*) is a
Baire space, by Theorem 2.3, there exists g GRS(Xω,ffl*) such that
nΓ-i[t/*,/*,g]i contains some element (JC() of Xω. Now [U,f,gx]2 =

f(gx(U)) = f((g(U*))x), and [t/*,/*,g]2 =
(f((g(U*))x))*. Also for each n > 1,

,gx]fn-2))x), and

[U*,f*,g]u = f*(g([U*9f*,g]u-ύ)

So that by induction, [E/*,/*,g]2n = ([t/,/,gx]2 π)* for every
n. Therefore since (JC,)G [C/*,/*,g]2n for every n, then {x{}e
[C/,/,gx]2n for every n. Thus ΠΓ=ι [U,f,gxl^0, so that 2X must be a
Baire space by Theorem 2.3 again.

COROLLARY 3.9. // X is a quasi-regular Baire space (space of
second category, respectively) having a countable pseudo-base, then 2X

is a Baire space (space of second category, respectively).

If we consider the space ^(X) instead of 2X, then we obtain the
converse of Theorem 3.8.

THEOREM 3.10. If X is quasi-regular and ^(X) is a Baire space
(space of second category, respectively), then (Xω, 3~*) is a Baire space
(space of second category, respectively).

Proof. Let U E2&* and let f<ΞRS(Xω, 38*). Since %(X) is a
Baire space, by Theorem 2.3, there exists a g ^RS(C€(X), ®c) such
that ΠΓ=i[£/c,/c,g]/ contains some element A of ^(X). Now
[UJ,g*]2 = f(g*(U)) = f((g(Uc))*), and [Uc,fc,g]2 = fc(g(Uc)) =
/((g(l/c))*))c Also for each n > 1,

[U,f,g*]2n=f(g*([U,f,g*]2n-2))

= f((g([U,f,g*]c

2n-2))*), and

[Uc,fc,g]2n=fc(g([UcJc,g]2n-2))
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So that by induction, [ JJ\ f\ g ]2n = ([ [/, /, g *] 2 n )
c for every n. Suppose

that for each n, [Ue,fc ,g]2n = <£/?, , t / ^ j n « ( * ) . Then each
[t/,/,g*]2 n=([/ΐ, ,C/^ )), so that m ( l ) S m ( 2 ) ^ , and for each
/ = l, ,m(n), UrlCUn

t.
Let i be a fixed positive integer. If there exists an n such that

i^m(n), let n(/) be the smallest such n. In this case, for each
j = n(i)y n(i) + 1, , let a[^A Π U\. Otherwise, for each j =
1,2, , let a[ E A Π(UT^ U{). In either case, since A is compact,
{a\ \j = 1,2, •} has a cluster point, say ah Now letting i vary, this
defines the point (at) E Xω. It can be seen that (α( ) E ΠΓ=i [{/,/, g*]f, so
that (Xω, &*) must be a Baire space by Theorem 2.3 again.

We might observe that when X is a quasi-regular space, Theorem
3.1 now follows from Theorem 3.10 and Lemma 3.6.

Using Theorem 3.10, we can now obtain an example of a metric
Baire space K such that ^(K) is not a Baire space. In [9], Oxtoby
gave an example of a Baire space whose square is not a Baire
space. This space unfortunately needs the continuum hypothesis in its
construction. Later in [6], Krom constructed a new space K from
Oxtoby's example which is a metric Baire space whose square is not a
Baire space. Now if X2 is not a Baire space, it is easy to see by a
modification of Lemma 3.6 that (Xω, 5"*) is not a Baire space. Thus by
Theorem 3.10, ^(K) is not a Baire space.

It would be of interest to know whether 2K is a Baire space, where
K is Krom's example discussed above. One is tempted to try to
answer this by investigating the relationship between 2X and ^(X) in
terms of being a Baire space. First, since any extension of a Baire
space is a Baire space, we immediately get the following.

THEOREM 3.11. // ^(X) is a Baire space, then so is 2*.

On the other hand, Aarts and Lutzer in [1] gave a test to determine
when a dense subspace of a Baire space is a Baire space. A modifica-
tion of this theorem (see [5]) is that if X is a dense subspace of the Baire
space y, then X is a Baire space if and only if every somewhere dense
Gδ- subset of Y intersects X (a set being somewhere dense if its closure
has nonempty interior). Therefore, as partial converse of Theorem
3.11, we have the following.

THEOREM 3.12. // 2X is a Baire space and every somewhere dense
Gδ-subset of 2X intersects ^ ( X ) , then ^ ( X ) is a Baire space.

However, the full converse of Theorem 3.9 is false, as we shall now
extablish. Let P be a dense Baire subspace of the irrationals with the
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usual metric topology having the property that every compact subset
has an isolated point (see for example [1], example 2.4; or [5], Theorem
2.6). Let $ be the set of all intervals in P having rational end points
and diameter less than one. For each pairwise disjoint collection
{/,,• -,Ik} of elements of & and for each natural number n, let

where for each / = 1, , fc, the JJ's are pairwise disjoint intervals such
that I = U "=i I{ and diam /{ = IIn diam ί for each / = 1, , n. Now
for each n, let Gn = U{Gn(Iu -,/*)!/,, ,Ik are pairwise disjoint
elements of ^}, which is a dense open subset of 2P. To see that
( Π : = 1 G n ) Π ^ ( P ) = 0 , let AG^iP). Now A must contain some
isolated point x. Let m be a natural number such that no other point of
A is within 3/m of x. If for some Iu , Ifc ε *0, A G Gm(Iu * * *,/*),
then x E /{ for some « = 1, , k and j = 1, , m. But then for some
/' = 1, , m, A Π I\' = 0 — which contradicts A being in
Gm (/„ , Ik). Therefore (n:=ιGn)Π <€{P) = 0 , so that <g(P) must be
of first category. Note also that Πn=\Gn is a dense Gδ-subset of
2P. Finally since P is second countable, 2P will be a Baire space by
Corollary 3.9.

For the final two theorems, we shall be concerned with two
properties closely related to Baire spaces — Baire spaces in the strong
sense and pseudo-complete spaces.

A space X is called a Baire space in the strong sense (or totally
non-meagre space) provided that every nonempty closed subspace of X
is of second category. This turns out to be equivalent to the property
that every nonempty closed subspace is a Baire space. Discussions of
Baire spaces in the strong sense can be found in [3] and [2] We have
the following immediate theorem.

THEOREM 3.13. Let X be a TΓspace. If either 2X or «(X) is a
Baire space in the strong sense, then so is X.

A space X is called pseudo-complete if it is quasi-regular and there
exists a sequence {{%J of pseudo-bases for X such that if for each
i = 2,--,UiEdii and Ui+ι C Ui9 then Π Γ=i U^0. It is not difficult to
see that every pseudo-complete space is a Baire space. Properties of
pseudo-complete spaces can be found in [9] and [1]. One such
interesting property of pseudo-complete spaces (found in the latter
reference) is that for a metric space X, X is pseudo-complete if and only
if it has a dense completely metrizable subspace.
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THEOREM 3.14. If X is pseudo-complete, then so is 2X.

Proof. Let {53,} be a sequence of pseudo-bases for X such that if
for each i = 1,2, , [/f G % and Ui+ι C Uh then Π Γ=i C/f φ 0 . For each
ί, let 38f = {<[/,, , l/π')| [/,, ••-,[/„£ 98f}, which is a pseudo-base for
2*. Now for each i, let Gf =<t/{, , C / ^ e ^ f such that Gi+1 C
G/. We may assume that n ( l ) ^ π(2)^ , and that for each ί,
U)+ί C U) for / = l, ,n(ί). Also we know for each / that
U^U'ΐ'CΌ^lU). Let n(0)=l . For each nonnegative integer k
such that n(k)< n(k + 1) and each integer / such that n(k)<j^
n(k + 1), choose jt; E ΠΓ=*+i ί/}. Let L = °° if lim ôoW(/c) is infinite,
and let L = 1 + limk_*oott(fc) if lίm^oon()t) is finite. Then define A =
{jcy 11 ̂ j < L}. N o w Λ G d for every i, so that Λ G Gί+1 CG, for
every i. Therefore A G ΠΓ=i G,, so that 2* is pseudo-complete.

The converse of Theorem 3.14 is easily seen to be false since the
space N of natural numbers with the right ray topology is not quasi-
regular, while 2X has the indiscrete topology and is hence pseudo-
complete.
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ISOMETRIES OF THE DISK ALGEBRA

J. N. MCDONALD

In this paper we are concerned with the problem, posed by
R. R. Phelps, of describing the into isometries of the disk
algebra. We show that, in a certain sense, every isometry can be
approximated by convex combinations of isometries of the form
/—>k(f°φ). We also give some sufficient conditions for an
isometry to be of the form /—>k(f°φ).

Let D and Γ denote, respectively, the open unit disk and the unit
circle. The disk algebra, i.e., the algebra of all complex valued functions
which are continuous on D U Γ and analytic on D, will be denoted by A.
It will be assumed that A is equipped with the sup-norm.

Operators of the form

(1) Tf

are isometries of A: if k G A, if ||fc||= 1, and if φ: D U Γ ^ D UΓ is
analytic on D, continuous on D U Γ - fc~!(0), and satisfies φ(k'ι(T)) D Γ.
In fact, if T is a surjective linear isometry of A, then it must be of the
form (1) with k being a constant, and φ being a Mobius transformation.
(See [3, pp. 142-148].) Rochberg [8] has shown that if T is an isometry
such that Γl = 1, and T(A) is a sub-algebra of A, then T is of the form
(1) with k = l.

Note that any bounded linear operator T: A —» A which satisfies
(1) also satisfies.

(2) TlT(fg)=TfΓg

for all / and g in A. Moreover, we have the following.

PROPOSITION 1.1. A bounded linear operator T.A-+A satisfies
(2) for all f,g <ΞA iff it is of the form (1).

Proof. It is only necessary to show that, if T satisfies (2) for all
f,g G A, then it satisfies (1).

Suppose that w is a point of D where T\ is not 0. Consider the
linear functional defined on A by

By (2), Lw is a multiplicative. Hence, there is a v in D U Γ such that

143
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Lw(f) = f(υ). Since υ =(Tl(w))-ιTZ(w), where Z is the identity
function onDUΓ, it follows that the function φ = {T\yλTZ is bounded
on D. Thus, the singularities of φ in D are removable. Let 5 be the
operator defined on A by

S/=7Ί(/oφ).

It follows easily from (2) that SZn = TZn for n = 0,1, . Since the
polynomials in Z are dense in A, the operators T and 5 are the same. If
7Ί = 0, then, by (2), (T/)2 = Γl Γf ^ 0. It follows that T is of the form
(1) with λ:=0.

For an example of an isometry which fixes 1 but is not multiplica-
tive, see [8].

For the remainder of this section, T will denote an arbitrary
isometry of A. Consider the closed set Γ(Γ) = {z eΓ]|77(z)| = 1 and
there is a point t{z) in Γ such that Γ/(z) = 7Ί(z)/(Γ (z)) for all / G A}.
Since A separates the points of Γ, it follows that the mapping z —> Γ(z),
denoted by Γ, is well defined and continuous on Γ(Γ). In [5], we showed
that t maps Γ(Γ) onto Γ. The following proposition gives a simple
description of Γ(Γ).

PROPOSITION 1.2.

| = l and | |

Proof. It is enough to show that if | 7Ί(z,)| = |ΓZ(z,)| = 1, then
). By the Hahn-Banach theorem, there is a measure μ on Γ

having total variation ^ 1 such that Tf{zλ) = I fdμ for all / G A Let

a = I Idμ and b = Zdμ, where Z is the identity on D U Γ. Since dμ

has total variation ^ 1 and δdμ, = 1, it follows that άdμ is nonnega-

tive. Note that ί Re(l - abZ)adμ = 0. Thus, Re(l - abZ) is 0 on the

support of μ. Hence the support of μ consists of a single point, i.e.,

THEOREM 1.1. Suppose m(Γ(Γ))>0, where m denotes Lesbegue
measure on Γ. Then T is of the form (1).

Proof. For /,gGA, we have

Γl(z)Γ(/g)(z)=T/(z)Γg(z)
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for every z E Γ(Γ). Any two functions in A which agree on a subset of
Γ having positive Lesbeque measure are equal. (See [3, p. 52].) Thus
7Ί T(fg) = TfTg. It follows by Proposition 1.1 that T is of the form (1).

THEOREM 1.2. Assume that T1 is an inner function. Suppose that
T(A) contains a function G having the following properties: \\G || = 1,
m(G~ι)(Γ))>0, the set of connected components of G~ι(Γ) is countab e,
and G is not a constant multiple of 7Ί. Then T is of the form (1).

Proof. Let H = ΎΪG. Note that H'\Γ) - GΛΌ Let
{Ji,/2, * } denote the collection of connected components of
H~\Γ). Suppose it can be shown that, for some q, m(H(Jq ΓΊ Γ(T))) >
0. Then Jq is necessarily a nontrivial sub-arc of Γ. By a form of the
Schwartz reflection principle (See, e.g. [2, p. 187].), G can be continued
analytically across the interior of Jq. It follows that the restriction of H
to the interior of Jq is continuously differentiate. If H were constant
on Jq, then we would have G = cTί where c is a constant. Thus, H is
not constant and, hence, m (Jq Π Γ(Γ)) > 0. It now follows by Theorem
1.1 that T is of the form (1).

It remains to be shown that m (H(Jq Π Γ(T))) > 0 for some q. It is
claimed that

H(Hι(Γ)) = H(Hι(Ό Π

For each zGΓ, there exists a measure μz, having total variationS 1,

such that \fdμz = Tf{z) for each /€= A In particular, we have 1 =

T\{z)dμz. It follows that the measure T\(z)μz is nonnegative.

Suppose that z is choosen so that |G(z) | = |H(z) | = 1. Let F be the
unique function in A such that G = TF. Then

ί Rφ-H(z)F)Tl(z)dμ =0.

It follows that H(z) = F(w) for each w in the support of μz. Since the
mapping f is onto, there exists a ZiGΓ(T) such that

= H(Zι).
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Next it is claimed that m (H(Hι(Γ))) > 0. If m (H(H\Γ))) = 0, then H
is constant on all of the Λ's. Since at least one of the Λ's is a
nontrivial sub-arc of Γ, it follows that G = cTί for some constant c - a
contradiction to the hypothesis that G not be a scalar multiple of
Γl. Finally, we have

0 < m {H{H\T))) =§ Σm (H(Jn Π Γ(Γ))).

It follows that m(H(Jq ΠΓ(Γ)))>0 for some q.

COROLLARY. Suppose that T\ is an inner function. If TA con-
tains an inner function which is not a scalar multiple of Tl then T is of
the form (1).

REMARK. Let si denote the sub-algebra of A consisting of func-
tions which are analytic in a neighborhood of D U Γ. By arguments
similar to those used to prove Theorem 1.2, one can show that every
isometry of si must be of the form (1).

2. Approximation of arbitrary isometries. As in the
previous section, T will denote an arbitrary isometry of A. Let B
denote the space of bounded linear operators: A —> A and let Bx denote
the set of members of B having n o r m a l . As in [5], we define
E{T) = {U<ΞBx\Uf{z)=Tf{z) for every zEΓ(T) and every / E
A}. In [5] we showed that E(T) is a face of Bu that E(T) is closed in
the weak operator topology, and that each member of E(T) is an
isometry. Thus, the set of isometries of A is the union of weak
operator-closed faces of B,. It follows from Proposition 1.2, that

E(Γ) = {E/eJ3,| t/Z|Γ(Γ) = TZ\Γ(T) and C/1|Γ(Γ) = 7Ί|Γ(Γ)},

where Z denotes the identity function o n D U Γ . If m(Γ(Γ))>0, it
follows that E(T) = {T}. Suppose that m(Γ(Γ)) = 0. Let A, denote
the unit ball in A, let S, = {/eΛ,|/|Γ(Γ) = f}, and let S2 =
{g e A, \g |Γ(Γ) = Tl |Γ(T)}. By a result due to Rudin [9], both 5, and
S2 have infinitely many members. Let h E Sx and k E S2. The
operator U defined by Uf = k(f<>h) is in E(T). Thus, E(T) contains
infinitely many elements iff m(Γ(T)) = 0. For the remainder of the
paper, we will consider only isometries T for which m(Γ(Γ)) = 0.

Let F(T) = {U<= E(T) \ U is of the form (1)}. In view of [5, Th. 3],
it is natural to ask whether E(T) is the closed convex hull of F(Γ),
where the closure is taken in the weak operator topology? Although we
are unable to answer this question, we will show that there is a family ©
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of locally convex Hausdorff topologies on B with the following
properties: for each SΓ E @, E(T) is the SΓ-closed convex hull of F(Γ),
and the weakest topology containing all the members of © is the weak
operator topology.

The weak operator topology on B is the weakest topology in which

all linear functionals of the form H —> Hfdμ, where / is in A and μ is a

Baire measure on Γ, are continuous. It follows that the space B* of
weak operator continuous linear functionals on B is the direct sum of
sub-spaces s£ and 5^ where d is the sub-space of B * spanned by linear

functionals of the form H-> (Hf)gdm with g^Lx{m), and where Sf is

the sub-space of B* spanned by functionals of the form fί-» Hfdv

with v being singular with respect to ra. (See [1, p. 421]). Let Ll(m)
denote {gEL,(m) |gS0 a.e.}. For each gE.L\{m) we define the
ίfg-topology on B to be the weakest topology in which the linear

functionals of the form H —> {Hf)gdm with / in A, and the linear

functionals in if, are continuous. Set © = {ifg \g ^L\{m)}. Let W
denote the weak operator topology on B. Note that ίfg CW for each
g GL+

{(m). By [1, p. 421], the ^-continuous linear functionals on B

are those of the form 1{H) = I Hfgdm +Σ%A Hf4μh where the meas-

ures μh i = 1,2, , n, are singular with respect to m and /,/i,jy * * fn Ξ

A. Let % denote the smallest locally convex topology on B which

contains all members of ©. Any functional of the form L(H) =

Hfdv, where / E Λ, and v is a regular Baire measure, can be written in

the form

= ίHfdμ+Σ lmi
J n = \ J

L(H)

where μ is singular with respect to m, and gug2,g3,g4EL+\(m). It
follows that L is °U- continuous. Hence, by the definition of W, we
have °U C W.

THEOREM 2.1. For each g E Lt(m), E(T) is the ϊfg-closed convex
hull of F(T).

REMARK. It is not possible to prove Theorem 2.1 by using argu-
ments based on the Krein-Milman theorem. For in order for the
Krein-Milman theorem to apply to E{T) it would be necessary for
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E(T) to be compact in the ϊfg-topology, but the following argument
shows that E(T) is not S^g-compact for any g ^L\{m): Let K be a
"Cantor" subset of Γ which is disjoint from Γ(Γ). Let Cλ{K) denote
the set of continuous complex valued functions on K having absolute
valued 1. Define /: E(T)-+CX(K) by j(U)=UZ\K. If C,(K) is
equipped with the topology of pointwise convergence, then j is ίfg-
continuous for each gGLt(m). By [9], the map / is onto. Since
Cλ(K) is not compact in the topology of pointwise convergence, it
follows that E(T) is not compact in the ϊfg-topology.

Our proof of Theorem 3 will depend on the following two lemmas:

LEMMA 2.1. For z in D, and t E [— TΓ, π] let

i.e., Pz{eιt) is the Poisson kernel. Consider the set V = {ΣΓ=, c,PZi | c* g 0
and Zi E D for i = 1,2, , n). Then the Lrclosure of V is Lt(m).

Proof. Suppose that gλ^L+

x{m), but g, is not in the closure of

V. Then there exists an h in Lx(m), such that gxhdm > 0 and

v hdm g 0 for every υ EV. In particular

['
for all z in D. Fatou's Theorem [3, p. 34] implies that h ^ 0 almost

everywhere with respect to m. Hence, ghdm ^ 0 . Thus, we have

reached a contradiction.

LEMMA 2.2. Let E be a closed subset of Γ such that m(E) =
0. Let φ0: E -» D U Γ be continuous. Consider z,, z2, * , zn, w E
D. 77i£re w α function φ in the unit ball Aλ of A which extends φ0 and
satisfies φ{zt) = w for i = 1,2, , n.

Proof Suppose that w = 0. Let

For each u in Γ, we have |JB(iι)| = 1. Define β0 on E by βo(u) =
B(u)φo(u). The function β0 has an extension β in A}. It follows that
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Bβ satisfies the assertion of the lemma in the case where w = 0. If
w^O, we choose a Mobius transformation τ of D such that τ(0) = w,
and apply the preceeding argument to obtain a function φx in A, which
extends τ']°φ0 and maps z1, ?zn into 0. Thus, the function φ =
τ °φu extends φ0, lies in At, and statisfies φ(zt ) = w for ί = 1,2, n.

Proof of Theorem 2.1. (The argument used here is an adaptation
of one due to Morris and Phelps [6, Th. 2.1].)

Suppose U GF(T) but it is not in the ϊfg-closed convex hull of
F(Γ). By [1, Th. 9, p. 421], there are functions /,/,,/2, ,/n G A,
measures μ,, μ2,

# * , μ* on Γ which are singular with respect to m, and a
real number r > 0 such that

Re (I (Uf) gdm + g I Itfdμ,) g Re ( J(F/) gdm + g J jγ,dμ,) + r,

for every F in E(T).
By Lemma 2.1, there are points zu z2, , zp GD and nonnegative

real numbers cu c2, , cp such that

(3)

> Re ( £ c,Ff(zl) + Σ JFf4μή + \,

for every F in F(Γ). We can assume without loss of generality that
μ, g 0 for / = 1,2,, , n. Since Uf = F/ on Γ(Γ) for i = 1,2, , n
and F G F ( Γ ) , we can also assume that μf(Γ(Γ)) = 0 for / =
1,2, , n. Let x̂  = ΣΓ=1 μ,. Given β > 0, there is a closed subset y of
Γ-Γ(T) such that m(y) = 0 and v{T~Y)<e. Let ft, denote the
Radon-Nikodym derivative of μt with respect to v for i =
1,2, , n. Choose continuous functions h on Γ such that 0 g ft g 1

and I ft, -h\\dv <e for i = 1,2, ,n.

Let g = Σ?-, ft l/f,. For each y G Γ, define /cy = Σ?., ft 5(y)/,. Then
g(y)= t//cy(y). g(y) is also equal to (U*ey) (ky), where U* is the
adjoint of U and ey represents the "evaluation at y" functional on
A. Let 5 denote the unit ball in the dual space of A. Since U* maps
S into S, it follows that U*ey G S. The function W(p) = Rep(fcy) is
weak* continuous on S and sup W(S)^RεU*ey(ky) = Reg(y). The
extreme points of S are exactly the functional cey, where c, y G Γ. It
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follows from the Krein-Milman theorem that, for each y G Γ, there exist
Φ(y), c(y)GΓ, such that

For each y G Y choose an open neighborhood Vy of y such that
Vy ΓΊ Γ(Γ) = φ and

for every w G Vy. Let {Vy,, , Vyp} be a finite collection of V/s which
covers y. We can easily find another open cover {t/,, , Up} of Y
such that Lζ C Vyi and (̂{y |y is in more than one Uj}) < e. Consider
the sets

Then fl, 's are closed and disjoint and v(Y~ \Jp

i=xHi)<e.
Define mappings 0O, fc0: Γ(Γ) U [ U f.iiί ] -> Γ by

f/ if ^ E ί ί
lt(y) if yGΓ(Γ).

fc(«i) i f ^ E ί ί
IΓl(y) if yGΓ(T).

Note that m(Γ(Γ) U [ U T=iϋ,]) = 0. Since f/ is an isometry, there are
points w0 and w, in D such that Re u>0/O,)gRe Uf(Zi)-e for / =
1,2, ,p. By Lemma 2.2, there are extensions θ and /c, of θ0 and k0

respectively, which lie in Ax and satisfy θ(Zj) = wx and k(z}) = w0 for
/ = 1,2, , n. Define the linear operator Fx: A —> A by Fλh =
k(h°θ). Clearly, we have FXGF(T). By a straightforward argu-
ment, we can find a constant M > 0 independent of e such that

Σ ί
i=l J

We can obtain a contradiction to (3) by taking e to be sufficient small.
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COROLLARY 2.1. Suppose 7Ί = 1. Let Eί(T) = {U\U<=E(T)
andUl = 1}, and let F,(Γ) = £,(Γ) Π F(Γ). Then for each g<ΞL\{m),
the set £j(Γ) is the closed convex hull ofFλ{T) where the closure is taken
in the ίfg-topology.

Proof. Let 5, = {L E 5 |L(1) = 1}. The adjoint T* of Γ maps 5,
to Si. The extreme points of S, are the functionals of the form ey with
y E Γ . Thus, in the proof of Theorem 2.1 we may take c(y) =
1. Also, it is clear that, in this case, we may take wo =
1. Consequently, it can be asumed that the function k is identically 1.

3. T h e case T1 = 1. In this section it will be assumed that
Tί = 1. We will investigate the closure in the weak operator topology
of the set covF,(Γ).

Let Ha* denote the space of bounded analytic functions on D and let
jB(ίfoo) denote the space of bounded linear operators on //«,. Denote by
9 the weakest topology on B(HX) such that all linear functionals of the
form M-^Mg(z), where gEHx and zED, are continuous. The
following property of B(Hoo) will be very useful in this section: The unit
ball ofB(Hn) is 3P-compact. To verify this property it sufficies to use a
result due to Kadison [4] together with the fact that the unit ball Hi of
Hoo is compact in the topology of pointwise convergence.

Let Aτ = {φ E Λ,| φ |Γ(Γ) = f}. Let Hτ denote the closure of Aτ

in the topology of pointwise convergence on D. Since Hτ C HI, it
follows that Hτ is compact in the topology of pointwise convergence on
D. Each F e F , ( Γ ) is of the form Ff = f°φ for all feA, where
φ E Aτ. Thus, F has an extension to H* denoted F * which is defined
by F*g = g °φ for every g E Hx. Similarly, each V E cov Fλ{T) has
an -extension V* lying in cov F*(T), where Ff(Γ) =
{F*IF E F,(Γ)}. Since F?(Γ) is contained in the unit ball of B(HJy it
follows that the <3>-closed convex hull of Ff(T), denoted by R, is
compact in the £P-topology. Let Q denote the ^-closure of
FUT). Suppose that W E J R . By the integral form of the Krein-
Milman Theorem [7, p. 6], there is a probability measure μw supported
by Q such that

Wg(z)= ί W'g(z)dμw(W)
Q

for every gEHx and every zED. Note that Q ={W\Wg = g °φ,
where φ E Hτ}. Thus, Q may be identified with Hτ. Consequently,
we can write

Wg(z)= I goφ(z)dμw(φ)
JHT
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for all g EίL and all z ED. Suppose now that U is in the weak
operator closed convex hull of F^T). Then there exists a net {Va} in
cov F,(Γ) which converges in the weak operator topology to U. In
particular, Uf(z) = lim VJ(z) for each f EA and each z ED. The net
V* has a subnet V% which converges to some U* E R. By the
definition of the ̂ -topology, we have U*f(z)= Uf(z) for f E A and
z ED. Thus, we have proved the following:

THEOREM 3.1. Let U be in the closure of covFi(Γ) in the weak
operator topology. Then there exists a probability measure μ on Hτ

such that

Uf(z)= ί foφ(z)dμ(φ)
JHT

for each f EA and each z ED.

We will now use Theorem 3.1 to derive another sufficient condition
for an isometry to be of the form (1).

THEOREM 3.2. Suppose U is in the weak operator closure of
COVFJCΓ). If there is a nonconstant inner function G such that UG is
an extreme point of Aί9 then U is of the form (1).

Our proof of Theorem 3.2 depends upon the following technical
lemma.

LEMMA 3.1. Let G be a nonconstant inner function in
A. (a) Suppose that k EA is of the form k = G°h on D, where
h EHi. Then h has an extension to DUΓ which is
continuous, (b) Let hu h2EAx. Consider the set

= {zGDUΓ|/ιI(z) =

Suppose that h^S) is infinite. Suppose also that G°hi = G°h2. Then
h, = h2.

Proof. Since G is an inner function and is a member of A, it
follows that G is of the form
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where the zn 's are (not necessarily distinct) points of D. It follows that,
given any point w0 E Γ U D, there exists a disk Do about M0 and analytic
functions gi,g2, ,gn defined on Do, such that if G(w) = u ED0 then
w - gj(u) for some /. Suppose that u0 = fc(z0), where z0 £ Γ. Choose
a set W containing z0 which is open relative to Γ U D and satisfies
k (W) C Do. On W Π D, we have k = G ° Λ. It follows that for some /,
ft (z) = 8i ° k(z) f° r all z e W Thus, h can be extended continuously to
H^ΠΓ. A simple compactness argument now shows that h can be
extended continuously to all of Γ.

Consider the set Y = {z GD UΓ|σ'(Λ,(z))^0 and hλ{z) =
h2(z)}. We will show that Y is open relative to D UΓ. Since Y is
nonempty, it will follow that hx = /ι2. Let z0 £ Y. Since G;(/ii(z0)) 7̂  0,
there exists an open disk Do about fti(z0)

 s u °h ^ a t G is one-to-one on
Do. Choose a set N, which is open relative to D U Γ, such that
ft,(N) C Do and Λ2(N) C Do. Then, for zEN, G{hx{z)) = G(h2(z)). It
follows that hi = h2 on N.

Proof of Theorem 3.2: By Theorem 3.1, we may write

Uf(z)= ί foφ(z)dμ(φ)
JHT

for all /G A and all z ED. For each zED, let

/ 2 = { φ 6 fίΓ I Re UG(z) < Re G <> φ( z)}.

Suppose that for some u E D, we have c = μ (Ju) > 0. Define measures
μx and μ2 on Hτ by

= (l - c r y (K n (Hτ - JU)).

By [7, Prop. 1.1], there are operators C7, and ί/2 in R such that

t//U)= ί fQΦ(z)dμi ( = 1,2,
J H T

for each f EA and each z E D. (Note that for / E A, I// is not
necessarily in A.) It follows that

17/(2) = cl7,/(z) + (l-c)l7 2/(z)

for / G A and z E D. Since [7G is an extreme point of A,, it is also
extreme point of HI (See [3, p. 139].) Thus, we have 17G = ί7,G =
L/2G on D, but
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Re UG(u) = f Re UG(u)dμι(φ)
JHT

< ί RcGoφ(
JHT

a contradiction. It follows that for each z ED we have
μ{φ I Re UG(z) < Re G °φ(z)}) = 0. Similarly, we can show that

μ({φ I Re UG(z)>ReGoφ(z)}) = μ{{φ |Im [/G(z)^ImG°φ(z)}) = 0.

Thus, UG(z) = G oφ(z) for all φ in the support of μ. It follows that
the support of μ consists of finitely many functions φ1 ?- ,φm €Ξίίr,
where each φ, satisfies G °φ, = [/G on D. By Lemma 3.1, each φt is
continuous on D U Γ . Thus, there exist positive numbers cί9-—9cm

such that Σc, = 1 and

fpr each / E A and each z E D U Γ . For z G Γ(Γ), we have φt{z) =
ίXz) for i = 1,2, - , m. It follows by Lemma 3.1, that φx = φ2 = =
φm. Hence UEFX{T).

REMARK. Theorem 3.2 provides a possible approach to the prob-
lem of finding an isometry T such that Γl = 1 and Eι(T) is not the weak
operator closure of cov F{(T). If an isometry T can be found such
that: Γl = 1, T is not of the form (1), and TG is an extreme point of A,
for some nonconstant inner function G E A, then it will follow from
Theorem 3.2 that T& weak operator closure of cov
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DOUBLY STOCHASTIC MATRICES WITH
MINIMAL PERMANENTS

HENRYK M I N C

A simple elementary proof is given for a result of D.
London on permanental minors of doubly stochastic matrices
with minimal permanents.

A matrix with nonnegative entries is called doubly stochastic if all
its row sums and column sums are equal to 1. A well-known conjec-
ture of van der Waerden [3] asserts that the permanent function attains
its minimum in Ωn, the set ofnxn doubly stochastic matrices, uniquely
for the matrix all of whose entries are 1/n. The conjecture is still
unresolved.

A matrix A in Ωn is said to be minimizing if

per(Λ) = min per(S).
SeΩn

The properties of minimizing matrices have been studied extensively in
the hope of finding a lead to a proof of the van der Waerden conjecture.

Let Λ(i \j) denote the submatrix obtained from A by deleting its
ith row and its / th colum. Marcus and Newman [3] have obtained inter
alia the following two results.

THEOREM 1. A minimizing matrix A is fully indecomposable, i.e.,

per(A(/|/))>0

for all i and j .

In other words, if A is a minimizing n x n matrix then for any (/,/)
there exists a permutation σ such that j = σ(i) and asMs)>0 for
s = l, ,ί - l,i' + l, ,n.

THEOREM 2. If A =(aιj) is a minimizing matrix then

(1) per(Λ(i|j)) = per(A)

for any (/,/) for which aή >0.

155
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The result in Theorem 2 is of considerable interest. For, if it could
be shown that (1) holds for all permanental minors of A, the van der
Waerden conjecture would follow. London [2] obtained the following
result.

THEOREM 3. If A is a minimizing matrix, then

(2) per(A(;|j))^per(A)

for all i and j .

London's proof of Theorem 3 depends on the theory of linear
inequalities. Another proof of London's result is due to Hedrick
[1]. In this paper I give an elementary proof of the result that is
considerably simpler than either of the above noted proofs.

Proof of Theorem 3. Let A=(<2 l7) be an nxn minimizing
matrix. Let σ be a permutation on {l, ,n} and P = (p i;) be the
corresponding permutation matrix. For O ^ θ g l , define

/P«9) = p e r ( ( l - 0 ) A + 0P).

Since A is a minimizing matrix, we have

for any permutation matrix P. Now

/K0)= Σ (-α s l+p s ()perG4(s|O)

s,t = \

n

= Σ P,iper(A(s|f))-n per (A)

s,t = \

n

= Σ per(A(s|σ(s)))-n per (A).

Hence,
(3) Σ Per(A(s\σ(s))) S n per(A)

5 = 1



DOUBLY STOCHASTIC MATRICES WITH MINIMAL PERMANENTS 157

for any permutation σ. Since A is a minimizing matrix and thus, by
Theorem 1, fully indecomposable, we can find for any given (/,/) a
permutation σ such that / = σ(ί) and as,σis)>0 for s =
1,•••,/- l,ί + 1, ,n. But then by Theorem 2,

for s = l, ,i - l,ϊ + l, ,n, and it follows from (3) that
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COVERING THE VERTICES OF A GRAPH
BY VERTEX-DISJOINT PATHS

SHAHBAZ NOORVASH

Define the path-covering number μ(G) of a finite graph G
to be the minimum number of vertex-disjoint paths required to
cover the vertices of G Let g(n,k) be the minimum integer so
that every graph, G, with n vertices and at least g(n,k) edges
has μ(G)^=k. A relationship between μ(G) and the degree
sequence for a graph G is found; this is used to show that

λ

2(n - k)(n - k - 1 ) + 1 ̂  g ( n , k ) ^ { { n - \){n - k - 1) + 1

A further extremal problem is solved.

1. Introduct ion. A graph G is a finite collection V(G) of
vertices (or points) some pairs of which are joined by a single edge; the
collection of edges is denoted by <£(G). H is a subgraph of G if
V(H) C V{G) and Έ{H) C Έ{G). If H and K are two vertex-disjoint
graphs, HUK is the graph with T(H U K) = Ψ(H)UV(K) and
« ( H U J C ) = « ( H ) U ? ( K ) ; H + K is HUK together with all
\T(H)\ I T(K)\ possible choices of edges joining a vertex of if to a
vertex of K. G denotes the complement of G; Γπ denotes the
complete graph with n vertices and Γm n denotes the complete bipartite
graph, Γm +Γ n .

Let G be a graph. A path of length n in G is an ordered sequence
P = {au α2, , an) of distinct points, where if n S 2, a{ is adjacent to ai+i

for 1 ^ / ^ n - l . (al9a29

m * -,an) is the same path as
(aH9 an-u , α,). If P and ζ) are paths, by P * ζ) we shall mean that one
end-point, a of F, is adjacent to one end-point, b of Q, and that P * Q is
formed by joining a to b. More specifically we may write Pa * bQ or
P * bQ or Pα * Q to specify, in varying degrees, which end-point of P is
joined to which end-point of Q. Also, (aua29 * ,α n )*(bi ,b 2 , * * ,bm"> =
<flj,α2, * **,«„, bub2, *,bm) where απ must be adjacent to &,. A
Hamilton-path is a path of length |y*(G)| . A path-cover of G is a
collection, Sf9 of vertex-disjoint paths such that every vertex of G lies
on some path in if. The path-covering number, denoted by μ(G), of G
is defined by:

μ(G) = Min{| Sf |: Sf is a path-cover of G}.

159
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A minimal path-cover (M.P.C.) of G is a path-cover, tf of G, with

We note that μ(G) is an invariant of G and remark that a graph, G,
has a Hamilton-path if and only if μ(G) = 1 . It has been shown by
Nash-Williams [1] and others that the problem of classifying all Hamil-
tonian graphs is equivalent to that of classifying all graphs which have a
Hamilton-path. Thus a classification of all graphs with μ(G) = k
(k = 1,2,3, •) would also solve the Hamiltonian problem as a special
case.

Historically, O, Ore [3] first introduced the graphical invariant
μ. In [2] some elementary properties of μ are derived. In §2 we
generalize a result of O. Ore (Theorem 2.1 in [3]) and in §3 we consider
two extremal problems involving μ.

2. Valency considerations. In this section we derive a
connection between the path-covering number and the degree sequence
of a graph. We begin with some definitions:

DEFINITION 2.1. Let A be a finite set and / a real-valued function

defined on the collection of subsets of A. For B CA and for any

integer / with 1 ̂  i g | B |, define the function 5, by:

A)-,**) — ZJ J v w
CCB
\C]=i

DEFINITION 2.2. If G is a graph, B C T(G), and either H C Y(G)
or H is a subgraph of G, then define the generalized valence function, p,
by

= the number of vertices of H which are adjacent

to every member of B.

If x is a vertex of G, then we write ρ(x) for pG({*}).

DEFINITION 2.3. Let G be a graph and X C V(G) with |X | = k ^ 2.
Define:

The following lemma is easily verified:
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L E M M A 2.4. If X = {xux2, ,x fc}, and l ^ m ^k - 1, then

We n o w state the main result of this sect ion:

THEOREM 2.5. Let G be a graph with μ=μ(G)^2,\V(G)\ = n
and k an integer with 2 g f c g μ , then there exists a set X consisting of k
mutually non-adjacent vertices of G, satisfying:

(2.6) μ^n-D(G,X).

Note that the case k = 2 reduces to the result of Ore (Theorem 2.1
in [3]):

Proof. Let & = {PuPi, ,Pμ} be a M.P.C. for G. For each
1 ̂  ί g /c, let Xi be an end-vertex of Pf. Since 5̂  is a M.P.C, x, is not
adjacent to JC; for iVj.

Let X = {JC,,JC2, ••-,**}. We first show that for 1^/^fc and
l ^ j g μ , the inequality:

(2.7)

holds. Let Pj be the path (al9a29- —,at), let l ^ m ^ / c f m^/, and
consider the following cases:

(i) i = j . In this case assume that JC, = α,.
(ii) m = j . In this case assume that xm = at.

(iii) m ^ j and i^j.
Let

A ={r : αΓ is adjacent to JCJ,

jBm ={r : αΓ_! is adjacent to xm}

and

We claim that A Π Bm = φ, for if r G A Π Bm, then in each case we can
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construct a path-cover, & for G, as follows (see Figure 2.8):

x, - Qx a2 a

Path P,

Case (i)

Path P,

Case (ii)

ax a2

o o o-

tfr-i ar

Path P,

at

In case (i), let:

X,

Case (iii)

FIGURE 2.8

= if U {<α,, αf_,, " ,αr,x,, α2, α3, , α r _,)*x m P m }- {Pi,Pm}.
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In case (ii), let:

SΓ = ίf u {<α,, α2, , αΓ-,, xm, α,_,, α,_2, , flr> * xt P { } - {Pn Pm}.

In case (iii), let:

In either case, \SΓ \ = \ίf\-\<\ίf\, contradicting the minimality of
if. Hence A Π Bm = φ. Also, in each case a}fέA'9 so AC
Pi-BΌ{aι}. This gives \A | g l ^ | - |JB U{α,}|, since BU{α,}C
Py. But then, since a{£B, we get:

(2.9) | A | = g | P , | - ( l + | B | ) .

For 1 ^ m ̂  /c, let:

Cm ={r: ar is adjacent to xm}

Then since xm is not adjacent to ax, \ Cm \ = | Bm \ and:

ίB| = U Bn U

fe-l

Σ
ι = \

= Σ(-D'+1

ISmι<m2<
Ic m i ncn nc,

So since | A \
(2.7) for \^i

pPi({x,}), (2.7) follows from (2.9) and (2.10). Summing
k and applying Lemma 2.4, we get:
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Summing (2.11) for 1 ^ / g μ , we get:

from which (2.6) follows.

3. Extremal problems.

DEFINITION 3.1. Let k and n be integers with 1 g fc ^ n. Define:

g(n,k) = Min{m: every graph, G, with |°F(G)| = n and

| £ ( G ) | ^ m has μ(G)^k}.

In this section we determine bounds for g(n,k). See [4] for
techniques in proving the following:

LEMMA 3.2.

(3.3) g (-

(3.4)

(3.5)
i=2

LEMMA 3.6. Let Kbea graph with | T(K) \ = s ^\,andletkbe an
integer with k ^ 2, and suppose H = Γk + X, f/ten:

Proo/. For 1 g ί g k - 1 and B C T(Γk) with j B | = i, each member

of B is adjacent to every member of V(K). There are ί . j choices for

B and | T ( K ) | = s; thus:
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This gives:

= 2s, using (3.3).

T H E O R E M 3.7. For \^k^n,

(3.8) g{n,k)M{n-\)(n-k-\)+\.

Proof. Let G be a graph with | r ( G ) | = n, and
Hn - l)(n — fc — 1)+ 1. Suppose μ(G)> k and X = {JC,, JC2, * -, Jcfc, Jcfc+i}
is a set of mutually nonadjacent vertices of G.

G may be considered to have been obtained from the complete
graph Γn through the elimination of at most:

\ n ( n - \ ) - \ { n - \ ) { n - k - \ ) - \ = \ ( n - l ) ( f c + l ) - l

edges. \k(k + 1) are removed in obtaining, from Γπ, the graph H in
which only members of X are nonadjacent. Thus, to obtain G from if,
at most:

(3.9) \{n - 1) (k + 1 ) - 1 -\k{k + 1) = \{n - k - \){k + 1 ) - 1

edges are removed from if.
We wish to compute D(G,X). By Lemma 3.6,

(3.10) D(tf,X) = 2 ( n - f c - l ) .

Now suppose that at some stage in the transformation from H to G,
we have obtained a graph K with «(ff) D «(K) D «(G) and Y(K) =
T(H) = r ( G ) . Let L = K - e where g G «(K) - «(G). We wish to
know the effect, /(e) = D(L, X) - D(K, X), on D, of removing the edge
e. Since e is an edge of if, it cannot join two points of X. If neither
end-point of e is in X, then f(e) = 0 since 5,(pκ,X) = Si(ρuX) for
1 ^ i: ̂  k. Now suppose that one end-point, y,, of e is in X and that the
other end-point, υ, is not in X. Let y,, y2, * ',)>] be the points of X
which are adjacent to v in the graph K. Note that 1 ̂ / ^/c f 1.
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If 1^/^i and B C ^ j v J , ] with |JB| = i - l , and C =
B U{yi}, then | C | = i and v is adjacent to every member of C in the

graph K but not in the graph L. There are \ _ i) choices for such a

set C. Furthermore, for any other combination of a vertex, t, and a set
A C X with IA I = i, t is adjacent to every member of A in the graph
L. Thus:

f - ( ΐ - Ξ τ ) for i ^ ί = g j
Si(puX)-Si(Pκ9X) = \ V ί ] /

I 0 for />/.

This gives:

{:!)]

fc +
2

i f i = k + ι

iί-mk-i + D(j:j)] if 2^/s
if / = 1

if 3 ^ / ^ ,

if / = 2
fc + 1
1 if i = 1

using (3.4) and (3.5).
Notice that /, ^ f2 ^ •••ί/ t g/, t |<0 and that in order to realize

the effect fh edges with effects fk+u fk, ,fi+ι must first be
removed. Hence when (k + 1) edges are removed, the combined effect
is at least:

* + ι

Σ/.--2.
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So if r edges are removed in obtaining G from H,

(3.11) D ( G , X ) - D ( H , X ) g - ^ .

Using (3.9) and (3.10) in (3.11) now gives:

(3.12) D{G, X) § [2(n - k - 1) - (n - k - 1) + 2/(fc + 1)] > n - fc - 1.

But Theorem 2.5 guarantees the existence of a set X as constructed
above, and satisfying:

This contradicts (3.12) and completes the proof of the theorem.

COROLLARY 3.13. For n ^ 4, g(n, n - 3) = n.

Proo/. The bipartite graph Γlπ_, is a graph with n vertices, (n - 1)
edges and path-covering number (n - 2). Thus g(n, n - 3) ̂  n. The
reverse inequality is given by Theorem 3.7.

To obtain a lower bound for g(n, fc), consider the graph G =
Γn-*UΪ\; then μ(G) = /c + l, while | r ( G ) | = n and |«(G)| =
\{n-\){n - fc-1). This gives:

PROPOSITION 3.14. For n > f c g l

(3.15) g(n,fc)^i(n-fc)(ιi-fc-l)+i.

The following proposition gives some results that are easily ver-
ified:

PROPOSITION 3.15.

(i) g(n,n) = 0, g(n + 1, n) = 1, g(n + 2, n) = 2 /or n g 1
(ii) g(6,2) = 7
(iii) g(n + U + l)έg(n,fc

Part (iii) can be seen by letting G = H U{x} where H is a graph
with n vertices, g(n, k) - 1 edges, and μ(H) = /c + 1, and c is an isolated
vertex with x£ | /th x ^ T(i ί) . Then G has (n + 1) vertices, g(n,k)- 1
edges, and (G) = fc + 2.
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In the case k = 1, the upper bound in (3.8) is seen to be the same as
the lower bound in (3.15) and hence equality holds for g(n,k) in both
inequalities. However, Corollary 3.13 shows that the upper bound in
(3.8) and not the lower bound in (3.15) is achieved in the case
k = n - 3. * Part (ii) of Proposition 3.15 shows a case where the lower
bound and not the upper bound is achieved. It is conjectured that for
small values of fc, g(n, k) is close to the lower bound in (3.15), while for
large values of k,g(n,k) is closer to the upper bound in (3.8).

We now turn to another extremal problem. Let v and n be
integers with 0 ̂  υ ̂  n. Define:

h(n, v) = Min{k: every graph, G, with \V(G)\ = n and

for every x G V(G)9 has

THEOREM 3.16.

1 if v^τ

n -2v if v <-z.

Proof. The case v^- and the upper bound h(n,v)^n -2v if

v < -z follows from 0. Ore's result (the note to Theorem 2.5). If υ < -z,

let K=Γvn^υ. Then clearly | r ( X ) | = π and p(x)^v for every
JC <ΞT(G); and in [2] (Theorem 2.2.10) we show that μ(X) =
n - 2v. Hence

h(n,v)^ n -2v

completing the proof of the theorem.
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JORDAN *-HOMOMORPHISMS
BETWEEN REDUCED BANACH *-ALGEBRAS

T. W. PALMER

A number of known results on Jordan *-homomorphism
between B*-algebras are generalized to Jordan *-homomor-
phisms between reduced Banach *-algebras. However the main
results presented here are new even for maps between
£*-algebras. We state these results briefly. For any
*-algebra 91, let ?\qU be the set of quasi-unitary elements. Let ?l
and 53 be reduced Banach *-algebras ( = A *-algebras). Let
φ: ίl —> 93 be a linear map. Then φ is a Jordan *-homomor-
phism if and only if φ(^lqU)C^βqU. If φ is bijective these
conditions are equivalent to φ being a weakly positive isometry
with respect to the Gelfand-Naimark norms of 91 and 93.

The main results of this note are contained in Theorems 3 and
4. Theorem 1 is merely a restatement of results in [11], and Theorem 2
contains a generalization to the context of reduced Banach *-algebras of
results previously known for B*-algebras. Several of these results
have been recently used by the author to characterize *-
homomorphisms [13]. Further comments on the results, and their
history, will be given when they are stated. First we introduce our
terminology and notation. Any terms not explained here are used in
the sense defined in C. E. Rickart's book [17].

We use C, R, and N to denote the sets of complex numbers, real
numbers, and natural numbers respectively. We use λ* to denote the
complex conjugate of λ E C. All algebras have complex scalars.

Any associative algebra 91 can be made into a Jordan algebra by
defining a product

aob =2-\ab+ba) Vα,ί) G9I.

A linear map φ: 9ϊ —»33 is called a Jordan homomorphism if it preserves
the Jordan structure of the algebra. Thus a linear map φ: Sί —> 93 is a
Jordan homomorphism iff

φ(ab +ba) = φ(a)φ(b) + φ(b)φ(a) V a,b £91.

It is easy to check that this condition can be replaced by

VαG9ί.

169
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The terms Jordan algebra and Jordan homomorphism derive from a
generalization of the formalism of quantum mechanics due to P. Jordan
[6] which was further discussed by P. Jordan, J. von Neumann, and E.
Wigner [7]. The term Jordan homomorphism seems to have been used
first in two fundamental papers by N. Jacobson and C. E. Rickart
[4, 5]. Under other names, Jordan homomorphims had been consid-
ered earlier in purely algebraic contexts.

If 91 and 93 are *-algebras, a linear map φ: ?ί —> S3 is called a *-map
if it preserves (i.e., commutes with) the involutions. A Jordan *-
homomorphism between *-algebras is simply a Jordan homomorphism
which is also a *-map. Jordan *-homomorphisms between B*-algebras
preserve the quantum mechanical structure of the algebras. They have
been called C*-homomorphisms by R. V. Kadison [8] and others.

For any *-algebra ?I the set of hermitian elements is denoted by
SlH It is trivial to check that a linear *-map φ: ?ί-»93 is a Jordan
*-homomorphism if and only if it satisfies

This is the condition we will use.
In any algebra we denote an identity element by 1. A linear map ψ

between algebras with identity elements is called unital if φ(ί) = 1.
A map φ: §X —> 93 between *-algebras is called weakly positive if it

satisfies

E%+ V h e9IH.

Here 93+ is the set {Σf=l b ̂ b,: b} E 93}. One of the important differences
between reduced Banach *-algebras and JB*-algebras is the failure of
the equality {h2: h E93H} = 93+ in the former case. This complicates
calculations with Jordan *-homomorρhisms. In particular Jordan *-
homomorphisms between Banach *-algebras are weakly positive but
not usually positive.

One of the fundamental properties of Banach *-algebras (we do not
require the involution to be continuous) is that they have a universal
^-representation which includes (in a certain weak sense) all other
^-representations. The norm carried back from this ^representation is
the largest submultiplicative pseudo-norm on the Banach *-algebra
which satisfies the B*-condition (\\a*a || = ||α ||2). It is called the
Gelfand-Naimark pseudo-norm, and is denoted by γ. The Gelfand-
Naimark pseudo-norm on a *-algebra 51 can also be described by

y(a) = sup{||Γα||: T is is ^representation of Sί}.
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Hence it is clear that the *-ideal of elements in 21 whch are represented
by zero in all ^representations of 21 (which is called the reducing ideal,
and is denoted by 2lΛ) is given by

If 21* = {0} the *-algebra 21 is said to be reduced. Clearly γ is a norm
rather than just a pseudo-norm if and only if the *-algebra is
reduced. We use the terms "γ-isometry", "γ-contraction" and " γ
unit ball" to abbreviate "isometry relative to the Gelfand-Naimark
pseudo-norms", etc. A Banach *-algebra is a B*-algebra if and only if
its complete norm equals γ.

For any *-algebra 21 a state is a positive linear functional ω such
that there is a ^representation T of 21 and a topologically cyclic unit
vector x in the Hubert space on which T acts satisfying

The Gelfand-Naimark pseudo-norm can be described in terms of states:

γ(a) = sup{ω(a*a)κ ω is a state of 21}.

Conversely in a Banach *-algebra 21 with an identity element states can
be described in terms of the Gelfand-Naimark pseudo-norm:

{States on 21} = {linear functionals ω on 2ί such that

ω ( l ) = l = ||αι||γ}

where || ω \\y = sup {| ω (a) |: a belongs to the γ -unit ball}. For a reduced
*-algebra 21, there are enough states to separate points, and in particular
an element h G 21 is hermitian if and only if ω (h) is real for each state on
21.

An element u of the γ-unit ball of 21 is called a vertex if the set of
linear functionals ω on 21 such that ω(u) = 1 = ||ω ||γ separates points of
21. In the course of proving Theorem 2 we will extend a result of H. F.
Bahnenblust and S. Karlin [1] to show that an element in a reduced
Banach *-algebra 21 is a vertex of the γ-unit ball if and only if it is
unitary. We denote the set of unitary elements in a *-algebra 21 by
2l(;= {ME 21: w*w = M M * = 1}. The set {v E 21: v*v = vv* = v + v*}of
quasi-unitary elements is denoted by 21^. For a *-algebra with an
identity element the involutive map v->l-v carries the set of quasi-
unitary elements onto the set of unitary elements and visa-versa. The
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set of quasi-unitary elements is a group under quasi-multiplication and
the involution is the (quasi-) inverse map in this group. The next
theorem, which is one of our major tools, explains the importance of
quasi-unitary elements.

THEOREM 1. Let 5ί be a Banach *-algebra. For each flGSί,

{ n n n

Σ Iλ/1 : a ~ Σ λ/ υh 0 = Σ λ/ where n G N,
j = \ ; = i y = i

λ,ec, ϋ.ε

// % has an identity element then for each a £ 5 1 ,

{ n n

Σ I A/1: a = Σ A/ w, vv/zere n E N , λy E C,

Hence if ^l 2nd 93 flr^ Banach *-algebras and φ: 5ϊ —> 33 is α /ίn^αr map
satisying either φ{%qυ)Q^qu or (when 51 has an identity element)
φ(%υ)Q^υ then φ is a y-contraction.

Proof. See [11], especially the remark at the bottom of page 63.

We remark that if ?ί and 93 are Banach *-algebras, 93 is reduced,
and φ: ?ϊ->93 is a γ-contraction then φ is continuous with respect to
the complete norms of % and 93. This follows from a standard
application of the closed graph theorem since γ is always continuous
with respect to the complete norm.

Next we extend some results known previously for JB*-
algebras. In applying condition (b) of this theorem the following
remark is sometimes useful. If φ: 21 -> 93 is a Jordan homomorphism,
51 has an identity element, and 93 is a topological algebra, which is the
closure of the algebra generated by φ(2l), then φ is unital [14,
0.10.3]. It is easy to prove, starting from (b), that Kετ(ψ) is a closed
*-ideal [14,0.10.8]. This is also an immediate consequence of Theorem
3(c) below.

THEOREM 2. Let 51 and 93 be reduced Banach *-algebras with
identity elements. Let ψ: 51 —»93 be a linear map. Then the following
are equivalent.
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(a) ψ(%u)CSβϋ.
(b) There is a unitary element u E 93 and a unital Jordan *-

homomorphism φ: 51 —> 93 satisfying

ψ(a) = uφ(a) V a GSί.

if ψ is a bijection these conditions are also equivalent to:
(c) ψ is a γ-isometry.

REMARK. We could prove this theorem by extending ψ to a map
between B*-algebras and then quoting known theorems. Instead we
will indicate how to modify and piece together various known proofs to
cover the present situation. In the process we give a proof for the
B*-algebra case which we believe is easier than any proof which has
previously been written down in one place. We begin by modifying a
proof due to A. L. T. Paterson [15] to prove (a) implies (b). In the
B*-algebra case this result is due to B. Russo and H. A. Dye [18]. The
implication (b) Φ (a) is easy algebra which is essentially an observation
of N. Jacobson and C. E. Rickart [4]. When ψ is a bijection the
implication ((a) and (b)) Φ (c) follows from Theorem 1. In the B*-
algebra case the implication is due to B. Russo and H. A. Dye [18] and
now has an easy proof due to L. A. Harris [3]. We use a result of P.
Miles [10] and modify an argument due to H. F. Bohnenblust and S.
Karlin [1] to show (c) Φ (a). In the B*-algebra case the implication
(c) Φ (a) is due to R. V. Kadison [8].

Proof. Suppose ψ satisfies (a). Denote ψ(l) by u and define
φ: SI —>93 by φ(α) = u*ψ{a) for each a ESί. Then it is enough to
show that φ is a Jordan *-homomorphism.

First we show that φ is a linear *-map. It is obviously linear and it
is a γ-contraction by Theorem 1. Let ω be an arbitrary state of
93. Then ω ( l ) = l and \ω(b)\^γ%(b) holds for all b e 93. Thus
φ*(ω)(l) = ωφ(l) = ω(l) = 1 and |φ*(ω)(α)| = |ω(φ(α))| ^ γ«(φ(α))^
γ«(α) hold for all α 6 l Hence φ*(ω) is a state of 31. Therefore
ω(φ(h)) = φ*(ω)(h) is real for all h E SίH. Since 93 is reduced and ω
was an arbitrary state, this implies φ(h) is hermitian. Thus φ is a
*-map.

Next we show that φ (h2) = φ (h f for all h E %H. The involution in
% is norm continous since % is reduced. Hence eith is a unitary element
of 21 for each ί E R , and h ESίH. Hence φ(eith) is unitary so
φ (eith )φ (e ~ith) = φ (eith )φ ((eith )*) = φ(eitH )φ (eith )* = 1. Expanding the
first few terms of this identity shows
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\\l-[l + itφ(h)-2-^2φ(h2)][\-itφ(h)-2-ιt2φ(h2)]\\=O(t3)

as t approaches zero. We conclude

t2\\φ(h)2-φ(h2)\\=O(t>)

which implies φ(h2) = φ(hf. This implies φ is a Jordan *-
homomorphism. Hence (a) implies (b).

Now suppose (b) holds. In order to prove (a) it is obviously
sufficient to show ψ(%υ) C S&v holds. For any unitary element w E 31^
let h,k E 9ltf satisfy w = h + ik. Then h and k commute and h2 + k2 =
1. Hence φ(h)2+ φ(k)2 = φ(h2 + k2) = φ(\) = 1. Thus φ(w) =
φ(h) + iφ(k) is unitary if φ(h) and φ(fc) commute. However a calcula-
tion shows 0 = φ({hk - khf) = (φ(h)φ(k)- φ(k)φ(h))2 (cf. [4]). Since
a skew hermitian element in a reduced *-algebra (such as 93) is zero if its
square is zero, φ(h) and φ(k) commute. Hence (b) implies (a).

Now suppose ψ is a bijection. If (b) holds, the map φ is a
bijection and hence a Jordan *-isomorphism. Thus both ψ and ψ~]

satisfy (a) so ψ(^ίu) = 951/. Hence by Theorem 1 ψ is a γ-
isometry. Therefore (b) implies (c).

Assume that ψ is a γ-isometry. We will show that an element u in
a reduced Banach *-algebra is a vertex of the γ-unit ball if and only if it
is unitary. Since an isometry obviously preserves vertices it will
follow that ψ(Άu) = %u.

P. Miles [10], generalizing a result of R. V. Kadison [8], shows that
for any *-algebra SI and any (not necessarily complete) B*-norm γ on
Sί, an element υ E ?ί is an extreme point of the γ-unit ball if and only if
it satisfies

(l-ι;*ι;)2I(l-ιπ;*) = {0}.

If υ satisfies this condition it is a partial isometry since (v - υυ*υ)*{υ -
vv*v) = ( 1 - ϋ*ϋ)ϋ*( l- vv*)v = 0 holds. Thus any γ-vertex is at least
a partial isometry.

Choose a faithful, γ -isometric ^-representation T of 91 on a Hubert
space Q. H. F. Bohnenblust and S. Karlin [1, Theorem 11] show that
for every partial isometry v E 91 the set of linear functional ω on 31
satisfying ω(v) = 1 and |ω(α) | ^ γ(α) for all a E 91 is the weak* closed
convex hull of the set of linear maps of the form

Tvx)
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where x belongs to & and ||x|| = ||Γyx||= 1 holds. However all these
linear functional vanish on \—'υv*. Thus if υ is a γ-vertex then
t?t?*= 1. However if v is a γ-vertex then v* is also a γ-vertex so
v*v = 1 also holds. Thus v is unitary. Hence (c) implies (a).

In the next theorem, condition (a) has not previously been
considered. However it is natural in a number of contexts [14]. The
equivalence of (b) and (c) is essentially due to R. V. Kadison [9] when
the *-algebras are B *-algebras. When the ^representation T of condi-
tion (c) is faithful, the condition says that φ is essentially the sum of a
*-homomorphism and a *-anti-homomorphism.

THEOREM 3. Let 31 and 93 be reduced Banach *-algebras. Then
the following are equivalent for a linear map φ: 31—»93.

(a) <p(&qU)C%qU.
(b) φ is a Jordan *-homomorphism*
(c) The von Neumann algebra 93' generated by any *-

representation of the closed *-subalgebra of 93 generated by φ(3l)
contains a central projection e satisfying

lφ{ab) & = J-φ(a)φ(b) €

Tφ(ab)\\ ~~ e) = Tφ)φ(a)(\ — e)

When these conditions hold φ is a weakly positive y-contraction.

Proof. Assume (a) holds. Whether or not 3ί already has an
identity element we adjoin a new one. That is, we construct the
Banach *-algebra Si1 with C 0 31 as linear space, ( λ φ f l ) * = A * 0 α * a s
involution, (λ 0 a) (μ 0 b) = λμ 0 λb + μa + ab as product and
II λ 0 ex || = |λ I 4-1| α || as norm. Then Sί1 is still reduced since

0 λ + TA0α "

is a faithful ^representation of 3Γ on £ 0 £ > when T is a faithful
^representation of 31 on £>. Construct 931 similarly. Define
φ1:3ί1->931 by <p!(λ 0 α ) = λ 0 φ ( α ) . It is easy to check that an
element in Sί1 is unitary if and only if it has the form £(1 0 ( - v)) for
some quasi-unitary element v in 3ί and some complex number ζ of norm
one. Since a similar statement holds for 93,<p1(3ίί/)C93//

holds. Hence Theorem 2 shows φx (which is obviously unital) is a
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Jordan *-homomorphism. Its restriction φ is also a Jordan *-
homomorphism. Thus (a) implies (b).

A trivial modification of the proof that (b) implies (a) in Theorem 2
shows that (b) implies (a) here also. (Notice that this proof does not
use the hypothesis that 21 is reduced.)

When T is chosen faithful, condition (c) implies (b) in a trivial
way. Now assume (a) and hence (b) hold. Replace 93 by the closed
subalgebra generated by φ(2l). (It is a *-subalgebra.) Extend φ to
φι: 2Γ -» 931 as in the proof that (a) implies (b). Then φ •(»{,) C 93/; so φι

and hence φ are γ-contractions by Theorem 1 and Jordan *-
homomorphisms by Theorem 2. Let 2ϊ and 23 be the B *-enveloping
algebras of 211 and 931 respectively. These are simply the completions
of the incomplete normed algebras (2l\γ9r ) and_(93\jy»O The γ-
contraction φ can be extended by continuity to φ: SI —> 93. Obviously
φ is still a Jordan *-homomorphism and a contraction. Thus we extend
φ once more to its double adjoint map φ **: 21** —> 93** which is just the
extension of φ by continuity in the 2ϊ*-topology. The double dual
spaces 21** and S** are the VK*-enveloping algebras of 21 and 93 under
*-algebra operations inherited from their interpretation as the weak
closures of the universal representations of 21 and 93 [2, §12; or 14,
§4.5]. A Lemma of R. V. Kadison [9, Lemma 2.4] shows that φ** is
again a Jordan *-homomorphism. Arguments of R. V. Kadison [8,
Theorem 10; 9, Theorem 2.6] based on a fundamental result of N.
Jacobson and C. E. Rickart [4] show that <p**, and hence φ, have the
asserted form with 93' = ©**. (In [8] and [9] Kadison actually assumes
φ is surjective, but this is not necessary for the proof.) Now if T is
any ^representation of 2Ϊ then there is an extension T of T to be a
^representation of 21** on the same Hubert space so that the image of
2ί** under T is the von Neumann algebra generated by Γ?τ, and also
generated by T*. Since every ^representation of 21 is the restriction of
a ^representation T of 2Ϊ, this proves (c).

We have already shown that φ is a γ -contraction. A Jordan
*-homomorphism such as φ satisfies φ(h2) = φ(ft)2e93+ so it is obvi-
ously weakly positive.

For B*-algebras the equivalence of conditions (b) and (c) in the
next theorem is implicit in [8].

THEOREM 4. Let 21 and 93 be Banach *-algebras with 21 or 93
reduced. Let φ: 21— 9̂3 be a linear bijection. Then the following are
equivalent.
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(a)
(b) φ is a weakly positive y-isometry.
(c) φ is a Jordan *-isomorphism.

If 21 and 93 have identity elements then these conditions are also
equivalent to:

(d) φ(Sί(/) = 93y and φ is weakly positive.
(e) φ is a unital Jordan *-isomorphism.

Proof. Suppose φ satisfies (a). Theorem 1 shows that both φ and
φ~ι are γ-contractions. Thus φ is a γ-isometry. Hence both 2ί and 93
are reduced. Now Theorem 3 applies and shows that φ (or φ~ι) is a
bijective Jordan *-homomorρhism and hence a Jordan *-
isomorphism. Therefore φ is weakly positive. Thus (a) implies (b)
and (c).

Suppose φ satisfies (c). If 93 is reduced, the proof that (b) implies
(a) in Theorem 3 shows that φ(Άqu)Q^qu holds. In this case φ is a
γ-contraction as well as a bijection so a E 21* implies γ%(φ(a))^
ysΆ(a) = 0 which in turn implies φ(a), and hence α, are zero. Thus 21 is
also reduced. By symmetry it follows also that 93 is reduced if 21 is
reduced. Hence Theorem 3 shows that φ(^ίqu) Q 93^ and φ~ι($qU) Q
%qU both hold. This verifies condition (a).

Suppose (b) holds._ Extend φ by continuity to an isometry
φ: S —> $8 where 21 and 93 are the B ^-enveloping algebras of 21 and 58
respectively. The set of positive elements in a B *-algebra such aŝ 93 is
closed. Hence by continuity φ(h2)E ®+ for any h G 21/,. Since 21 is a
β*-algebra φ is positive.

We now extend φ again by taking its double dual map
φ **. $** ^ φ** τ h e d o u b i e d u a i s p a c e t**(φ**) i s natural identified

with the closure in the weak operator topology of the universal
^representation of 2Ϊ(S). From this interpretation it is clear that φ**
is again a positive map. However Theorem 2 shows that φ**(l) is
unitary. It is also positive since φ** is positive. Hence φ**(l) is
1. Then Theorem 2 shows that φ**, and hence its restriction <p, are
Jordan *-homomorphisms. Thus (b) implies (c).

Theorem 2 shows the equivalence of (b) and (d). If (d) holds then
Theorem 2 shows φ{\) is a positive unitary element and hence φ{\) —
1. Thus (d) and (e) are equivalent.

The reader of this paper will be interested in two recent papers by
A. L. T. Paterson and A. M. Sinclair [16] and by K. Ylinen [19] which
deal with Jordan *-homomorphisms between B*-algebras without
identity elements. All of their results can be reformulated as theorems
about reduced Banach *-algebras. Except for those already given, the
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reformulations which the author has been able to prove are unpleasantly
technical. It appears to be unknown whether the statement of
Theorem 1 in [16] remains valid when "C*-algebra" is simply replaced
by "reduced Banach *-algebra".
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ON THE SEMISIMPLICITY OF GROUP RINGS
OF SOME LOCALLY FINITE GROUPS

D. S. PASSMAN

We consider the semisimplicity problem for group rings of
some locally finite groups. In particular we study locally
solvable groups and linear groups in the mixed characteristic
case. While the results here are by no means definitive, we hope
the techniques constitute a first step in the complete solution.

Our notation follows that of [2] and [4] and all groups considered
are assumed to be locally finite unless otherwise stated. If K is a field
of characteristic 0 then in this case K[G] is trivially seen to be
semisimple. Thus we assume throughout that p > 0 is a fixed prime
and that K is a fixed field of characteristic p.

1. Group ring l e m m a s . The following few results are basic
for handling nil ideals in group rings.

LEMMA 1.1. Let

with Xi G G, Xj / 1 and let x G G. Then there exists n, i such that xpn is
conjugate to (XiX)pn in G. In particular if σ is a set of primfes and if x is a
σ-element then XiX is a σ U {p}-element.

Proof. We have axGJK[G] so ax is nilpotent and hence
(αjc)pn = 0 for some n. Thus by Lemma 3.4 of [2]

0 = (ax)pn = xpn + Σ β?" (*#)"" + β

with β E [K[G], K[G]], the commutator subspace. Since the sum of
the coefficients in β over any conjugacy class is zero it then follows that
the xpn term must be partially cancelled by some conjugate of (xtoc)pn for
some ί. Hence xpn is conjugate to (XiX)pn and the result follows.

LEMMA 1.2. Let P be a normal p-subgroup of G, let
πP: K[G]—>K[P] denote the natural projection and suppose that

a = 1 + Σαιoci

179
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with Xι EG, x,/ 1 satisfies πP(a)£ JK[P], If x EG then there exists
nj such that x&P and xpn is conjugate modulo P to (XiX)p\ In
particular if σ is a set of primes and if x is a σ-element then x,x is a
σ U{p}-element.

Proof Let - : K[G]-+K[G/P] be the natural homomorphism
and observe that the kernel of this map is precisely JK[P] K[G] since
P is ap-group. Then πP(a) is by assumption a nonzero scalar, say b,
and

b~ιά = ϊ + Σ ' (b-ιai)Xi E JK[G]

where the sum Σ' is over all x 4 ^P. Thus Lemma 1.1 applied to the
group G implies that for some n, ί we have xpn conjugate in G to
XiXp\ Since P is a p -group this clearly yields the result.

LEMMA 1.3. Let G = NH be finite with N<\G and HΠN =
(1). // JK[G]ΠK[H]^0 then every p'-conjugacy class of N is
normalized by an element of H of order p.

Proof By assumption we may choose

a = 1 + Σ βΛ EJK[G]

with Xi E H, Xi/ 1. If x E N is a p '-element then by Lemma 1.1 there
exists n, ί with xpn conjugate to Cxtjc)p\ If g EG with g'\xpn)g =
(x tx)pn then we see that xpn is centralized by g(XiX)g~\ Hence since x
is a p'-element, {x) = (xpn) so JC is centralized by g(XiX)g~ι.

Write g(XiX)g~ι = yh with y EN, h EH. Then since N < G we
have modulo N

hpn ^

so hpn E H Π N = (1) and Λ is a p-element of H. Furthermore Λ^ 1
since yh = ̂ (jCije)̂ "1 g: N. Finally jcy/1 = x shows that h normalizes the
N-conjugacy class of x and the lemma is proved.

LEMMA 1.4. Let G have two finite subgroups N and H. Suppose
N0<N with N/No an abelian p'-group and suppose that H normalizes
both N and No. If H Π N = (1) and JK[G]Π K[H]/0 then
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NINO= U
h

where h runs through all elements of H of order p.

Proof. By Lemma 16.9 of [2] we may assume that G = NH. If
x EN I No then since N/No is a p '-group there exists xEN, a p1-
element, with x = xNolNQ. Now by the preceding lemma there exists
h EH of order p which normalizes the N-conjugacy class of JC and
hence the N/N0-conjugacy class of x. Finally since N/NQ is abelian, h
centralizes JC.

The following is a partial converse.

LEMMA 1.5. Let G = NH be finite with N<G. Suppose that
N= UhCN(h) where h runs through all elements of H of order
p. ThenJK[G]ΠK[H]^O.

Proof. Set a = H = ΣheHh. We show that aEJK[G] and in fact
we show that K[G]a is a left ideal of square zero. Since ha = a for
h EH, this ideal has as a spanning set elements of the form xa with
x EN and it suffices to show that for all such x,axa = 0.

Given x EN by assumption there exists y EH of order p which
centralizes it. If Y = (y) then a = H = Ϋβ where β is a sum of right
coset representatives for Y in H. Since x and y commute and | Y | = p
we then have

axa = axΫβ = aΫ - xβ

= \Y\a -xβ = 0

and the result follows.

In locally finite groups the concept of locally finite index is trivial
but the following does seem to be of interest. Let N be a subgroup of
G. We say that N is almost normal in G if for every finite subgroup H
of G we have [(N9 H): N] < ». Clearly every normal subgroup of G is
almost normal and indeed we have

LEMMA 1.6. Let Nbe a subgroup of G. Then N is almost normal
in G if and only if every finite subgroup H of G normalizes some normal
subgroup of N of finite index.

Proof. Let H be a finite subgroup of G. If N is almost normal in
G then [<N, H): N] < oo and both H and N normalize the core of N in
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Conversely suppose H normalizes JV0 with N0<N and of finite
index. Then N0<(N,H) and (N,H)INO is a locally finite group
generated by the finite groups N/No and NOHINO. Thus [<N, H): N] g

Recall that if H is a subgroup of G then

= {xGG\[H:CH(x)]<™}

is the almost centralizer of H in G. Thus in particular DG(G) = Δ(G) in
the f.c. subgroup of G.

LEMMA 1.7. Let N be an almost normal subgroup of G. Then
D = ΌG(N) is normal in G. Furthermore if JK[N] is nilpotent then D
carries the radical of G, that is

= JK[D] K[G].

Proof. Let H be an finite subgroup of G. Then by assumption N
has finite index in M = (N, H). Thus clearly

D Π M = DM(N) = Δ(M) <\M

and it follows easily that D < G.
Now suppose further that JK[N] is nilpotent. Since D <G and G

is locally finite we have

ττD(JK[G]) K[G] D JK[G] D JK[D] K[G]

where πD: K[G]-*K[D] is the natural projection. Thus it suffices to
show that the ideal πD(JK[G]) of K[D] is nil. Let a EJK[G] and
take ff = <Suppα> in the above. Then a eJK[G]Γ)K[M]CJK[M]
by Lemma 16.9 of [2]. Also [M: N] <°° and /K[N] is nilpotent so
JK[M] is nilpotent by Lemma 16.8 of [2]. Hence Theorem 20.2 of [2]
yields JK[M] = JK[Δ(M)] K[M] so πΔ(M)(α) is nilpotent. Finally
Δ(M) = D Π M so πD(a) = 7rΔ(M)(α:) is nilpotent and the result follows.

We remark that not every subgroup of a locally finite group is
almost normal. For example let N be a infinite locally finite group and
let Hέ (l) be finite. Then G = H\N is locally finite but [(if, N): N] =
[G:ΛΓ] = oo.
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2. Locally solvable groups. The next result is a key lemma
in the study of Sylow intersections in solvable groups (see [1], for
example).

LEMMA 2.1. Let P be a finite p-group which acts faithfully on a
finite abelian p'-group Q. If either P is abelian or both \ P | and \ Q | are
odd, then there exists x e Q with CP(x) = (1).

Proof We proceed by induction on \Q\. Suppose Q = Q\ x Q2

and each factor is nontrivial and P-invariant. Then there exist x, G ζ),
with Cp(Xi) = Cp(Qi) so if JC=JC,JC2 then CP(JC) = CP(ζ),) ΠCP(Q2) =
(1). Thus we may assume that Q is indecomposable as a P-module and
hence Q is a q-group for some q^P- Also P acts faithfully on Ω{(Q)
so we may take Q to be elementary abelian and then P acts irreducibly
on Q. If P is abelian then by Schur's lemma P acts semiregularly on
Q. Hence for all x G Q -{1}, CP(JC) = <1>.

We now assume that both \P\ and \Q\ are odd and prove that Q
contains at least two orbits under the action of P of elements x with
CP(x) = (l). First if P is cyclic then P acts semiregularly on Q* =
Q -{1}. The number of such orbits is then ( | Q | — 1)/|P|, a nonzero
even number since both \P\ and \Q \ ^ 1 are odd.

Now suppose P is not cyclic so, since p > 2, P has a normal abelian
(p,p)-subgroup U. If H = CP(U) then f ί < P , [ P : H ] = p and P =
(/f, y) for some element y G P. If L is a noncentral (in P) subgroup of
U of order p and if V = CQ(L) then

Q = V x V y x V y 2 x x VyP~ι

is a direct product of H-submodules of Q. This all follows from
Schur's lemma since U cannot act semiregularly. If N is the kernel of
the action of H on V then by induction there exist two //-orbits
A,BQV* with the property that x G A, B implies that CH(x) = N.

Consider the two subsets of Q given by

S =ΛxBy x β y 2 x x JS*""1

T = A x Ay x B y 2 x x β y P " .

If JC G 5, Γ then clearly CH(JC) = Γ) Nyi = <1>. Then also CP(JC) = <1>
since hy G CP(x) for some /ι G // would imply using p > 3 that A and B
are the same //-orbit. Finally it is clear from P = (H,y) that no
element of S can be P-conjugate to an element of Γ. Thus Q does
indeed have at least two such orbits of elements x with CP(JC) = <1) and
the result follows.
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We remark that the above lemma is false in many instances if the
prime 2 is present. Indeed the following three examples are typical of
what occurs.

First let p = 2 and suppose q = 2n - 1 is a Mersenne prime. Then
the dihedral group P of order 2n+1 acts faithfully on Q, an abelian group
of type (q, q). If x, y are distinct noncentral involutions of P then
clearly \CQ(x)\ = q and CQ(x)Γ)CQ(y) = (1) since the cyclic subgroup
of P of index 2 acts semiregularly. Thus since P has 2" noncentral
involutions JC we have

U CQ(xY , — I n*\

and every element of Q # is fixed by some involution of P.
Now let p = 2 and suppose q = 2n + 1 is a Fermat prime. If Po is

cyclic of order 2n = q - 1 then Po acts faithfully and transitively on V*
where V = Zq is cyclic of order q. Thus P = P0\Z2 acts faithfully on
Q = V, x V2, a direct product of two copies of V. Write P = (Pu P2, *">
where Pf is cyclic of order q - 1 and acts transitively on V* and where x
interchanges Vλ and V2. If v = (vu υ2) G Q and say vt = 1 then CP(v) D
P} for jV ί. On the other hand if ϋ ^ 1 for / = 1,2 then by transitivity
there exists y, E Pt with ϋ? = uy (jV /), viewed as elements of V, so that
y,y2^ centralizes v.

Finally let q = 2 and let p = 2n - 1 be a Mersenne prime. Then Zp

acts faithfully and transitively on V* where V is elementary abelian of
order 2n and hence P = ZP\ZP acts faithfully on Q = V, x V2 x x Vp

a direct product of p copies of V, As in the preceding example the
transitivity of Zp on V* implies easily that every element of Q has a
nontrivial centralizer in P.

As an indication of the basically different behavior with respect to
semisimplicity of odd and even order finite solvable groups we prove
the following.

PROPOSITION 2.2. Let G be a finite solvable group and let P be a
p-subgroup of G. Suppose that either P is abelian or \G-\ is odd. Then
JK[G] Γ)K[P]έO if and only if P Π OP(G) ̂  <1>.

Proof. Suppose first that L = P ΠOp(G)^(ί). Then for the
augmentation ideal ω(K[L])CK[P] we have
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0ϊω(K[L])Cω(K[Op(G)])CJK[G]

so JK[G]ΠK[P]έO.
Conversely suppose that PΠO P (G) = (1) and define N < G by

NDO P (G) and N/OP(G) = Fit(G/Op(G)). By Fitting's theorem P
acts faithfully on N/OP(G) and hence on N/Nθ9 the Frattini quotient of
the nilpotent p '-group N/OP(G). Now according to Lemma 1.4 we
must have

N/No= U CNINo(h)

for all h E.P* but since either P is abelian or | G | is odd this violates
Lemma 2.1. The result follows.

On the other hand if G = QP for any of the three examples given
above then G is solvable, P Π OP(G) = (1) since P acts faithfully on Q
and JK[G] Π K[P] ̂  0 by Lemma 1.5.

LEMMA 2.3. Let Gbe a finite group with subgroups H, H} and H2.
(i) Suppose that for all g ELG, Hg Π H2 contains an element of

order p. Then there exists an element x E H] of order p with

(ii) Suppose G acts transitively as permutations on Ω and that for
each a EΩ, H contains an element of order p fixing a. Then there
exists an element x E H of order p with [G: C(x)] ^ | H | | Ga .

Proof. We consider (i). Let X be the set of elements of H{ of
order p and let Y be those of H2. Then by assumption for each g GG
there exist x E X, y E Y with x8 = y. Thus g belongs to a certain right
coset of C(JC) depending on x and y. We therefore have

G = U C(x)gxy

and hence for some x E X , [G: C(JC)] ̂  |X | | Y |. Since XC/ί,, YC
/ί2 this part follows.

Finally for (ii) we merely apply (i) with Hλ = Hy H2 = Ga. For each
g E G we have by assumption an element of order p in

so there is an element of order p in H8 Π G« = f/f Π
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LEMMA 2.4. Let Gbea locally finite group with Oq(G) = (ί) for all
primes q. If His a finite subgroup ofG then there exists a subgroup G*
of G with G*DH and such that G* is the ascending union of the finite
groups H C G , C G 2 C . Furthermore for i >/, G, ΠFit(Gf) = <1).

Proof. We first find such a sequence of groups G, with G, Π
Fit(Gi+1) = <l>. Set GX = H and suppose we have found
Gu G2, , Gn. Now Oq(G) = <1> for all primes so for each x G Gn,
x ^ 1 the normal closure (x)G is not locally nilpotent. Thus there exists
a finite group L with (x)L not nilpotent. We merely let Gn+i be the
group generated by Gn and those finitely many L's, one for each x e Gn

j t^ 1. Clearly Gn Π Fit(Gn+1) = <1>.
Finally let i > j so i g j + 1 . Then

G, n Fit(α ) = Gj n (Gy+I n Fit(G,))

cσ / nFit(G i + I ) = <i>

and the lemma is proved with G* = U G, .

We now come to our main result on locally solvable groups. The
oddness hypothesis is obviously too restrictive here and the conclusion
is not strong enough. Never-the-less we do show that JK[G]^0
implies the existence of some nontrivial global structure on G, certainly
a first step towards the complete solution.

THEOREM 2.5. Let K be a field of characteristic p > 0 and let G be
a locally finite, locally solvable group. Suppose that either all p-
subgroups of G are abelian or that G is a 2'-group. Then JK[G] / 0
implies Oq(G) ^ (1) for some prime q.

Proof We assume that Oq (G) = (1) for all primes q and show that
JK[G] = 0. Suppose by way of contradiction that JK[G] ^ 0 and let
a£JK[G] with lGSuppα. Set Jf = (Suρpα) and apply Lemma
2.4. By Lemma 16.9 of [2] aEJK[G*] so we may assume that
G = G* = U Gt since clearly O«(G*) = <1> for all q. Set Ft = Fit(G,)
and write Fι=PiX Q< where P, = OP(F,) and Qt = <V(F,).

Let Q =(QuQ2,' - •). Since Q, normalizes Q for j^i,Q is
clearly a p '-group. This group can best be visualized as the acending
union of the n-fold semidirect products QnQn-i * Qi Now G, nor-
malizes (Qh Q/+i, •) a normal subgroup of Q of finite index so since
G = U d we conclude from Lemma 1.6 that Q is almost normal in
G. Furthermore Q is a p'-group so JK[Q] = 0 and hence by Lemma
1.7 D = D G ( Q ) carries the radical, that is JK[G] =
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JK[D]K[G]. Thus πD(JK[G])CJK[G] so replacing a by
πD(a) ^ 0 if necessary we may assume that H CD. Now H C G\ so H
normalizes all Q, and since G, Π Q} = (I) for j > i it follows easily that
for any h EίH

CQ(h) = (CQι(h)9C(h(h)9"')

and

= Uι[Qi:CQi(h)].

Thus since H CD we have [Q: CQ(h)] <oo and it follows that /ι
centralizes all Q t after awhile and hence since H is finite, H centralizes
all Qi for ί sufficiently large.

Now set Rn = {P,, P 2, , Pπ) so that !?„ is a p -subgroup of Gn. We
also define Sn+JPn+ι = Fit(Gπ +,/PΛ + 1). Then Sn+1/Pn+1 is a nilpotent p ' -
group and we let Sn+] = (SnjPn+])IΦ(SnjPn+]) be its Frattini
quotient. Observe that H CG] implies that H normalizes Rn and that
RnH acts on Sn+I. We will use this action to show that for some
element h CHΦ we have [i?n: C R f l ( Λ ) ] ^ | H | 2 .

Now Rn is a p-subgroup of Gn so l?n n P n + , = (l) and hence by
Fitting's theorem, since Gn + 1/Pπ +, is solvable, we see that Rn acts
faithfully on Sn+,/Pn+1. Hence Rn also acts faithfully on 5Π+1. If H
does not act faithfully on Sn+ι and if hGH* acts trivially then
(Rn,h)CRn act trivially so h centralizes Rn and [Rn: CRn(h)] = 1 ^
IH |2. Thus we may assume that H acts faithfully on Sn+] and therefore
that H Π Sn+] = (I) since 5n + 1 acts trivially on Sn+].

By assumption either JRn is abelian or both Rn and 5n + J have odd
order. Hence we conclude from Lemma 2.1 that there exists x E 5Π+1

with CRn(x) = 0 ) . We consider the action of L = #„// on the L-orbit
Ω of x. By the above C L (JC) Π JRn = <1> so | C L ( J C ) | ^ | H | for this
particular x E Sn+1. Furthermore since i ϊ Π Ŝ +i = (1) Lemma 1.4 im-
plies that every element of Sn+1 is centralized by some element of H of
order p. Thus by Lemma 2.3 (ii) there exists h E.H* with

Since [JRΠ: CRn(h)]^[L: CL(h)] this fact follows.
Let P = (Pi,P 2, * •"). Then since P is the ascending union of the

groups JRn and since H is finite, it follows from the above that there
exists hGH* with [P: CP(h)]^\H|2. Again we have
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and

so h centralizes all Pj with / sufficiently large. Since h also centralizes
all Qj with j sufficiently large, it follows that h centralizes Fy for some
j > 1. But Gj is solvable and h G Gh h £ JF) so we have a contradiction
by Fitting's theorem. This completes the proof.

We remark finally on locally solvable groups which are not neces-
sarily locally finite. If G is such a group and if H is a finitely generated
subgroup of G, then H is of course a finitely generated solvable
group. Thus by a theorem of Zalesskii [7] (or see [4] Theorem 4.2)
JK[H] = NK[H] and hence by Lemma 4.1 of [4] we have JK[G] =
N*K[G]. Now by Theorem 1.6 of [4]

N*K[G] = JK[A+(G)] - K[G]

where Λ+(G) is a certain locally finite characteristic subgroup of
G. Clearly Λ+(G) is locally finite and locally solvable so Theorem 2.5
applied to Λ+(G) yields results on JK[G],

3. Linear group reductions. We now begin our work on
locally finite linear groups over fields of finite characteristic q ^ p The
cases q = 0 and q = p have already been considered in [3] and [4]. In
the following, unless otherwise indicated, q will be a fixed prime
different from p and all groups will be locally finite linear groups in
characteristic q. The first lemma is well known. We let GLn(qx)
denote the general linear group over GF(qx), the algebraic closure of
GF{q).

LEMMA 3.1. Let G be an irreducible subgroup of GLn(F) with F
algebraically closed. Then G is conjugate in GLn (F) to a subgroup of

Proof. Since F is algebraically closed we have FD GF{q") and
since G acts irreducibly the linear span FG is the whole matrix ring Fn.

Since FG = Fn choose xu x2, , jcm E G which form a basis for the
matrix ring Fn. Then H = (JC,,JC2, ,jcm") is a finite subgroup of G and
the embedding of H in Fn is clearly an absolutely irreducible represen-
tation for H in characteristic q. Now H is finite so all such representa-
tions are realizeable over GF(q°°) and hence there exists a nonsingular
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matrix s E GLn(F) with s'Ήs C GLn(q°°). Replacing G by s 'Gs we
may clearly assume that H C GLn(q™).

We now proceed as in the proof of Burnside's lemma. Let tr
denote the usual matrix trace so that tr defines a nondegenerate bilinear
form on Fn. Hence the matrix [tr a,*/] is nonsingular. Now let x E
G. Since the x,'s span Fn we have

X = X CliXi

for suitable ax E F. Hence multiplying by x} and taking traces yields

tr xx} = 2 tfi tr x^ j = 1,2, , m.

Observe that xx, and x^ are elements of G. Thus they are periodic
matrices and have traces contained in GF(qx). Therefore the above is
a set of m equations over GFiq") in the m unknowns au a2, , αm with
nonzero determinant. The solution is therefore in GF{q™) so α, E
GF(qx) for all i and hence x E GLn(qx).

In view of earlier work on linear groups it is reasonable to expect
that Op(G) = <l'> implies JK[G] nilpotent. Thus the following few
lemmas are relevant.

LEMMA 3.2. Let GCGLn(F) with OP(G) = <1>. Suppose that
Go= G Π SLn(F) and JK[GQ] is nilpotent. Then JK[G] is nilpotent

Proof. Now GoOG and JK[G0] is nilpotent so by Lemma 1.7,
JK[G] = JK[D]K[G] where D = DG(G0). It therefore suffices to
show that JK[D] is nilpotent.

Now Do = D Π Go = Δ(G0) and since D is a linear group, Lemma 1.2
(i) of [3] implies that Do has a subgroup Z of finite index which is central
in D. Since DlD0CGLn(F)ISLn(F) we have D/Do abelian. This
implies that H = CD(D0/Z) is a nilpotent normal subgroup of D of finite
index. Now D <l G so OP(D) = <1> and hence Op(/ί) = <1>. But H is
nilpotent so H is a p '-group and JK [H] = 0. Finally [D: if ] < oo so we
conclude from Lemma 16.8 of [2] that JK[D] is nilpotent.

LEMMA 3.3. Let G C GLn(F) and suppose we know that for all
H<Gif dimFH <dimFG then JK[H] is nilpotent. Let M<G with
dimFM< dimFG. Then either JK[G] is nilpotent or [M:MΠ
Z(G)]<oo.
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Proof. Since dimFM < dimFG we know that JK[M] is
nilpotent. Hence by Lemma 1.7, D = DG(M) carries the radical. Now
D<G and if dim FD < dim FG then JK[D] would be nilpotent and
hence so would JK[G]. On the other hand if dim FD = dim FG then
G QFD so by Lemma 1.2 (i) of [3] M has a subgroup of finite index
central in D and hence in G. Thus [ M : M Π Z(G)] < ».

Let r be a prime. By a Sylow r-subgroup of G we mean a
maximal r-subgroup. Thus by definition, every r-subgroup is certainly
contained in a Sylow r-subgroup of G. Now suppose G is a locally
finite linear group. Then by a theorem of Platonov (see [6] Theorem
9.10), for each prime r, the Sylow r-subgroups of G are conjugate in
G. We will use this result implicitly in the remainder of this
paper. Furthermore we have

LEMMA 3.4. Let G C GLn(F) and let P be a Sylow p-subgroup of
G. Then P contains a normal abelian divisible subgroup A of finite
index, Moreover ifFis algebraically closed then A can be diagonalized.

Since the existence of subgroups of finite index is frequently
annoying the following is useful. We use the subgroup 5^(G) as
defined in [5] §5.

LEMMA 3.5. Let G C GLn(F). Then G has a characteristic sub-
group Go such that G/Go is ap' by finite group and such that Go has no
proper subgroups of finite index. Moreover if JK[G0] is nilpotent then
so is JK[G] and if 9>(G0) carries JK[G0] then Sf(G) carries JK[G].

Proof. For any group G let R(G) be the intersection of all its
normal subgroups of finite index and let S(G) be given by S(G)/R(G) =
OP(GIR(G)). Then clearly R(G) and S(G) are characteristic sub-
groups of G. We show first that G C GLn (F) implies [G: S(G)]< «>.

Let P and A be given as in Lemma 3.4. If H is a normal subgroup
of G of finite index then H DA since A has no subgroup of finite
index. Since G has Sylow theorems it follows that P maps onto a
Sylow p-subgroup of G/H so |GIH |p g [P: A]. Now choose H < G
of finite index so that \G/H\P is as large as possible. Then GDHD
R(G) and HIR(G) is residually finite so it follows that H/R(G) is a
p'-group. Hence S(G)DH and [G: S(G)]< oo.

Define Go = S(G)P, the group generated by all p -elements of S(G),
or equivalently Go = Op (S(G)). Clearly Go is characteristic in G and
G/Go is p' by finite. We show now that Go has no proper subgroups of
finite index. Let S = S(G0) Then 5 is a characteristic subgroup of
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Go of finite index and hence S <G. We consider the group G =
GIS. If C is the centralizer of Go in S(G) then certainly S(G)IC is
finite. Also C/(CnG 0 )CS(G)/G 0 is a p'-group so C has a finite
central Sylow p -subgroup and we conclude that [C:OP(C)]<
oo. Therefore OP(C) is a normal subgroup of G of finite index
contained in S(G) so clearly S(G)DOp.(C)2 #(G) since £(G)D GoD
S. Hence by definition of S(G) we have that 5(G)/0p(C) is a
p'-group so S(G) is a p'-group and by definition of S = 5(G0) we have
G0 = (l) and G0 = S(G0). Thus GOIR(GO) is a p'-group. Since Go =
S(G)P is generated by p-elements this yields Go = R(G0) and Go has no
proper subgroups of finite index.

Suppose now that JK[G0] is nilpotent. Since S(G)IG0 is a p'-
group Go carries the radical of S(G) and hence JK[S(G)] is
nilpotent. Thus by Lemma 16.8 of [2], JK[G] is nilpotent. Finally
suppose 5^(G0) carries the radical of Go. Again Go carries JK[S(G)] so
y(G0) carries the radical of S(G). Since Sf(H) is generated by
p-elements for any group H it follows easily that

Corollary 5.5 of [5] now yields the result.

4. Finite Sylow p -subgroups. Our linear group techni-
ques differ sharply accordingly as the Sylow p -subgroup of G is finite or
infinite. In this section we consider the finite case. The following
lemma is proved in [3] in a slightly different form. It also follows easily
from topological considerations.

LEMMA 4.1. Let GCGLn(F) and let Tl9T29-',Tr be a finite
number of affine subspaces of Fn with G C U Th Then G has a
subgroup H of finite index with H C T, for some i.

Proof. We proceed as in Lemma 2.1 of [3] with S deleted and with
the Γ/'s affine subspaces. The latter causes no difficulty. At the end
of that proof we deduce that G permutes transitively by right multipli-
cation certain affine subspaces M,,M2, ,Mm. Since MxΓ\G^φ
some Mi contains the identity. If H is the stabilizer of this M, then
[G: H] < oo and MtH C M, yields H C M, C Tr.

LEMMA 4.2. Let GCGL n (F) , let y,,y2, ,yr GF n be a finite
number of matrices and let {Ti}} for ί = 1,2, , r; j = 1,2, ,s be a
finite number of affine subspaces of Fn. Suppose that for each x E G
there exists /,/ with x~ιytx E Tή. Then G has a subgroup H of finite
index such that for some fixed i,j and all h E fί, ft^y. Λ E 7 .̂
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Proof. Observe that G acts on Fn by conjugation and that this
yields a homomorphism of G into E = EndF(Fπ) = Fn*. Let the image
of G be denoted by G so that G is contained in the appropriate general
linear group. Furthermore for y E Fn and e E E we let ye denote the
image of y under e. Thus clearly for x EG, y EFn we have yx~ =
x~]yx = yx.

F o r e a c h i9j let

Since 7̂  is an affine subspace of Fn it follows easily that M^ is an affine
subspace of_F. Moreover by_ assumption G c U Λ̂fy . Hence by
Lemma 4.1 G has a subgroup H of finite index with H C MfJ for some
/,/. If H is the complete inverse image of H in G then /f has the
required properties.

If G C GLn(F) we let Po = P0(G) be the Sylow p-subgroup of the
set of scalar matrices contained in G. Thus Po is isomorphic to a
subgroup of the multiplicative group F - {0} = F°. Observe that Po is
independent of the choice of basis which gives rise to GLn(F). In
other words if sEGLn(F) and if G is replaced by s~ιGs then
P0(sιGs) = P0(G). As usual we let TΓ̂ : K[G]-+K[PO] denote the
natural projection and tr: Fn^>F the ordinary matrix trace. The main
result of this section is as follows.

PROPOSITION 4.3. Let G C GLn(F) and let

with XiT^l and with πPo(a)£JK[P0]. Suppose that the Sylow p-
subgroups of G are finite and that Q is a Sylow q-subgroup of G. Then
there exist JC, E Supp a, a nonsc alar group element, H CGa subgroup of
finite index and Q CQ a subgroup of finite index such that

for all h EH, y E Q.

Proof Since G has only finitely many conjugacy classes of
p -elements it follows that there are only finitely many possibilities for
trjc if x is a p-element. Say these values are μl9μ29 ,μt G
F. Furthermore if x is a {p, q}-element of G then writing x = xpxq as a
product of its p and q parts with (xq)

qm = 1 we have since char F = q
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(tvx)qm = t r x ^ =trxf = (tτxp)
qm.

Thus tr x = trxp = μ, for some i.
Let x EG. Then

and πPo(ax) = πPo(a)£JK[P0]. If y G Q then y is of course a q-
element so by Lemma 1.2 we deduce that for some /, x*fέ Po and x]y is a
{p, q}-element. Observe that this implies that xt is not a scalar matrix
since the scalars contain no elements of order q. Hence we have
shown that given x EG, y G Q there exist ί, j with Xj G Supp a a
nonscalar matrix and with tr x ϊy = μju

For fixed x and for those nonscalar x,'s let

Ma ={γ EFn \tτx*γ = μ,}.

Then Mi, is clearly an affine subspace of Fn and we have Q C
U Aίij. Thus by Lemma 4.1 Q has a subgroup Qx of finite index such

that for some subscript i = /(JC) we have Qx C M7 for some /. That is,
trxίy = μ; for all y G Qx. Note that 1 G Qx so μ, = trx * and the above
becomes

for all y G Qx. Note also that by choice JC, is not a scalar matrix.
Now for each nonscalar JC, define St to be the subspace of Fn given

by

Observe then that for each x EG there exists ί, namely i = /(x), with
xx E Si. Thus by Lemma 4.2 G has a subgroup H of finite index such
that for some ί, JCΛ G S, for all h EH. Say this occurs for the nonscalar
matrix JCJ.

Let {x?} be a finite spanning set for Si with wkEG and with
f(wk) = 1 . If (2 = Π k ( ^ then [Q: (?] < °° and for all y G Q

t r x T k d - y ) = 0

for all k. Thus for all sλESx we have t r s , ( l -y) = 0 and since Si
contains all H-conjugates of JCI the result follows.
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Observe that in the above if Q is finite then the conclusion is
decidedly uninteresting. Namely we could then have Q = (1) so cer-
tainly trxhi(ί - y) = 0 for y G Q. Fortunately in this case we can apply
the following well known theorem of Brauer and Feit (see [6] Corollary
9.7).

PROPOSITION 4.4. (Brauer-Feit). Let G be a locally finite sub-
group of GLn(F) with F a field of characteristic q>0. If the Sylow
q-subgroups of G are finite then G has a normal abelian subgroup of
finite index.

This is of course a modular analog of Jordan's theorem for complex
linear groups. Furthermore there is a bound for the index depending
upon n and the size of the Sylow q -subgroups.

5. Infinite Sylow p -subgroups. We now consider the
case of infinite Sylow p -subgroups. This will require a close look at
p"th roots of unity.

LEMMA 5.1. Let / > 1 be an integer and assume that p \ f - 1 and
that 41 / - 1 if p =2. Then for all integers a S 1

| / β - l | P = | α | p | / - l | p

Proof This is standard. We first consider some special
cases. Suppose p Jί a. Since / = 1 (p) we have

s o | / - l | p = | / - l | p = | α | p | / - l | p .
Now let a = p. If p = 2 then 41 / - 1 so / = 1 + 4k and

J ~ ι

T h u s | f - 1 | 2 = 2 | / - 1 | 2 . On the other hand for p > 2 we have p | / - 1
so / s 1+ pk(p2). Thus /' = 1 + ipk(p2) and

£ _
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Therefore we have \fa - 1 \p = p | / - 1 |p = | a \p \f - 1 |p.
The result follows easily by induction on a. Namely if a = be is a

proper factorization then

LEMMA 5.2. Let GF(f) be a finite field and suppose that p\f-l
and that 41 / - 1 if p = 2. Let η generate the Sylow p-subgroup of the
multiplicative group GF(f)°. Then for all n the polynomial xpn - η E
GF(f)[x] is irreducible.

Proof Note that o(η) = pm = | / - l | p . Thus if δ is a root of
xpΛ-η then o ( δ ) = p m + n . If δ<ΞGF(fa) t h e n p m + n ^\fa - l | p =
\a \P - \f~ l\p b y L e m m a 5.1 s o p n ^ \ a \ p a n d p n ^ a . Thus xpn -η
must be irreducible.

We now assume that G C GLn(q™) and that G has an infinite Sylow
p -subgroup P as described in Lemma 3.4. Furthermore by considering
a conjugate of G in GLn(qx) if necessary we may assume that the
maximal abelian divisible subgroup A is diagonalized. If [P: A] = pa

then we define the field F0 = F0(G) by F0=GF(q)[%] where o(g) =
pa+2. Observe that if F is any finite field containing Fo then clearly
\F°\p^p2 and hence Lemma 5.2 with F = GF(f) will always
apply. We fix the choice of Fo.

Let k = k(A) denote the maximal number of distinct eigenvalues of
any element of A. Clearly 1 ̂  k{A) g n. If k(A) = 1 then A consists
of scalar matrices and is essentially trivial for our purposes. Thus our
interest is in k(A)^2.

Let F be a finite subfield of GF((j°°). By an F-functional
/: GF(q™)n -+GF{q~) we mean a linear functional of the form

with f E F, some f = 0 so that not all diagonal entries occur and some
/t 7̂  0 so that this is not the zero form. The following lemma is the crux
of our argument.
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LEMMA 5.3. Let G C GLn{q") and let Pbe a Sylow p-subgroup of
G as described above and with A diagonal. Let

with xt ̂  1 and πPo(a) f£ JK [Po]. Define

F = F(a) = F0[trjcf | JC, E Supp a].

(i) // k(A) ^ 3 then there exists an F-functional I and a nonscalar

x-t with l(Xi)e.F.
(ii) Ifk(A) = 2 and G C SLn(q°°) then there exists an F-functional I

and a nonscalar jt, such that l(Xi)n E F.

Proof. Since k(A) ^ 2 we have A ^ (1) and we can choose y E A,
y ^ 1 to have the maximal number /c=/c(A) of distinct
eigenvalues. Since any root of y in A has at least as many distinct
eigenvalues* as y does, by taking a suitable root if necessary, we may
assume that o(y)> n2. This will only be needed for (ii).

Let L be the finite subfield of GF(q~) generated by F o and all the
entries of all the matrices jcf. Clearly L D F. Let |L°|P = ph and
choose J C E A with xph = y. Since A is diagonal we have x =
diag(λ,,λ2, ,λΛ).

Now JC is a p -element so by Lemma 1.2 there exists Xif£P0 such
that XiX is a p-element, say ί = 1. This clearly implies that xλ is not
scalar. Write

w2

* H > Π

so all Wi GL and since x,x is a p-element it is conjugate to some

element z EP. Note that z may not be diagonal but let its eigenvalues

be μι,μ29- 9μ>n. Thus we have

/i\ z*i ι r ' A ί ~~ u Λ * Λ ~~ t r z — 2iι μt %

Choose p-element λ E^GF(q°°) of sufficiently large order so that
λf, μt E <λ) and o (A) § p \ Say o (A) = p Λ + m and write

λ, = λ b ; = λpmb+c O^c, < p m

μ i = λ

d ; = λ p m ^ OSe^p".
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Then (1) yields

(2) Σ Σ

Note that o (Apm) = p h so λpm GL and thus A is a root of the polynomial
in L[t] given by

Furthermore since λpm in fact generates the p-part of L° Lemma 5.2
implies that the minimal equation for A over L has degree pm. Since
all d and ex satisfy 0 ^ ch ex<pm we deduce therefore that this
polynomial must vanish identically. Hence

(3)

We first consider the left hand side (lhs) of (3). If ct = q then
λ, Iλj = Apm{b^ so (λ, Iλj )ph = 1 and A f = A f. Note that by definition of
x

y=χp
h =diag(λ?h,λ?h, ,λSfc)

so we see that x has at least as many distinct c.'s as y has distinct
eigenvalues. Now certainly x has at least as many distinct eigenvalues
as it has distinct c.-'s. Finally y E.A was chosen to have the maximal
number k of distinct eigenvalues. All this implies that x has precisely
k distinct eigenvalues and that these have distinct Q'S. For conveni-
ence let us assume that the rows and columns are so labeled that
λi,λ2, ,λk are distinct. Then the lhs of (3) looks like

where each σ, is the appropriate sum of those w/s such that Ay = λ, .
Now if some σ, = 0 then

/(*,)= Σ ^ =
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is an appropriate F-functional with value 0 E F since k g 2. Thus we
may assume that σ{ ^ 0 for all /. This implies that the Ihs of (3) contains
precisely k terms.

We now consider the right hand side (rhs) of (3). By (3) and the
above there must be at least k distinct et 's. Since o (λ) = pm+h we have
(μilμj)ph = \(e>-ei)ph and hence μ f = μ f if and only if e{ = eh Now
L D F 0 so ft^α by definition of Fo. Hence zpa EA implies zph E
A. Observe that zph has eigenvalues μp\μp\ ,μίΓ so by definition
of k(A) there are at most k distinct μ f 's and hence at most k distinct
ft's. This therefore implies that there are precisely k distinct ft's say
eι,e2,-- ,ek.

Now observe that since h g a, μ f = μ f implies μ?" = μΓ and
hence et = e}. Thus there are at least k distinct μ f 's. But zpa E Λ so
by definition of k there are at most k distinct μ f ' s . Therefore we
deduce that e, = e] implies that μ f = μ f so (μilμjY* = 1 and μ./μy E F o

by definition of Fo. Finally by grouping together all the terms of the rhs
with the same e{ we have

with Ti E F o since τf is the sum of all those terms μ//μt with eϊ = eh

We now have the equal polynomials in t

with the C/'s distinct, the e,'s distinct and all σx^ 0. Thus the terms on
the right and left sides must match one for one and by renumbering the
right side if necessary we deduce that for i = 1,2, ,fc

(4) c, =

Let μ = λ p m so that o(μ) = ph and μ generates the p-part of
L°. Then σ, = T.μ^ . Now clearly L D FD Fo so if \F°\P = pr we
have Λ ^ r and say Λ = r + s. Write

σt = τ,μ d~di = r.μpi"1+lJί 0 g i?f < p *.

Then T/EFoCF, μ p I e F , t r x , E F so
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trx, = σ, + σ 2 + + σk = Σ (riμ
p'u')μt"

and μ is a root of the polynomial in F[t] given by

But o(μpS) = pr = \F°\P so Lemma 5.2 implies that the minimal polyno-
mial of μ over F has degree ps. Since 0 ^ v{ < ps we deduce that

(5) Σ ( ^ " ' * ) * " =trjc,.

Suppose two distinct ϋ/'s occur. Then let v be one such nonzero
tv It follows that

so

is an appropriate F-functional for x, with value OEF.
Thus we may suppose that all vt = v. If trx, / 0 then by (5) we

must have υ = 0 and hence since k S 2

is an appropriate functional. Also if k > 2 then

/(*,) = σjτ.μ^ - σ2lτ2μ
p'u> = 0

is an appropriate F-functional with value 0 G F.
There remains the case k(Λ) = 2, trJCI = 0 and here we can assume

G C SLniq00). Note that σ, + σ2 = tr^! = 0 and by (4) σ, = rλμxlλλ and
o-2 = T2μ2/λ2. Suppose that λ, occurs in x with multiplicity b so that A2

occurs with multiplicity n - b. Then
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Now suppose that e} - e{ for c values of j so eι = e2 for n - c values of
j . Since ex - e, implies that μt Iμ, is a pa th root of unity we then have

\=detz=μc

ιμΓcρ

where ppa = 1 and hence p E F0CF.
By renumbering if necessary we may suppose that o(λ\) ^ o(λ2) so

that O(AI) = O(JC). Since σ2- -cr, we have using μc

xμ
n

2~
c £ίF

so

(6) σ 7 = η λ T c λ Γ "

for some η E F. Thus using λ"~b = A7b we have

n(n-ί>) __ n~ bλ -c(n-fc) \ (c-n)(π-fe)

*~n-b\ -c(n-b)\ -b(c-n)

— η Λ j Λ i

Note that σ, ̂ 0 so η ^ 0 and σ,, η E L Thus λ?(b~c) is ap-element of
L so by definition of Λ,o(λ? ( 6 " c ) )^p* and Af n ( 6 " c ) = 1. Now o(x) =
o(λ,) and JCP" = y so ynib~c) = χp

h^b~^ = l. On the other hand y was
chosen to have order larger than n2. Since 1 S b, c g n - 1 this implies
easily that b - c. Therefore (6) yields

σn

{ =ηλ7*λ2~n =η EF

and l(X]) = σλ is an appropriate F-functional with value an nth root of
an element of F. This completes the proof.

The main result of this section is now an easy consequence.

PROPOSITION 5.4. Given the assumptions of Lemma 5.3, there
exists a subgroup H of finite index in G, an F-functional I and a
nonscalar jcf E Supp a with

for all hEH.
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Proof. We use the notation of Lemma 5.3. For each F-
functional / and constant c with cn EF let

Then M(l,c) is an affine subspace of the matrix ring
GF(q°°)n. Furthermore since F is finite there are only finitely many of
these.

Let JC E G. Then

ax = \^^kix
x

i

with x\¥L\ and since Po is central, πPo(ax) =
πPo(a)£JK[P0]. Moreover since trjC/=trx, we have F(α*) =
F(a). Thus by Lemma 5.3 applied to a\ there exists an F-functional /
and nonscalar JC* (and hence jcf is nonscalar) so that /(JC*) = c for some c
with cn E F. In other words we have shown that for each JC E G there
exists a nonscalar JC, E Supp α with JC* E M{l,c) for some /, c. Thus by
Lemma 4.2 G has a subgroup fί of finite index such that for some fixed
UUc we have JC* EM(l,c) for all hEH. Finally since 1EH, the
definition of M(/, c) yields

/(*?) = c =/(*!)

and the result follows.

6. Some linear groups. The results of the preceding two
sections lead us fairly naturally to the following definition. Let G C
GLn(F). We say that G is a large subgroup of GLn(F) if for all
nonscalar matrices JC E G and all subgroups H of finite index in G, the
F-linear span of the matrices xhχ — xh2 for all huh2EH consists
precisely of all the matrices in Fn of trace 0. Let us write 5(JC, H) for
the above linear span of xhι-xh2 and T(Fn) for the set of all matrices of
trace 0. We have clearly

LEMMA 6.1. Let G C GLn(F).
(i) // L is a field extension of F then G is large in GLn(L) if and

only if it is large in GLn(F).
(ii) // s E GLn (F) then G is large in GLn (F) if and only if s ιGs is

large.
(iii) Suppose G is large in GLn (F), N <G and [G: H]< °°. Then

H is large in GLn (F). Moreover either N consists of scalar matrices or
N acts irreducibly.

Our main result is as follows.



202 D. S. PASSMAN

THEOREM 6.2. Let Kbea field of characteristic p > 0 and let G be
a locally finite group. Suppose that G C SLn (F) is a large subgroup of
GLn(F) where F is a field of finite characteristic q?^p. If Po denotes
the Sylow p-subgroup of the group of scalar matrices in G, then

= JK[P0] K[Gl

Proof. By Lemma 6.1 (i) we may assume that F is algebraically
closed. If G consists of scalar matrices then, since G C SLn(F), G is
in fact a finite abelian group so the result is clearly true here. Thus we
may assume by Lemma 6.1 (iii) that G acts irreducibly. Now accord-
ing to Lemma 3.1 G is conjugate to a subgroup of GLn(g°°). Therefore
finally by Lemma 6.1 (i) (iί) we may assume that F = GF{q") and clearly
also that n g 2.

Now we have

πPo(JK[G]) K[G] D JK[G] D JK[P0] K[G].

Thus we need only show that πPo(JK[G])CJK[P0]. Suppose by way
of contradiction that there exists βEJK[G] with
πPo(β)£JK[P0]. Then certainly τrP o(β)^0 so we can choose w e
Supp β, w<ΞP0. If β = aw + then clearly a = a'ιw'ιβ GJK[G],

and

a = 1 + Σ *Λ

with Xi^l. There are now three cases to consider.
Suppose first that the Sylow p -subgroups of G are infinite and use

the notation of Proposition 5.4. By replacing G by a conjugate if
necessary we may assume that the divisible subgroup A of P is
diagonal. Since P is infinite and [P: A]<°° we have that A is
infinite. Furthermore GCSLn(q°°) so k(A)^2 since otherwise A
would consist of scalars and have order at most n. Thus Proposition
5.4 applies and there exists a subgroup H of G of finite index, a
functional / for some subfield of GF(q°°) and a nonscalar JC. ESuppα
with /(xΐ) = /(jct) for all hEH. Then for huh2eH we have
/(xί'-jC/O^O so / annihilates S(xhH). Since G is large, / therefore
annihilates T(GF{q™)n) certainly a contradiction since n ^ 2 .

Now suppose that the Sylow p -subgroups of G are finite but the
Sylow q -subgroups of G are infinite and use the notation of Proposition
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4.3. Then there exists a nonscalar xt G Supp α, H C G a subgroup of
finite index and Q C Q a subgroup of finite index such that

for all h G H, y G Q. Thus for a fixed y G Q we have tr S(xh h) x
(1 - y) = 0 so since G is large tr Γ(GF(<ΠΠ)(1 - y) = 0 and hence 1 - y
is a scalar matrix. But then y is a scalar q -element so y = 1 and
Q = (1), a contradiction since we assumed Q is infinite.

Finally suppose that the Sylow q -subgroups of G are finite. Then
by the Brauer-Feit result, Proposition 4.4, G has a normal abelian
subgroup B of finite index. Since n > 1 B cannot be irreducible and
hence by Lemma 6.1 (iii) B consists of scalar matrices and is central in
G. Now for any x G G we have S(x, B) = 0 φ T(GF(q°°)n) so G must
consist of scalar matrices, a contradiction since n > 1 and G is
irreducible. Thus πPo(JK[G])CJK[P0] and the theorem is proved.

We remark that the assumption of largeness is not as restrictive as
it might seem. For example if one wished to study linear groups
inductively on the dimension of FG as in Lemma 3.3 then the limiting
groups in which induction does not work might be expected to be
large. We will see this below at least when n = 2.

In addition the assumption G CSLn(F) in the above is not very
restrictive in view of Lemma 3.2. Finally we could of course neaten
the definition of large by assuming that G has no proper subgroups of
finite index. We could safely do this in view of Lemma 3.5. We now
consider subgroups of GL2{F).

LEMMA 6.3. Let G C GL2(F) with F algebraically closed and let
Mbea subspace ofF2. Suppose T(F2) > M > 0 andg~xMg = Mfor all
g EG. Then either M consists of scalar matrices (which can only
occur for q = 2) or G has a subgroup of finite index which is reducible.

Proof Let w, = ί~ A and u2- f ~ Λ. Then it is easy to see

that g~xU\g EFU] implies that g is upper triangular and g'xu2g EFu2

implies that g is diagonal. Hence if G normalizes either Fux or Fu2

then G is reducible. We observe in general that if s G GL2(F) then G
normalizes M if and only if s~xGs normalizes s~ιMs. Thus we can
freely modify M by conjugation. Since dim T(F2) = 3 we have
dimM = 1 or 2.

Suppose first that dim M = 2. Then it follows immediately that for
some nonscalar matrix r
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M = { α G Γ ( F 2 ) | t r α τ = 0 } .

If r has distinct eigenvalues then by conjugating we may assume r is
diagonal and then M is the set of all matrices of the form

ί Λ. Observe now that M contains precisely two 1-dimensional

subspaces of singular matrices namely Fux and Fu3 where u3 =

( 0 J. Since conjugation preserves rank G must permute these two

and G has a subgroup of index ^ 2 which normalizes Fwj and is
therefore reducible. If τ has distinct eigenvalues then by conjugating

we may assume that r = ί 0 j and then M is the set of all matrices of

the form ί~ J. Since Fuι is then the unique subspace of M of

singular matrices we see that G normalizes Fuλ and is reducible.

Now let dim M = 1 so that M = Fτ with τ nonscalar. By con-

jugating we may assume that τ is diagonal or ί π j . Observe that G
normalizes M + S where S is the set of scalar matrices. If r is
diagonal then M + S consists of all the diagonal matrices. Thus M + S
contains precisely two subspaces of singular matrices one of which is
Fu2. It follows that a subgroup of G of index ^ 2 normalizes Fu2 and

is therefore reducible. Finally if T = ( ft ] then M + S consists of all

matrices of the form ί |? J so Fuλ is its unique subspace of singular

matrices and the lemma is proved.

LEMMA 6.4. Let G C GL2(F) with F algebraically closed. Then
either G is large or G has a subgroup of finite index which is reducible.

Proof. Suppose G is not large and choose x E G a nonscalar
matrix and H C G a subgroup of finite index with
S(x, H) ^ T(F2). Then T(F2) > 5(JC, H) D 0 and S(JC, H) is clearly nor-
malized by H. Thus if 5(JC, H) is not contained in the scalar matrices
then by Lemma 6.3 applied to H we see that H has a reducible subgroup
of finite index. Finally if 5(JC, H) consists of scalar matrices then for
all h E H, xh = x + λl for some λ Eί F. Since detxΛ = detx there are
at most two possible values for λ. Therefore [H: CH(x)] = 2 and CH(x)
is reducible since its centralizer contains the nonscalar matrix x.

As an application we have for example
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PROPOSITION 6.5. Let Gbe a locally finite subgroup ofGL2(F) with
charF = q >0. Let K be a field of characteristic p^ q and suppose
OP(G) = (1). Then JK[G] is nilpotent.

Proof. We may clearly assume that F is algebraically closed and
by Lemma 3.2 we may assume that G C SL2(F). Hence if G is large in
GL2(F) then Theorem 6.2 yields the result. On the other hand if G is
not large then by Lemma 6.4 G has a normal subgroup H of finite index
which is reducible. Then H has a normal Sylow q -subgroup Q with
abelian quotient. If Q is finite then CH(Q) is a normal nilpotent
subgroup of G of finite index. Since OP(G) = (1), CH(Q) is a p'-group
so its group ring is semisimple. On the other hand if Q is infinite then
we have easily here D=ΌH(Q) centralizes Q. Thus again D is a
p'-group and by Lemma 1.7 JK[H] = JK[D]K[H] = 0. Therefore in
either case G has a subgroup of finite index with a semisimple group
ring and Lemma 16.8 of [2] yields the result.

We remark that there is no real difficulty in dropping the OP(G) =
(I) assumption in the above. The following is certainly not surprising.

LEMMA 6.6. Let F be an infinite field. Then SLn(F) is large in
GLn(F).

Proof. First PSLn(F) is simple and infinite so SLn(F) has no
proper subgroups of finite index. Let G = SLn(F) and let x E G be
any nonscalar matrix. Now all vectors cannot be eigenvectors for x so
choose V] so that v2 = xv] £ Fυx. If we then extend υu v2 to a basis of
the space V being acted on, then by a conjugation in G we may assume
JC has the form

j

with r^O. Since F is infinite choose o e F , α / 0 with a2" ̂  1 and set

d, = diag(α"<"Λα,α, ,α)

d2 = diag(a,a'<π~'\a, •• , α ) .

Then dud2eG and α~("-l)έ α since α " / l .
Now it is easy to see that y = d'^xdt-x looks like

5 0 ••• 0\
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with s^O and then z = d~2yd2-y looks like

z~\ o o,

with a7^0. Moreover since a2n/ 1

and\λzdx - z = a(a2n - \)en

so the matrix unit e]2 is contained in 5(x, G).

Finally by an appropriate permutation of the basis effected by
conjugation in G, en is conjugate to any ceis for some c^O and any
«V /. So all βij with iV J are in 5(JC, G). Since eH is conjugate via 1 + en

to (e/7 - en) + (βu - e/7) we conclude that eu - en ES(x,G). Thus
S(JC, G) D T(Fn) and the lemma is proved.

In our last result we drop our assumption that groups are locally
finite or that char F = q. However the only new results here concern
those particular cases.

PROPOSITION 6.7. Let K be a field of characteristic p > 0 and let F
be an infinite field of any characteristic.

(i) IfG = SLn(F) or GLn (F) and if Po = P<*(G) denotes the Sylow
p-subgroup of the scalar matrices in G then

= JK[P0] K[G].

(ii) If G= PSLn(F) then JK[G] = 0.

Proof Suppose first that Fj£GF(qx) for some prime q possibly
equal to p. Then the groups G = SLn (F), GLn (F) and PSLn (F) are not
locally finite. By Theorems 4.4, 4.8 and 1.6 of [4], JK[G] =
JK[A+(G)] K[G] where Λ+(G) is a certain locally finite characteristic
subgroup of G. The result now follows easily in this case.

Now let F C GF(p*) and apply Theorem 4.4 of [4] and Theorem
20.3 of [2] It then follows immediately that for G = PSLn(F) we have
JK[G] = 0. On the other hand if G = SLn(F) or GLn(F) then clearly
f ^ O p ί G ) and G/Po has no finite normal subgroup whose order is
divisible by p. Thus in this case we have easily JK[G] =
JK[P0] K[G].

Finally let F C GF(q ") with q^p. By Lemma 6.6, G = SLn (F) is
large in GLn(F) and hence by Theorem 6.2, JK[G] =
JK[PQ]-K[G]. In particular JK[G] is nilpotent. Now let G =
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GLn{G) and set D = ΌG(SLn(F)). Then by the above and Lemma 1.7,
D carries the radical of G. Since SLn(F) has no proper subgroups of
finite index we have clearly D = CG(SLn(F)) is the set of scalar matrices
in G so the result follows here. In addition since the center of SLn(F)
is finite we see that K[PSLn(F)] is a direct summand of the semisimple
algebra K[SLn (F)IPQ]. Thus K[PSLn(F)] is semisimple and the prop-
osition is proved.

On the other hand, as was pointed out by A. E. Zalesskii, other
types of classical groups are not large in general. For example let G be
the orthogonal group with respect to transpose t so that

G ={x E GLn(F) I JC'ΛΓ = 1}.

If n ^ 2 then G contains the nonscalar symmetric matrix

x = 0

where / is the (n - 2) x (n - 2) identity matrix. Since G normalizes the
set of symmetric matrices we have clearly S(x, G)/ T(Fn) here and
thus G is not large.

Added in proof. A. E. Zalesskii has suggested the following nice
paraphrase of Lemma 1.5. The proof is essentially the same.

LEMMA 1.5'. Let H be a finite subgroup of G and suppose that for
all x EG, H Π Hx contains an element of order p. Then JK[G] Π
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VARIETIES OF ORTHODOX BANDS OF GROUPS

MARIO PETRICH

The principal aim of the present work is a determination of
the lattice of all varieties of semigroups in the title as a direct
product of the lattice of all varieties of bands and the lattice of all
varieties of groups. The paper also contains certain informa-
tion concerning lattice properties of these varieties and their
defining identities.

1. Introduction. A considerable amount of literature is de-
voted to varieties of groups, a systematic study of this subject is the
book [7] by H. Neumann. Varieties of semigroups have also attracted
wide attention, most of the known results are summarized in the survey
article [2] by T. Evans. The lattice of all varieties of bands was
determined by Birjukov [1], Gerhard [4] and Fennemore [3]; some
preliminary work in this direction was first performed by Kimura [6] and
the author [8].

A semigroup 5 is completely regular if for any a E 5 there exists
x E 5 such that a = axa, ax = xa. It follows at once that then there
exists a unique y E 5 such that a = aya, y = yayy ay = ya we write
a~x = y and observe that 5 is a union of its (pairwise disjoint) maximal
subgroups Ga and that for a GGa,a~] is the group inverse of a in
Ga. We consider S as a universal algebra with two operations, viz., the
binary operation of multiplication, and the unary operation of inversion,
a-*a~\ satisfying the identities

(1) a=aa~ιa, a~λ-a~λaa~\ aa~] = a'ιa.

The class 9? of all such universal algebras forms a variety. A semi-
group 5 in <3i is orthodox if the set Es of all its idempotents forms a
subsemigroup. The class % of all orthodox semigroups in £% is a
subvariety of έ% and as such can be characterized by the identity

(2) ab =abbxaλab,

as follows easily from ([9], IV.3.1). A semigroup S in 9? in which
Green's relation f is a congruence is a band of groups and
conversely. The class 9 of all bands of groups is a subvariety of 9?
and as such can be characterized by the identity

209
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(3) (a2bc2)(a2bc2yι = (abc)(abc)\

as follows easily from ([9], IV. 1.7).
Let <£ = % Π 2F so that <β is the variety of universal algebras with

an associative multiplication and an inversion satisfying the identities
(1), (2), (3). In fact, we can define <#, within 9$, by a single identity as
follows.

PROPOSITION 1. For any S E Sfc, we have that SE^ifand only if S
satisfies the identity

Proof. Necessity. Let α, b E S, S e « . Then a%aa~\ bXbb'1

and hence abffli a~]bb~x since Green's relation %C is a congruence.
Now abW{ab)(abyλ so that (aax)(bbλ)W{ab)(abY\ But Es is a

subsemigroup of S and aa~\ bb~\ {ab)(ab)~x E Es and thus aa~xbb~x =
(ab)(abTx.

Sufficiency. Let α, b, c G 5, 5 G 5$ and α^b. Then αα"1 = bb
and hence

= (aa')(ccι) = {bb~λ){cc-χ) =

i.e., ac^tbc. This shows that Sίf is a right congruence. The proof that
^ is a left congruence is similar. If e,fEEs, then ef = ee~xff'x =

s o that (ef)2= ef. Thus E s is a subsemigroup of 5.

The class 39 of all bands is evidently a subvariety of ^ and as such
can be characterized by the identity a - a2. The class <& of all groups
is another subvariety of ^ and as such can be characterized by the
identity aa~x = bb~x. If V is any variety of universal algebras, ££{Ύ)
denotes the lattice, under inclusion, of all subvarieties of V. One of the
principal results of this paper states that

We will also establish certain properties of some subvarieties of ζ€. In
addition to the notation established above, we will use the notation,
terminology and results from [9] The meet in all our lattices will be
the set theoretical intersection, the join will vary and will be denoted by
v. For any semigroup 5, we denote by Es the set of all idempotents of
S with the partial multiplication induced by 5. For e E Es, Ge denotes
the maximal subgroup of S having e as its identity.
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2. Main result. The following lemma is crucial for a large
portion of this paper.

LEMMA 1. For any T E i ? ^ ) , we have

Proof. Let S 6 7. According to [10], S is a subdirect product of
a band B and a semilattice of groups T = U α e y G α . Since B is then a
homomorphic image of S, we have JB E T ΓΊ 39. The conjunction of
([9], IV.4.3) and ([9], III.7.2) yields that T is a subdirect product of
semigroups {Γα}αGy, where either Ta = Gα or Γα=G«, the group Ga with
a zero adjoined. Since T is a homomorphic image of 5, we have T GY
and thus also Ga<ΞΎ for all a G Y.

Assume that 5 is completely simple. Then 5 = L x G xR where
L is a left zero semigroup, G is a group and R is a right zero semigroup,
according to ([9], IV.3.3). Clearly L x R G Y Π 35 and G G r Π » and
thus 5G(rns3)v(rn^).

Suppose next that S is not completely simple. It is easy to see that
in S we can find two comparable idempotents, say e >f But then
y2 = {0, 1}, the two-element chain, must be contained in Y. Now let
G G T Γ\% and let p be the Rees congruence on Y2 x G associated with
the kernel {0} x G of Y2 x G. It follows that

G° = (Y2 x G)/p G(rn^)v(rn«).

We have seen above that T is a subdirect product of semigroups Ta

where either Ta=Ga or Γα=G^. Consequently ΓG
( T Π 3 8 ) v ( r n S ) . Finally 5 is a subdirect product of B and Γ and
thus SG(vn^)y(rn^).

Therefore Y C (T Π » ) v ( r Π «), the opposite inclusion is trivial.

LEMMA 2. Lei T be a completely regular semigroup which is a
subdirect product of a band B and a group G, and let S be a band and a
homomorphic image of T. Then S is a homomorphic image of B.

Proof. Let φ be a homomorphism of T onto S. We may suppose
that TCBxG. Let (fe,g), (fe,Λ)G Γ and let g=(fc,g)φ, Λ =
(fr, Λ )φ. Since Γ is completely regular, we have (b, ft ~ι) G T, and thus

g =(b,g)φ =[(b,

= (b,h)φ(b9g)φ =hg.
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A similar argument shows that h = hg and thus g = h It follows that
the mapping ψ defined by

ψ:b-+(b,g)φ if (b,g)ET (bEB)

is single-valued, and thus evidently a homomorphism of B onto S.

LEMMA 3. Let T be a semigroup which is a subdirect product of a
band B and a semigroup C, and let Sbe a left caneellative semigroup and
a homomorphic image of T. Then S is a homomorphic image of C.

Proof. Let φ be a homomorphism of T onto S, and suppose that
TQBxC. Let (a, c), (b, c) E T. Then

(a, c2)(b,c) = (ab, c3) = ((ab )b,c3) = (ab, c2) (b, c)

where (α, c2), (ab,c2) E Γ and thus

[(α, c)φ]2 = (a, C2)φ = (ab,c2)φ = (a,c)φ(b, c)φ.

Left cancellation in S now implies that (a,c)φ =(b,c)φ. It follows
that the mapping ψ defined by

ψ:c-+(a,c) if ( β , c ) G Γ (cEC)

is single-valued, and thus evidently a homomorphism of C onto S.

THEOREM. The mapping χ defined by

is an isomorphism of £(<€) onto

Proof. It is obvious that χ is inclusion preserving. Let V
and y G i?(»), and let r = r ' v r " . Then

In order to establish the opposite inclusion, we let 5 E V Π 38. In view
of ([5], §23, Theorem 3), there exist B<=V, G 6 Γ , a completely
regular semigroup Γ which is a subdirect product of B and £/, and a
homomorphism φ of T onto 5. Hence by Lemma 2, 5 is a homomor-
phic image of B and thus SET'. Consequently VΠffl = Y'. A
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similar argument, using Lemma 3, shows that Y Π ̂  = Y". It follows
that Y G <€ and that Yχ = (Y\ Y") proving that χ maps # ( « ) onto
#(58) x J£(ίί). Now Lemma 1 easily implies that χ is one-to-one and
that χ~ι is inclusion preserving. Therefore χ is a lattice isomorphism.

COROLLARY. For any S G <£, r ' e i ? ( 9 9 ) , r*ε,S?(#), w Λαi e
S e f v r " i/ and on/y // Es G T' and G, G ̂ " /or a// * G E s

Proof. This follows without difficulty from the proof of the
theorem and the proof of Lemma 1.

3. F u r t h e r results . We consider first the following problem:
if Y' G £(β) and Γ 6 l ( « ) are given by their defining identities, can
we set up a system of defining identities for Yf v Y"Ί We now proceed
to describe such a system.

Let u = v be an identity on 35. Substitute every variable x that
occurs in u = υ by xx'\ We then obtain an identity on %!, to be
denoted by ΰ = v.

Let w = z be an identity on $. We may suppose that both w and z
contain the same set {xux29 , xn} of variables. Consider w = z as an
identity on %, and let e = (x,, JC2 * * * xn)(X\Xi' ' x>n)~x- Substitute each
occurrence of JC, in w = z by exxe. We then obtain an identity on ̂ , to
be denoted by w = f. Note that e depends on the choice of writing the
variables, but any single choice will do.

PROPOSITION 2. Let Y' (resp. Y") be the variety of bands (resp.
groups) defined by a system of identities {ua = va} (resp.
{wβ - zβ}). Then Y' v Y" can be defined by the system {ΰa = ϋa, wβ =
ϊβ}

Proof. By the above corollary, Y = Y' v Y" consists of all S G %
for which Es G Y' and Ge G Y" for all e G E s. Let S<ΞY. Then JBS

satisfies ua = ι;α and hence 5 satisfies ΰa = tJβ. Next consider wβ =
Zβ. Let {JCI, JC2, , JC«} be the set of variables occurring in wβ - zβ. For
any a G 5, we denote by Nfl the class of the least semilattice congruence
on 5 containing α. Let ax,a2,- -,an E S and e =
(axa2- - - an)(a]a2- - an)~\ Then for any 1 g ί S n, eate G Ge since

eα( e G Neαί, = Ne No, Ne = Ne

and Ne is completely simple. Observing that each Ge satisfies the
identity wβ = ẑ , we deduce that 5 satisfies the identity wβ =
zβ. Consequently each S EY satisfies all the identities ΰa = ΰa9 wβ =
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Conversely, let S E ^ satisfy all the identities ΰa = ϋa9 wβ =
zβ. Then Es satisfies each ua = va so that £ s e ^ . Further, for every
e E Es, Ge satisfies each wβ = fβ, and hence also wβ = z/3 since Ge has
only one idempotent. Thus Ge E T". By the above corollary we
conclude that S G Γ v Γ = Ύ.

For example, if V is the variety of all rectangular bands and Y" the
variety of all groups, then V = Ύ' v T" can be defined by the identity
JCJC1 = xx~ιyy~ιxx~\ which is evidently equivalent to x2 = Jc y y1*. This
identity defines the subvariety of rectangular groups.

As another example, we may take V to be the variety of all bands
and V" the variety of all abelian groups. Then Ύ = T v V can be
defined by the identity jcjc'jcyjcx1 = jcjc^yjcjcx"1, which is evidently
equivalent to x2yx = xyx2. This identity defines the subvariety of
orthodox bands of abelian groups.

We consider next the following question: which subvarieties of ^
are simultaneously subvarieties of the variety £f of all semigroups? For
an identity u = υ on ίf, we denote by [u = v] the variety of semigroups
defined by u = v. If JC is an element of a semigroup 5, (JC) denotes the
cyclic subsemigroup of S generated by JC.

PROPOSITION 3. The following conditions on a subvariety T of ^
are equivalent.

(i) re«s?(sα
(ii) V C [x = xn] for some integer n > 1.

(iii) V Π <S C [JC = xn] for some integer n > 1.

(iv) Ύ Π <S E <£(&).

Proof, (i) implies (ii). Let JC E 5 and SET. Then ( J C ) E T

since T E i ? ^ . But then 7 6 i ? ( « ) implies that (jc)E(ίί which is
possible only if (JC) is a finite group. Hence x = xn for some n >
1. Assume that the set

n U ) = jc, J C E 5 , SET}

is unbounded. H e n c e there exists an infinite sequence (JC,), ( X 2 ) , - o f

cyclic semigroups such that H(JC,) < Π(JC2) < . The element (JC,) of

the direct product S = ΠΓ=, (JC. ) is clearly of infinite order. Since S 6 T ,

this contradicts to. what we have proved above. Thus there exists

n > 1 such that T Q[x = j c n ] .

Items (ii) and (iii) are obviously equivalent. Item (ii) implies item

(i) since with JC = JC71 in any semigroup S, x n l is the identity of the cyclic
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group generated by x. The equivalence of (iii) and (iv) follows simi-
larly as the equivalence of (i) and (ii).

We now elucidate another relationship between ϊ£{%) and

PROPOSITION 4. Let Ύ G # ( « ) and <U G jp(S* . Then <U Π <g =

Proo/. If % Π « = r , then

and analogously % Π S3 = T (Ί 39.
Conversely, suppose that <UC\<S = Ύn<S and %nSδ =

T Π S8. The join in ^ will be now denoted by v and the join in if by

v. Using Lemma 1, we obtain

so that

(4)

In order to establish the opposite inclusion, we first let G G

( ( r π l ) v l ) Π « . In view of ([5], §23, Theorem 3), there exist

Bern®, Ce% a subdirect product T of B and C and a
homomorphism of Γ onto G. By Lemma 3, G is a homomorphic image
of C and thus G e t Consequently GEaUn(g = Tn<g. Next let

βG((fni)vΐ)ί1i Then

It follows that
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and thus by Lemma 1, we have

The conjunction of (4) and (5) yields

where (Y Π 38) v % G %{¥ . But T Π 38 = % Π 38 implies that

(Y Π 38) v °U = % which by (6) gives % Π <g = T, as required.

Note that Proposition 4 implies the following statement: if Y E
«5?(<g) and r = % Π « for some °U G ̂ ( ^ , then ί n » = * n « . A
converse of this statement can be phrased thus: If Γ G ^ ( S ) and
% G #(£?• , does there exist Ύ G «S?(SP such that

An answer to this question is open. However, we have the following
simple result. For any class 2 of semigroups, let 2^ denote the
variety of semigroups generated by 2).

PROPOSITION5. Let T 6 ί ( « ) . Then there exists
such that Ύ = <% Π « // and only if Ύ* Π <€ = r .

Proo/. Necessity. Let 5 G °F̂  Π ̂ . According to ([5], §23,
Theorem 3) S is a homomorphic image of a subsemigroup Γ of some
semigroup H in Y. It follows that H £°U n<€ and thus Γ G % and
hence also S G %. Consequently S E % Π « = ί. This proves that
ί y Π ? C 7, the opposite inclusion is trivial.

Sufficiency. Take °U = Yy.

For example, for Y = ^ or the varieties of all left, right or
rectangular groups, we have the inequality Y^Π.^^ Y. This shows, in
particular, that these subvarieties of ^ cannot be defined, within ^, by
semigroup identities alone. To see this, let G be the additive group of
all integers, T the subsemigroup of G consisting of all nonnegative
integers, S the multiplicative semigroup {0, 1}, and φ be the mapping
defined by: 0φ = 1, nφ=0 for all n G Γ, n^O. Then S£Y and
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THE GENERALIZED INTERVAL TOPOLOGY ON
DISTRIBUTIVE LATTICES

R. H. REDFIELD

The author has recently introduced the generalized interval
topology on a partially ordered set as an alternative to the
standard interval topology. In this paper, the structure of
generalized segments in lattices is investigated, and sufficient
conditions are given for the generalized interval topology on a
distributive lattice to be a lattice topology; adding another
condition ensures that the topology is Hausdorff. Similar
results are obtained for a slight modification of the generalized
interval topology, the generalized star-interval topology, and
examples are constructed which illustrate less restrictive situat-
ions.

1. Introduction; terminology and notation. In [6], we
introduced the concept of generalized intervals in a partially ordered set
and showed that they could be used in a natural way to define a
topology, called the generalized interval topology, on the set. The
definition we used was based on one for intervals, which was given by
Frink in [4], and which formally extended the "closed set" definition of
the usual interval topology on a totally ordered set to an arbitrary
partially ordered set. The use of generalized intervals in place of
intervals in Frink's definition did not change the topology on un-
bounded, totally ordered sets; however, on cardinal products of dually
(i.e. both upwards and downwards) directed sets, the generalized
interval topology turned out to be not only different from Frink's
interval topology but in fact precisely the product of the generalized
interval topologies on the factors.

In this paper, we investigate the possible continuity of the lattice
operations with respect to the generalized interval topology on a
distributive lattice, and give conditions which ensure that the topology
is Hausdorff. The definition of generalized intervals adds to the
corresponding standard interval certain "relatively perpendicular"
elements. The motivation for the definition stems from the plane,
where one may consider the set

to be an interval rather than the usual set

219
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The standard polar of an /-group was used to describe these "relatively
perpendicular" elements in [5], and thus pointed the way to the
definition in [6] of upper and lower polars in any partially ordered
set. To obtain the necessary machinary to ensure that a distributive
lattice has a Hausdorff generalized interval topology which is also a
lattice topology, we investigate upper and lower polars (§2) and general-
ized segments (§3), in some detail. The major results (Theorems 4.3
and 5.2) are proven for certain distributive lattices which, whenever
possible, have nontrivial polars that are "minimal" in a natural sense.

Intervals may not be closed with respect to the generalized interval
topology. Thus, in [6], we considered the generalized star-interval
topology, which for a directed set is just the topology generated by the
interval topology and the generalized interval topology. Most of the
machinary developed here is valid for star-polars and generalized
star-intervals as well as for polars and generalized intervals, and thus
only a slight change of hypotheses might be needed to ensure that the
main results for the generalized interval topology could be proved
directly for the generalized star-interval topology. However, we pre-
fer to use connections, established here and in [6], between the
generalized interval and star-interval topologies, to obtain the results for
the generalized star-interval topology as corollaries of the results for the
generalized interval topology.

Terminology left undefined here may be found in [1], [2], and [9].
Let (P, g ) 1029 noted a partially ordered set. We use v to

indicate the least upper bound of two elements, if it exists. A
statement of the form a v b = c means that a v b exists and equals
c. We use Λ (greatest lower bound) similarly. Let A,B C
P,jc,yGP. Then

u(A) = {p EP\p^a for all αGA},

l(A) = {p GP\p ^a for all aGA},

A ΛB = {a Λ b \a G A, b G £}, A v B ={a v b\a E A, beB}, x ΛB =
W Λ B , X V B = {X} v β, u(x,y) = u({x,y}), and /(*,y) = /({*,y}).

We denote an open interval in P by

and an interval (or closed interval) by

[a,b] = {x G P | α ^x^

We may combine the notations, as in
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]a,b] = {x\a<x^b}; [a,b[ = {x \a ^x < b}.

An initial segment of P is a set of the form ( —°°, r] = /(r) for some
r E P; a final segment of P is a set of the form [r,oo) = «(r) for some
r E.P. Frink's interval topology [4] on P takes P and φ, together with
all final and initial segments as a subbase for its closed sets. We denote
the interval topology on P by ^(P).

Let {Pa\a£A} be a collection of partially ordered sets. The
cardinal product of the Pα, denoted by | Π | {Pa \ a E A}, is the Cartesian
product of the P with order defined pointwise, i.e. by: f ^g if and only
if af ^ ag for all a E A. If A is finite, say A = {1,2, , w}, then we
usually denote the cardinal product by Pi| x |P 2 | x | | x \Pn.

We consistently use totally ordered set to refer to a partially
ordered set in which every two elements are comparable. If P is a
partially ordered set, and if T is a totally ordered set, then the

lexicographic product of P and Γ, denoted by P x Γ, is the product of P

and T ordered by: (α, b) S (p, ί) if and only if b < t, or fo = t and a Ik p.
If G is an /-group, then for all A C G, A + = {α E A | a g 0} and

A~ = {a <=A\a ^0}.
We let N be the natural numbers, Z the integers, and 1? the real

numbers. Unless otherwise noted, N9Z, and R have their usual
orders. By the plane, we mean R \ x |1?.

If 5" is a topology on a set X, we use Γo, Ti, and Hausdorff to refer
to the corresponding separation axioms in sense of [9]. If L is a lattice
with topology SΓ, then (L, 3~) is a topological lattice if both

v : ( L x L , y x J ) - * ( L , y ) ,

Λ : ( L X L , ί x 3 ) - > ( L , ί ) ,

are continuous. Note that (L, if) may be a topological lattice even if SΓ
is not Hausdorff.

2. Upper and lower polars. Upper and lower polars for a
partially ordered set were introduced in [6] as a generalization of polars
for an /-group. For the results of this paper, we need to look into the
structure of these new polars more deeply than we did in [6].

Let (P, ^ ) be a partially ordered set. Suppose that r,s,t EP are
such that r^s^t. The set

(s,t)i = {pEP\p At = s}

is called the upper polar of t with respect to s (or the s, t upper
polar). The set
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(s,ί)r={p

is called the lower polar of r with respect to s (or the s, r-lower polar).
We noted in [6] that in an /-group G, for all g > 0 ,

where g± = {/ι E G | |Λ | Λ g = 0} is the standard polar for an /-group (see
[3], [8], and [5]). Thus, in the plane,

((0,0), (0,l))± = {(jc,0)|χg0}.

For r,s,t ELP with r ^ s g t, we define the upper star-polar of t with
respect to s, denoted by *(s, ί ) \ to be (s, ί ) 1 if s < ί, and {s} if
s = ί. Similarly, the /ower star-polar of r with respect to s, denoted by
*(s, r)p, is defined as (5, r^if r < s, and {s} if r = 5. All the results of this
section will remain true if polars are replaced by star-polars.

PROPOSITION 2.1. Let (P, ̂ ) be a partially ordered set, and let

r,s,t£ΞPbe such that r < s <t. Then

(i) (r,OxC(r,s)\
(ii) (/,^C(ί,^.

// (P, ̂ ) is a modular lattice, then
(iii) s v(rjyc(sj)\
(iv) 5 Λ(ί, r^Cί^r)]-.

Proo/. (i) Let b E (r, f )\ Then b At = r. Clearly r ^ b and 5 ^
ί. If u ̂  b and w ̂  5, then u^b and M ^ ί , i.e. u ̂ b /\t = r. Thus
b Λ s = r, i.e. b E(r, s)-1. Statement (ii) is the dual of (i). (iii) Let
b E (r, O x Then b At = r, and hence

i.e. b v s E (s, ί) 1- Statement (iv) is the dual of (iii).

PROPOSITION 2.2. Let (L, ^) be a distributive lattice. Let r,s,t E

L be swc/i fftαf r < s g ί. 77ιen the following statements are equivalent:

(i) ΓΛ(ί, r)[ = r Λ ( 5 , Γ ) | ,

(ii) Γ Λ ( ί , r ) f D r Λ ( 5 , r ) | ,
(iii) 5 Λ(ί,r)τ = (5,r)|,
(iv) 5 Λ ^
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Proof. Clearly, if s = f, then statements (i) - (iv) are
equivalent. Suppose that s < t. By Proposition 2.1, (in) is equivalent
to (iv). Clearly by Proposition 2.1,

r Λ (ί, r)| = r Λ (s Λ (t, r\) C r Λ (5, r}p.

Thus (i) is equivalent to (ii). Similarly, one may see that (iv) implies
(ii). It remains to show that (ii) implies (iv). Suppose that (ii) holds,
and let x E (5, r\. By (ii), there exists b E (t, r\ such that r Λ b =
r Λ x. Then 1 v r = <>, ί) v r = ί, and since £ = ^ s ^ x , ί Λ X = x . Thus

5 Λ fc = (x v r) Λ ί?

= (x Λb) v(r Λfo)

= (JC Λ f c ) v ( r ΛJC)

= X Λ ( ί ) v r )

= X Λ t = X,

i.e., x E 5 Λ (ί, r)]-. Therefore, (iv) holds.
Since Proposition 2.2 holds, its dual also holds. We usually will

not state the dual of any result explicitly, even though we may use it
later on. As an example, however, we will write out the dual of
Proposition 2.2:

PROPOSITION 2.3. Let (L, S ) be a distributive lattice. Let r , ί , ί £
L be such that r ^ s <t. Then the following statments are equivalent.

(i) ίv(r,f) x = ίv(s,f)\

(ii) f v f o ί ^ D ί v ί M ) 1 ,
(iii) s v(rjy = (sj)\
(iv) s v (r, t)L D (s, t)\

Let (L, g ) be a lattice. Let r,t E.L be such that r<t. The
interval [r, ί] ftαs equivalent lower polars if for all r < s < t,

s Λ(ί,s)Γ=(s,r) ί.

Similarly, [r, ί] /ιαs equivalent upper polars if for all r < s <t,

If [r, s] has both equivalent lower polars and equivalent upper polars,
then [r, s] is said to have equivalent polars.

We note that in the plane [r, t] has equivalent polars if and only if
[r, t] is totally ordered. However, if we let R* be R with -00 and <»
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adjoined, and if L = (R * | x \ R *) x R, then [(oo, α>, - 1), ( - α>, - oo, l)] has
equivalent polars but is not totally ordered. Thus, non-totally ordered
intervals may have equivalent polars, even in distributive lattices.

We note that replacing polars by star-polars does not change the
above definitions.

Our next result, which will be very useful in the sequal, provides an
alternate characterization of intervals which have equivalent lower
polars.

PROPOSITION 2.4. Let (L, g ) be a distributive lattice. Let r,t G
L be such that r <t. Then [r, t] has equivalent lower polars if and only
if for all r^s <U (*, -s)r = {t, r)j, and for all r<s^t, r Λ (t, r)γ =
r Λ (s, r)γ.

Proof. Suppose the conditions hold, and let r < s < t. Since
r Λ (ί, r)y = r Λ (s, r)y, then s Λ (ί, r\ = (s, r\ by Proposition 2.2. Since
(ί ,s\= (f,r)y, this implies that n ( U ) f = (Ar)j. Therefore, [r,t] has
equivalent lower polars. Conversely, suppose that [r, t] has equivalent
lower polars. Clearly, it suffices to show that both conditions hold for
r < s < t. By Proposition 2.1, (ί, s\ 2 (ί, r\. Let fc ε (t, s\. Then
5 Λ b E (5, r)p, since [r,t] has equivalent lower polars, and hence
(s f\b)v r = s. Since (L, g ) is 5 Λ (b v r) = 5, 5 Λ (b v r) = 5, i.e. fcvrg
5. Since b £(t,s)y, b v s = t. Then

Hence, b v r = t, i.e. b G (ί, r)| , and therefore, (ί, ί)[= (t, r\. For the
other condition, we note that, since [r, t] has equivalent lower polars,
and since (t,s)y= (ί, r\ by the above,

5 Λ(t,r)γ= S Λ(ί,5)Γ=(5,r)Γ

By Proposition 2.2, r Λ (ί, A*)Γ= r Λ (5, r)p
The last three results of this section will be needed in the sequel.

PROPOSITION 2.5. Let (L, g ) be a distributive lattice. Suppose
that r,z,t,dE:L are such that r ̂  z <t ^d and for all z < a i d ,
dE.a\ι (z, a)1. If [r, t] has equivalent lower polars, then [z, t] = {z, ί}.

Proo/. Suppose that z < α ^ ί . Then z <a^d, and hence
rf G α v (z, α) 1 . Let b G (z, α ) 1 be such that d = a v b. Then
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If ft Λ t < t, then a G (ί, ft Λ OT s ί n c e b E(z,a)\ b ̂  z ^r, and hence
b ht^r. Since [r,ί] has equivalent lower polars, this implies (by
Proposition 2.4) that (t, b Λ f )p= (X.r^. Thus α G (ί, r)j-, i.e. α = α v r =
ί. If ft Λ f = f, then

which contradicts our choice of a. Thus [z, ί] = {z, f}.

PROPOSITION 2.6. Let (L, ̂ ) be a lattice. Let k,r,l,t EL be
such that k^kr <l <t and [r, t] has equivalent lower polars. Then

Proof. Suppose that tElv(k, /)\ Then t = / v ft for some
ftε(fc,/)\ and hence ftG(ί,/)r Since [r, ί] has equivalent lower
polars, / Λ (ί, /)]•= (/, r)]-, and hence

Thus r = k v r = l9 which contradicts our choice of r. Therefore,

PROPOSITION 2.7. Lei (L, S ) be a distributive lattice. Let
r,u,w,t ELL be such that r ̂  w <w <t and [r, t] has equivalent lower
polars. Then tfέw v(u, w)1.

Proof. Suppose t G w v (u, w)L. Then t = w v ft for some
ftG(w, w)1. Thus ftG(ί, w)j- and hence by Proposition 2.4, ftG
(ί, r)f. Since ft Λ W = w,

i.e., ft g r. Thus ί = r v ft = ft. But this imples

which contradicts our choice of u and w. Therefore, t&ί w v(w, w)1.

3. Generalized intervals and segments. Let (P, ^ ) be a
partially ordered set. Let r,s,tEP be such that r g s i ί . Let
[r, 5,oo) be the set of points x EP such that there exists a E(5,r\
satisfying

(a) l(a,r)ϊφ
(b) Z(α,r)C/(x).
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Let ( - oo, s, t] be the set of points y G P such that there exists b G (s, t)L

satisfying
(c)
(d)

We note that if P is a lattice, then

(-oo,5,ί] = {y G P | y gfe v ί for some b G ( M ) 1 } ,

[r, 5,00) = {* E P I x g fc Λ r for some b G (5, r)[}.

Let [r, M ] = fo s, °°) Π ( - 00, s, ί ] . A generalized final segment of P is a
set of the form [r,5,00) for r,s EP with r^s; a generalized initial
segment of P is a set of the form ( - °°, s, ί ] for sj EP with s g ί ; and a
generalized interval of P is a s e t of t h e f o r m [ r , s , t ] f o r r,s,tEP w i t h
r S 5 ̂  f.

In the plane, the interval [(0, - 1), (0,1)] is not a generalized
interval; a corresponding generalized interval is

[(0, - 1), (0,0), (0,1)] = {(*,y)| - l g y g l } .

Let r, s9 t G P be such that r ^ s ^ ί . The sets *[r, 5,00) and *( - 00,5, ί ]
are defined in the same way as [r, 5,00) and ( - 00, s, t] above, except that
when polars appear in the definition, they are replaced by the corre-
sponding star-polars. Generalized star-segments and generalized star-
intervals are defined accordingly. All the results of §3 remain true if
polars and generalized segments are replaced by the corresponding
star-polars and generalzied star-segments.

The following two results are essentially corollaries of Proposition
2.4.

PROPOSITION 3.1. Let (L, ̂ ) be a distributive lattice. Let r,t G
L be such that r <t and [r, t] has equivalent lower polars. Ifr^s<t,
then [M, «>) c[r,ί, 00).

Proof. Let z G [5, ί, 00). Then z g s Λ b for some
b G (t, s\. Since [r, ί] has equivalent lower polars, b G (ί, r)j-by Prop-
osition 2.4. But zgίΛfe^ΓΛfc, and hence z G [r, ί, 00).

PROPOSITION 3.2. Let (L, ^) be a distributive lattice. Let r,s,tE

L be such that r <s ^t and [r, t] has equivalent lower polars. Then

Proof. Since [r, t] has equivalent lower polars, by Proposition 2.4
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Thus
[r, t, oo) = {y e L I y g b Λ r for some b E (ί, r^}

= {y EL\y^b /\r AS for some ί? G (t, r^}

= {y G L I j g c Λ r for some c G (5, r)j-}

The next result was proven in [7]. Although it will be used only
for the main theorem in §5, we include it here to enable us to compare
Propositions 2.6 and 2.7 with Lemma 3.4.

PROPOSITION 3.3. Let (L, ^) be a lattice. Let r,t EL be such
that r <t. If L is modular, then

(i) for all x G ( - oo, r, t] Π [ί, oo), there exists b G (r, t)1 such that
x =t\/b.
If L is distributive, then

(ii) for all x G ( - oo, r, t] Π [r, oo), fftm? ejt/sfs b G (r, ί ) 1
 SMC/I fftαf

x = (x A t) v b.

In view of Proposition 3.3, the following lemma says that if k = r in
Proposition 2.6, or if u = r in Proposition 2.7, then we could have
assumed that [r, t] had equivalent upper polars instead of equivalent
lower polars.

LEMMA 3.4. Let (L, ^) be a distributive lattice. Let r<s<tbe

such that [r,t] has equivalent upper polars. Then

Proof. Suppose that t G ( - oo, r, s,]. Then t^-svb for some
b G (r, s)1. Since r < s < t, then by the dual of Proposition 2.4, b G
(r, ί ) \ and hence

This contradicts our choice of s, and thus ί£(-oo,r ,5] .
The next result is the main one of this section, and will be

extremely useful in the sequel.

PROPOSITION 3.5. Let (L, g ) be a distributive lattice. Let r,t G
L be such that r<t, [r,t] has equivalent upper polars, and
[r,t]^{r,t}. Then

n{L\(-oo,Γ,s]|r<s <ί}

is a dual ideal of L.
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Proof. Let 5 denote Π{L \ ( - » , r , s]\r < s < t}. If x G S and
JC g y, then clearly y G 5. Suppose that x, y G S, but that x Λ y G
(-°°,r, 5] for some 5 G L with r < 5 < ί. Let x ' = x v r and y ' =
y v r. If d G (r, s ) 1 is such that x Λ y ^ 5 v d, then

Thus x ' Λ y ' G ( - o o ? r , s ] .
If x' Λ y' ^ f, then clearly f e ( - <», r, s], which contradicts Lemma

3.4. Thus x 'Λy'^f, and hence, without loss of generality, we may
assume that x'gt. Then r^x' At <t. If r = x' Λ ί, then
jc'efoί)"1- By the dual of Proposition 2.4, (r,O 1 = (/,s)\ and thus
JC' E(r, .s) 1 C(-oo,r,s]. Since x ^ JC', this implies that x £ ( — «>,r,5],
which contradicts our choice of JC. Therefore, r < JC' Λ t < t, and since
[r, ί] has equivalent upper polars,

(xf Λt)v(r,xf Λt)λ = (x' ΛtJ)\

Clearly, JC' G (JC' Λ ί, ί ) 1 , and hence

x ' G (JC'Λ 0 v (r,x'Λ 0 1 £ ( - 00, r, JC'Λ ί] .

Since x S x ' , x e(-<»,r, j t ' Λ ί ] , and since x' Λί < ί, this contradicts our
choice of x. We conclude that jcΛyj£( —»,r,s], and hence that
x Λ y G 5. Thus S is a dual ideal of L.

The next result, which we will need when we consider the Haus-
dorίf separation axiom, indicates how useful Proposition 3.5 can be.

PROPOSITION 3.6. Let (L, ̂ ) be a distributive lattice. Let r,t G
L be such that r <t and [r, t] has equivalent polars. Then

L=(-oo, Γ , ί ]U[r , ί ,oo) .

Proof. Let z G L. If (z Λ ί) v r = ί, then

Z Λ Ϊ e(ί,r),C[r,ί,oo),

and hence clearly, z G [r, ί, 00). if (2 Λ t) v r = r, then (z v r) Λ t = r,
hence

z v r e ^ i ^ C i - 0 0 , Γ , ί ] ,

and thus clearly, z G ( - 00, r, t ]. Otherwise, r < ( z Λ ί ) v r < ί . Then,
in particular, [r, ί ]^{r, ί}, and we may apply Proposition 3.5 to
[r,ί]. Let T = U { ( - ° ° , r , s ] | r < <> < ί } . Since r < ( z Λ ί ) v r < ί ,
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(ZVΓ)Λί=(ZΛί)vΓεΓ.

Since t£T by Lemma 3.4, and since L \ T is a dual ideal by
Proposition 3.5, z v r G Γ . Since, for all r < s < t, ( - °°, r, s ] C
( - α>, r, ί] by the dual of Proposition 3.1, z v r G ( - oo? r, ί], and hence
z e ( - o o , Γ , ί ] .

In some cases, Proposition 3.6 will not give a good enough
"separation" of points. Therefore, we must refine it in certain cases to
obtain the "separation" described by Proposition 3.8.

LEMMA 3.7. Let (L, ^ ) be a modular lattice. Let r,s,t,uEL be

such that r <s <t < M, [5, ί] = {s, ί}, and both [r,ί] and [5, u] have
equivalent polars. Then

Proof. Let z e ( - o o , r , ί ] \ ( - o o , r , 5 ] . I f (z/\t)vs = s, then
(zv5)Λί = s and hence z v s E(s, t)1. Since [r, t] has equivalent
polars,

z vs E 5 v(r, 5) 1C(-oo, r, s],

and hence z £ ( - » , r , 5 ] . This contradicts our choice of z, and hence
{z r\t)v s > s. Since ( z A ί ) v s g ί and [s, ί] = {s, t}, we must have
(z Λ ί) v s = ί, i.e. z Λ ί ε (ί, 5)7. Since [5, w] has equivalent polars,

z At GίΛCiέ^Clί, 11,00),

and therefore, z G [ί, w,°o).

PROPOSITION 3.8. Lei (L, ^) be a distributive lattice. Let
r,s,t,u £L be such that r <s <t <u9[s,t] = {s, ί}, and both [r, ί] and
[s,u] have equivalent polars. Then

L = ( - 0 0 , r,s]U[ί, 11,00).

Proof. Since [s,t] = {s,t}, clearly [s, t] has equivalent
polars. Thus, by Proposition 3.6,

L = ( - » , M ) U [ M , « > ) .

By Proposition 3.2 and its dual,

L =(-oo,r,i]U[s,M,oo).
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Therefore, by Lemma 3.7 and its dual,

L =(-oo,r,s]U[ί,w,oo).

The last result of this section is the "discrete" analog of Proposition
3.5.

PROPOSITION 3.9. Let (L, ^ ) be a distributive lattice. Let r, s, ί G
L be such that r < s <t, [r, f ] has equivalent upper polars, and for all
e EL with s ^e <t,e Gs v (r, s)1. Then L \ ( - oo, r, s] is a dual ideal
ofL.

Proof Clearly, if x G L \ ( - 00, r, s] and x ^ y, then
y G L \ ( - o o , r, 5]. Suppose that jc,y G L \(-° ° , r ,s] , but that
JC Λy e(-oo,r, s]. Then, similarly to the beginning of the proof of
Proposition 3.5, we have that (x Λ y) v s G (-0°, r, s], and hence by
Lemma 3.4, that

(JC v s) Λ(y v 5) = (x Λ y) v s^ t.

Thus we may assume that x v s ^ ί , i.e. that (x v s) Λ ί < ί. Then, by
hypothesis, (xvs)Λ/ = svib for some bE(r, s)1. Since [r, ί] has
equivalent upper polars, this implies that

x \/ s G((x vs)Λί, 0 ± = (5 v M ) i = 5vί)v(r,5 vfe)1.

If dG(r , s vί?)1, then

r = (s v b) Λd =(s Ad) v(b ΛC/),

and hence SΛC! ̂  r. Thus, since n f e = r,

5 Λ ( £ v d) = (s Λb)v(s Λd) = r v(s λd) = r,

i.e. b v i G (r, s )\ Therefore, b v (r, 5 v b )x C (r, s ) \ and thus
xvs ε π ( r , 5 ) 1 . But this implies that xv; G(-oo ?r,s], and hence
that JC G(-oo 9r,s], which contradicts our choice of JC. We conclude
that JC Λ y ̂  ( - oo9 r, 5] and hence that L \ ( - 00, r, 5] is a dual ideal of L.

4. Continuity of the lattice operations. Let (P, ^) be a
partially ordered set. The generalized interval topology (or gi-
topology) on P, denoted by ^(P), takes as a subbase for its closed sets,
P and φ, together with all the final generalized segments and all the
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initial generalized segments. The generalized star-interval topology (or
gi-*topology) on P, denoted by ^*(P) takes as a subbase for its closed
sets P and φ, together with all the generalized star-segments. In [6] we
proved that ^(P) is an intrinsic topology on P, which is preserved by
cardinal products of dually directed sets, and that ^*(P) is an intrinsic
topology which always contains the interval topology, J(P).

In this section, we show that if intervals with equivalent polars
occur throughout a distributive lattice L, and if ^(L) is Tu then
(L, ^(L)) is a topological lattice. We first state precisely what is meant
by the occurence of intervals with equivalent polars throughout a
lattice.

Let (L, ^ ) be a lattice. We say that r,t£ΞL provide equivalent
polars for x, y, z E L in case x^r<y<t^z, and [r, t ] has equivalent
polars. We say that L has minimal polars if for all JC,y,z E L with
x < y < z and z^yv(x, y)1, there exist r,tEL which provide equiva-
lent polars for JC, y, z. Clearly, replacing polars by star-polars does not
change the above definitions. Proposition 5.4 will provide a large class
of lattices which have minimal polars.

The first result of this section shows that, for modular lattices,
having minimal polars means that whenever x < y < z and there can
exist r, t which provide minimal polars for x, y, z, then such r, t do in fact
exist.

PROPOSITION 4.1. Let (L, ^ ) be a modular lattice. Let
x, y,z,r,t E L be such that x^r<y<t^z, and z E y v (x, y)1. Then
[r, t] does not have equivalent lower polars.

Proof. S i n c e z £ y v ( i , y ) i , z = y v b f o r s o m e b E (JC, y ) 1 . T h e n

t = z /\ t = (y v b ) Λ t = y v ( b Λ t ) ,

x = x Λ ί = ( b Λ y ) ̂ t = y Λ ( b A t ) .

Thus f Ey v(x, y)1. If [r, t] has equivalent lower polars, this con-
tradicts Proposition 2.6.

The following result was noted in [7]. We include it here to
indicate that having minimal polars is a self-dual property, i.e. that a
lattice has minimal polars if and only if its dual does.

PROPOSITION 4.2. Let (L, ^ ) be a lattice and suppose that JC, y, z E
L are such that x < y < z. Then the following statments are equivalent:

(i) z E y v ( x , y ) - \
(ii) x<ΞyΛ(z,y)j.
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We are now in a position to prove the main result of this section.

THEOREM 4.3. Let (L, S ) be a distributive lattice. If $(L) is Tu

and if L has minimal polars, the (L^iL)) is a topological lattice.

Proof. Our method is to isolate the difficult part of the proof, and
then to prove it separately as Lemma 4.4. We will consider only the
continuity of

Λ : (L x L, <£(L) x <£(L))-+(L, ^(L));

the continuity of v may be proved dually. Since complements of
generalized segments form a subbasis for $(L), it clearly suffices to
show that if x, y E L and JC Λ y E L \ X for some generalized segment
X, then there exist closed sets Y and W such that x E L\W,
y EL\y, and (L\W)A(L\Y)CL\X.

If X is a generalized final segment, than we may choose Y and W
in the following manner. Suppose that x A y E L \ [ft, /,«) for some
ft, / e L with ft ̂  /. If α, /3 E L \ [ft, /,oo), then a A β g j8 and hence
α Λ β E L \ [ft, /, oo). Thus, if JC = y, then

x =x Λy = y EL\[ft,/,oo),

and we may choose W = [ft, /, oo) = y. Suppose xy^y. Clearly either
x E L \ [ft, /, oo) or y E L \ [ft, /, oo), and thus, without loss of generality,
we may assume that x E L\[/, /, oo). Let Y = {y} and W =
[ft, /,oo). Since »(L) is Γ,, y is closed. If α E L \ Y and j3 E L \ W,
then a Aβ ^β and hence α Λβ E L \[ft,/,oo).

It remains to show that such Y and W exist when X is a
generalized initial segment. The problem is more difficult here than in
the case where X is a generalized final segment, and requires the
hypothesis that L has minimal polars. Suppose that x A y E
L \ ( - oo, ft, /]. Then, since L is a lattice, ft < /, and hence the proof of
Theorem 4.3 will be complete when we prove Lemma 4.4.

LEMMA 4.4. Let (L, ^ ) be a distributive lattice which has mini-
mal polars. If JC,y,ft,/ E L are such that ft < / and xΛy(ί(-»,k,/],
then there exist u,w EL such that

(i) x9y EL \ ( - oo, u,w];
(ii) for all a,β E L \ ( - o o , M , w], a Aβ E L \ ( - » , f c , / ] .

Proof. We note that since x Λ y£(-oo,ft ,/], then ( x Λ y ) v / >
/. Furthermore, if (x Λ y) v / E / v (ft, / ) \ then (JC Λ y) v / E ( - oo, ft, /] ,
and hence x A y E ( - oo, fc, /] . Thus
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(1) (xΛy)vl£lv(kJ)\

Also, if k g r < /, then

(2) (-«>,M]C(-oo,r,/]:

if z E(-oo,fc,/], then z ̂ lv b for some fe E(fc,/)•"•; by Proposition 2.1
(iii), r v b E(r, I)1, and since z ^ / v f o = / v r v f c , this implies that
z E ( - ° o , Γ , / ] .

(A) Suppose that there exist c,d EL such that

I v (c, Z)1, and for all e E L with I ̂ e <d, e El v(c, I)1. Since L
has minimal polars, there exist rj EL such that c^r<Kt^d, and
[r, f ] has equivalent polars. By Proposition 2.6, t £ I v (c, /)\ and hence
ί = d. If l^e <t = d, then by Proposition 2.1 (iii),

e E / v (c, I)1 = I v (r v (c, Z)1) C / v (r, /)\

and thus by Proposition 3.9, L \(-°°,r,/] is a dual ideal of L.
If x A y E ( - oo, r, /], then JC Λ y g / v b for some b E (r, /)\ Thus

Since b E (r, I)1 and [r, ί] has equivalent polars, b E (r, t)1 by the dual of
Proposition 2.4. Thus b Λ t = r, and hence

ί = (/ v b) Λ ί = / v (fe Λ ί ) = / v r = /.

This contradicts our choice of ί, and thus JC Λ y£(-oo,r, /]. Then
clearly, x,y EL \(-oo,r,/] . Let αΓβ E L \(-oo,r,/]. Since
L \ (- oo, r, /] is a dual ideal, and since k g c g r < /, we have by (2) that

αΛjBGL\(-oo, r ,/]CL\(-oo,fc,/].

Therefore, if u = r and w = /, then conditions (i) and (ii) above are
satisfied.

(B) Suppose that for all c,d EL such that

and d& I v (c, /)\ there exists e E L such that I <e <d and
e£/ vie,/)1. Since L has minimal polars, by (1) there exist rj EL
such that
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k^r<l<t g ( x Λ y ) v /

and [r, t] has equivalent polars. By Proposition 2.6, t& I v (r, / ) \ and
thus, by hypothesis, there exists t'GL such that Kt'<t and
f' £ / v (r, / ) \ Thus, we may find u,w £L such that r^u<l <w ^t'
and [M, w] has equivalent polars.

Let r < s < t. If s v / = t, then s G (f, /)ι, and hence by Proposition
2.4, s G (ί, r)f, i.e. s = s v r = t. This contradicts our choice of s, and
thus s v I <t. Hence, by Lemma 3.4, ί £ ( - oo, r, s v /]. Suppose that
X Λ y E ( - o o , r , s ] . Then by the dual of Proposition 3.1, XΛyG
(-00, r, 5 v/], and thus, clearly Qc Λ y) v / G (-<*>, r, s v /]. Since ί ^
(JC Λ y) v /, this implies that ί G ( - oo, r, s v /], which is a
contradiction. Thus, x Λ y & ( - 00, r, 5]. By Lemma 3.4, t &
(-oo ? r,5]. Since r < s < f was arbitrary, we may conclude from
Proposition 3.5 that for all r < s < ί,

(3) x Λy Λ f £ ( - o o ? r , s ] .

N o w suppose that x Λ y Λ ί G ( - 00, w, w]. Then X Λ y Λ f ^ w v b
for some b G(u, w) 1 . H e n c e x Λ y Λ t £ ( - « , r,(w v b)Λ ί ] . If
(v^ v ft) Λ t < t, this contradicts (3) above. Thus (w v b) Λ t = t, i.e.
w v (b A t) = t. H e n c e b Λ ί G (ί, w)^, and by Proposition 2.4, b Λ t G
(ί, r)j-, i.e. (fo Λ ί ) v r = t. Since b G (M, w ) 1 , b Λ W = M. Thus

and hence (b Λt)vr = b At. But then b At = t> i.e. fcgί, and we have

This contradicts our choice of u and w, and we conclude XΛy
00, M, w]. Clearly, this implies that x, y G L \ ( - O O ? M , H > ] . Finally, we
note that if a,β GL \ ( - o p , i ι , w], then α , β 6 L \ ( - o o , M , s ] for all
M < 5 < W by the dual of Proposition 3.1, and hence αΛ/3G
L \ ( - oo? M, 5] for all M < s < w by Proposition 3.5. Thus, in particu-
lar, a Aβ e L \ ( - o o , i ι , / ] , and hence by (2), a A β GL\(-oo,fc,/].

Since (A) and (B) exhaust the possibilities, we conclude that
Lemma 4.4, and hence Theorem 4.3, hold.

COROLLARY 4.5. Let (L, ^ ) be a distributive lattice. If<S(L)D
and if L has minimal polars, then (L, $*(L)) is a topological

lattice.
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Proof. Since 3>{L) is Γ,,«(L) is Γ,; by [6; Proposition 3.6],
»(L) = »*(L). The corollary then follows from Theorem 4.3.

We note that proving the results of §3 for generalized star-
segments, and considering the case of (-°°,/] in Lemma 4.4 would
allow us to drop the hypothesis that ^(L)^^^) in Corollary 4.5.

5. The Hausdorff separation axiom. This section is
devoted primarily to establishing that distributive lattices which have
minimal polars, and which satisfy the additional requirement that there
be enough polars to "separate" points, have Hausdorff generalized
interval topologies.

In [7], we introduced the following condition: A lattice (L, ^ ) is
said to be almost polar-dense if, whenever x,y E L are such that x < y
and for all x < d < y, y E d v (JC, d)1, then there exist c,e E L such that
c < x < y < e, y £ x v (c, x y, and x gϋ y Λ (e, y)(. We proved in [7] that a
totally ordered set is almost polar-dense if and only if its gi-topology is
equivalent to its interval topology (and hence to its gi-*topology). For
modular lattices, we have the following [7; Proposition 2.5].

PROPOSITION 5.1. Let (L, ^ ) be a modular lattice. IfL is almost
polar-dense, then ®(L) = #

The main result of this section is the following.

THEOREM 5.2. Let (L, ^ ) be an almost polar-dense, distributive
lattice. If L has minimal polars, then ^(L) is Hausdorff.

Proof. Let JC, y E L be distinct. Without loss of generality, we
may assume that x < x v y.

(A) Suppose that for all b,c &L with x^b <c ^jcvy, there
exists d EL such that b <d <c and c£dv(b,d)1. We first prove
the following: (α) If x ̂  b < c ̂  JC V y, then there exist r,t EL such
that b <r <t <c and [r, t] has equivalent polars. To see this, let
x ^ b < c ^ j c v y . By hypothesis, there exist d,e,fE.L such that
b<d<e<f<c, c£fv(b, f)\ f£dv (b, d)\ a n d
f£e\j{d,e)L. S i n c e L h a s m i n i m a l p o l a r s , t h e r e ex i s t r,tEL s u c h
t h a t

and [r, t] has equivalent polars. This proves (a).
We first apply (a) to obtain r,t EL such that j c < r < i < x v y and

[r,t] has equivalent polars. We then apply (α) to r<t to obtain
u,w EL such that r <u <w <t and [u, w] has equivalent polars. By
Proposition 3.6,
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L = ( - O O ? M ? W > ] U [ M , W,OO),

and hence

(L \ ( - oo, iι, w]) Π (L \ [M, w,oo)) = φ.

By the dual of Proposition 2.7, r£u Λ (W, M)|. Since L is distributive,
this implies that r £ [M, H>, OO) by the dual of Proposition 3.3. Therefore,
JC G L \ [ w , w,oo). Dually, x v y £ ( - o o ? M ? u>], and since x G
(-0°,M, w], this implies that y EL \ ( - O O , M , w].

(B) Suppose that there exist b,c EL such that χ g ί ) < c g χ v y
and for all b < d < c, c E d v (d, fe)\ Since L is almost polar-dense,
there exists k EL such that k <b and c £ b v ^ f c ) 1 . Since L has
minimal polars, there exist r,sEL such that k^r <b < s ^c and
[r,s] has equivalent polars. By Proposition 2.5, [fc,5] = {b,s}, and
hence, since L is almost polar-dense, there exists f EL such that 5 < /
a n d / ^ π ( f c , s ) 1 (Proposition 4.2). Since L has minimal polars, there
exist u,tEL such that b ^u <s <t ^f and [w,f] has equivalent
polars. Since [b, s] = {b, 5}, M = b, i.e. [b, ί] has equivalent polars. By
Proposition 3.8,

and hence

(L\(-oo,Γ,b])n(L\[5,ί,oo)) = φ.

By the dual of Lemma 3.4, b£[s, ί,oo)? and therefore, JC G
L\[5,ί,oo). Dually, JC V y E L \ ( - o o , r , H Since x ^ fo,
xG(-oo?r, b] and thus if yG(-oo?r,ft], JC v y G
(-oo,r,b]. Therefore, y E L \ ( - o o , r , H

We conclude that there exist α, β, γ, δ G L such that α < β, γ < δ,
y eL\(-oo, α , j8], x GL\[γ,δ,00), and

(L\(-oo,α,β])Π(L\[γ,δ,oo)) = φ.

By definition of «(L),

L\(-oo,α,j8],L\(γ,δ,oo)e»(L),

and hence ^(L) is Hausdorff.

COROLLARY 5.3. Let (L, ̂ ) be an almost polar-dense, distributive
lattice. If L has minimal polars, then ^ * ( L ) = ̂ (L) (5 a Hausdorff
lattice topology on L.
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Proof. This result follows from Proposition 5.1, Corollary 4.5, and
Theorem 5.2.

We conclude this section by showing how to construct many
natural examples of almost polar-dense, distributive lattices which have
minimal polars.

A partially ordered set (P, g ) is said to be unbounded if for all
p EP, there exist r,t EP such that r <p <t.

PROPOSITION 5.4. Let {Ta\a E A} be a collection of unbounded,
totlally ordered sets. Then |Π | {Ta\a EA} is an almost polar-dense,
distributive lattice which has minimal polars.

Proof By [7; Corollary 2.8], | Π | { Γ α | α E A } is almost polar-
dense. Clearly it is a distributive lattice. That it has minimal polars
follows from the fact that if JC, y,z E |Π| {Ta\a E A} are such that
x < y < z and z^yv(x, y)1, then there exists a EA such that ax <
ay < az.

6. Some examples. In this section, we construct various
examples to illuminate Theorems 4.3 and 5.2 and Corollaries 4.5 and 5.3.

EXAMPLE 6.1. Let M5 be the five-element nondistributive, modu-
lar lattice. Since $*(M5) is Γj, ^*(M5) is discrete, and hence a Haus-
dorff lattice topology. It is easy to see, however, that $(M5) is
indiscrete since ( - », a, b ] = [α, b,») = M5 for all a ^ b. Thus, Φ(M5)
is a lattice topology which is not even Γo. Clearly, M5 is not almost
polar-dense, but since if a < b < c, c E b v(α, b)L, vacuously L has
minimal polars.

EXAMPLE 6.2. Consider the natural numbers, N. Clearly, <&*(N)
is discrete, and hence (N, $*(N)) is a Hausdorff topological lattice. It
was noted in [6] that the closure of {1} with respect to Φ(N) is {1, 2}, and
that therefore, »(N) is not Tx. Clearly, {n}E »(ΛΓ) for all n ^
3, and furthermore,

{l,2} = L\[3,4,«]e«(ΛΓ),

{l} = L\[2,3,oo)e»(N).

Since thus 2 £! {1} G <S(N)9 »(N) is Γo. It is easy to see that (N, <S(N))
is a topological lattice, and since N is totally ordered, N is
distributive. Clearly, N has minimal polars but is not almost polar-
dense.
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EXAMPLE 6.3. Let L = \U\ {N\n EN}. Since the generalized
interval topology is preserved by cardinal products of dually directed
sets [6], ̂ (L) is a Γo, non-Γ,, lattice topology by Example 6.2. We will
show first that (L, ̂ *(L)) is not a topological lattice, and second that
$*(L) is not Hausdorff.

Let cuf E L be defined by ncλ = 1 for all n EN, and

2 if n = 1
1 if nέl.

If a,b,z EL are such that a^b and z£*[a,b,<χ>), then there exists
/ E JV such that Iz < la and if a <b, la < Ib. We denote the minimal
such / E N by m(z,a,b).

Suppose that ah b-x ch 4 E L, 1 = i = «, 1 = i = β, are such that f EPf

where PfE^^iL) is defined by

It is easy to see that for all 1 S / S β, c, = d, and 14 = 1. Let Γ E L be
defined by

(5) n Γ = ί 1 if i i - 1
j 1 if n = m(f, ah bx) for some 1 ̂  iί S α

l otherwise

Since for some n E N, nT = (v {ndy 11 g j ^ /3}) + 1, and since c} = d, for
all l ^ j ^ i S , Γ £ U{*(-oo,c y ,4] | lgj^j8}. Since

(m (/, ah bt))T = 1 ̂  (m (/, αέ, b,))/ < (m (/, fl|, b, ))α,

for all 1 ̂  / g α, Γ ^ U {*[a,, b,, ̂ ) 11 g f ^ α }. Thus Γ E P/. Clearly,
Γ Λ / = C , .

Clearly, fEL \{c,} E ^*(L), and / Λ/ = /. Thus, if (L, ̂ *(L)) is
a topological lattice, there exist PUP2E ^*(L) such that fEPίΠP2 and
P, Λ P2 C L\{c,}. Since PUP2E

(§*(L), there exists a P;, of the form (4)
above, such that fEPίQPλC\P2. Then, if Γ is constructed as in (5)
above,

c, = Γ Λ / E Pf Λ Pf C P, Λ P2 C L \{c,}.

This is a contradiction, and hence (L, ̂ *(L)) is not a topological lattice.
We conclude this example by showing that $*(L) is not

Hausdorff. Suppose that cxESE <S*(L) and / E P E ^*(L). Then,
by definition of ^*(L), there exists P/5 of the form (4) above, such that
/ E PfCP, and there exist rk,skEL, 1 ̂  k ^ γ such that
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cιESι = L\ U{*[rfc, ft, oo) 11 g k ̂  γ}C S.

Let Y G L be defined by

( 1 if n = m(/,ahbt) for some l g i ^ α
1 if n = m(Ci,rfc, sfc) for some 1 g/c ^ γ
(v {m/; 11 g j g β}) 4-1 otherwise.

As in the case of Γ above, YEP,, and since m(curkjsk)Y= 1 for all
l ^ f c ^ γ , YeS, . Thus

Yep,ns,cpns,

i.e. P Π 5 ^ φ, and hence <S*(L) is not Hausdorff.
Since [c,,/] = {c,,/}, then for all c, < d </, / E / v (c,, d)1. Thus,

since ( - °°, c j = {cj}, L is not almost polar-dense. It is easy to see that
L has minimal polars.

EXAMPLE 6.4. Let L C R \ x | JR be defined by

L = ([0, 2] x ]0, 2]) U ([3, 5] x [0, 2[) U {(0, 0), (5, 2)}.

Clearly, L is a lattice. Since the lattice

{(0,0), (0,1), (1,1), (3, l),(3,0)}

is a sublattice of L, L is not modular.

We will first show that $(L) is Hausdorff. Let (a,b)y (x,y)EL
be such that (α,b)^ (JC,y). Clearly.

([0, 2] x ]0, 2]) U {(0, 0)} = L \ [(3, 1), (4, 1), oo) e »(L),

([3, 5]x[0, 2[)U{(3, 2)} = L \ ( - o o , (l, 1), (2, l)]

Thus, we may assume that 0 έ α έ 2 and 0 ^ J C ^ 2 , or 3 ^ α i 5 and
3 ̂  x = 5. These cases are dual, and hence we will consider only the
case where 0 S a g 2 and 0 ^ χ g 2 . Suppose that b ̂  y. Without loss
of generality, we may assume that-y < b. Let y < δ < b. Then (JC, δ),
(α,δ)EL, and

(x,y)eL\[α,δ),(α,b),oo)e«(L).
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If b = y, then we may assume that x < a. Since b = y, 0 < y. Thus, if
x < γ < a, (γ, b) = (γ, y) e L, and

We conclude that ^(L) is Hausdorff.
We will show next that (L^iL)) is not a topological

lattice. Suppose that (3, 0) £ ( - °°, JC, y ] for some x ̂ y. Then clearly,

(6) [(3,0), (3, l ) ]CL\(-oo, jc,y] .

Suppose that (3, 0) jS [(α, b), (c, d), ~) for (α, fe) g (c, d). If fe = 0, then
3 < a < c, and thus,

(7) [(3,0), (3, l)]CL\[(a,b),(c,d),oo).

lϊ b>0, then for 0 < η < b,

(8) [(3, 0), (3, T) )] C L \ [(α, ft), (c, d),»).

, 1), (2, l),oo). Then(0, 0 ) e Y G »(L). Wenote
that (2, 1) Λ (3, 0) = (0, 0). If (2, 1 ) £ A G » ( L ) and (3, 0)EBG <S(L),
then we wish to show that A ΛB£.Y. By definition of $(L),

(3,0)G Π (L\Xi)CB,
ί = l

where the X are generalized initial and final segments. By (6), (7), and
(8), there exists 0 < μ < 1 such that

[(3,0),(3,μ)]C Π (L\Xi)CB.
i = l

Thus, we have (2, l ) e A and (3, μ) G JB, and hence (2, μ) E
A ΛB. Clearly

and hence (2, μ,) fέ Y. Thus, A Λ B £ Y, and since (2, 1) Λ (3, 0) = (0, 0),
we therefore conclude that
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is not continuous. Hence, (L, ̂ (L)) is not a topological lattice. We
note that dually one may show that v is also not continuous.

We show next that «(L)-= <S*(L). Clearly, if (α, b) G L is such
that 0 < a and 0 < b, then there exists (c,d)EL such that

Furthermore, it is easy to see that if x > 0,

(-oo, (0,χ)] = (-oo,(0,0),(0,Jc)]n((Ί (-oo,((π + lΓM),(n-

(-oo,(χ,θ)] = (-oo,(θ,0),(x,0)]n(n (-oo,(0,(n + l)-'),(0,«"

( - oo, (0,0)] = Π ( - oo, ((« + l)- , (n + I)"1), (« "\ n "')].

Similarly, final segments are closed with respect to 'S(L), and hence
#(L)C 'S(L). Since L is a lattice, this implies that ^*(L) = 'S(L) by
[6; Proposition 3.6]. We conclude that <g*(L) is Hausdorff, but that
(L, ^*(L)) is not a topological lattice.

Since [(0, 0), (3, 0)] = {(0, 0), (3, 0)}, and since (-°o,(0, 0)] =
{(0, 0)}, then L is not almost polar-dense. Furthermore, if 3 < t ^ 4,
then

((0, 0), (3, 0)Y = ([0, 2] x ]0, 2]) U {(0, 0)},

((3, 0), (ί, 0)Y = [(3, 0), (3, 2)[.

Thus, (4, 0) fέ ((0, 0), (3, 0))1, and if

(0, 0) ̂  (r, 0) < (3, 0) < (t, 0) ̂  (4, 0),

then

(3, 0) v ((r, 0), (3, W = (3, 0) v ((0, 0), (3, 0)Y

Therefore, [(r, 0), (t, 0)] does not have equivalent polars, and we con-
clude that L does not have minimal polars.
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Added in Proof. Theorem 4.3 does not require the hypothesis that
^(L) is Γ,: Let y = 0 instead of {y} in the second part of the second
paragraph of the proof.
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ALGEBRAIC MAXIMAL SEMILATTICES

J. W. STEPP

A topological semigroup S is maximal if it is closed in each
topological semigroup that contains it. The semigroup S is
called absolutely maximal if each continuous image is
maximal. In this paper we are concerned with those discrete
semilattices that are absolutely maximal. Thus we are con-
cerned with those algebraic conditions on a semilattice which
force it to be topologically closed.

In [9] Stralka studies those semigroups which have the congruence
extension property. The semilattices we are concerned with and all
their homomorphic images have this property. In fact, every congru-
ence on such a semilattice S is closed. Thus 5 admits a compact
Hausdorff topology ZF{S) under which multiplication is
continuous. By [5] S admits a unique such topology. Also, since S
has the congruence extension property for finite subsemilattices, the
topology £F(S) has a base which consists of subsemilattices [3].

In §11 we give definitions, and we give necessary and sufficient
conditions for a sublattice of a compact lattice to be closed. In §111 we
characterize those discrete semilattices and lattices which are abso-
lutely maximal. Also, we show (Sy^(S)) is stable and 0-
dimensional. In §IV we indicate how absolutely maximal discrete
semilattices are constructed from a class of simple examples.

II. Definitions. Let 5 denote a topological semi-
lattice. The Bohr compactification of S is a pair (2?(S), bs) where B (S)
is a compact semilattice, bs: S —> B(S) is a continuous homomorphism
and if / : S -» T is a continuous homomorphism with T a compact
semilattice, then there is a unique continuous homomorphism which
makes the following diagram commute:

For the existence of the Bohr Compactification see either [1] or [2].
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For each U C S with U^ 0 let M(U) = {y G S | there is an JC G [/
with jcy=jc}, L(U)= U S and CL(U) denotes the closure of
U. Define g on 5 by JC ̂  y if and only if xy = x. Let {xa}aεA be a net
in 5. To say xa f JC means the net converges to x and xα ^ x̂
whenever a ^ β. We define xα J, x is a similar manner. For a topolog-
ical semilattice Γ Hom(S, T) denotes the collection of continuous
homomorphisms from S to Γ. Let / denote the unit interval with
xy = min{jc, y} and let J, = {0,1} C I

PROPOSITION 1. Lei L be a compact topological semilattice with
identity element and let A be a sublattice of S. Then A is closed if and
only if A is complete.

Proof. Assume A is complete and let x G CL(A). Let °U be the
collection of sequences of open sets about x having the following
property; {[/„}:=, G% if and only if CL(Un+ι) A CL(Un+ι) C Un for
n = 1,2, . Partially order % by {Un}U =S{Vn}:_, if Vn C l/π for all
n. Then % with this partial order is a directed set. Now fix a =
{lU:-i G %. Note that Π Γ=i l/» = Π Γ=iCL(l7n) is a sublattice of L and
if (Π Γ=i C/n) n A £ 0, then (Π Γ=i l/n) Π A is closed under taking inf s and
thus has a zero which will be denoted by z(a). Thus we show this
intersection exists.

For each n let bn G Un Π A and let {αj}p=i be the sequence given by
an

p = Λf=1 bn+i. Then {α£}p=i C ί7n and is a decreasing sequence and thus
has a limit point t in CL(t/n) Π A. Clearly, t G CL(l/m) for all m > n
and thus (Π U Un) Π A φ 0 . It is clear that if α, β G % with α < β, then
z (a) ^ z (β). Thus {z (α )}α G% is an increasing net in A which converges
to x. Since A is complete, and / compact, x GCL(Λ).

In [5] Lawson defines B+ for an ideal in a semilattice 5 to be {x \
there is a net {jcα}αGΓC B with jcα j x}. He shows for an ideal B in a
compact semilattice S is closed if and only if B + = B. Thus one has

PROPOSITION 2. Lei B be a sub semilattice of a compact semilattice
S. Then B is closed if and only ifB contains arbitrary infs and B = J3+.

We also need the following from [5].

PROPOSITION 3. Let S and T be compact semilattices and leff be a
homomorphism from S to T Then f is continuous if and only if f has
the property that f(xa) f f(x) whenever xa f x andf(ya) | /(y) whenever

Comment 4. It is not the case that a complete lattice necessarily
admits a compact Hausdorff topology for which both operations are
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continuous. For consider the lattice on the integers with 0 the smallest
element, 1 the largest element and each maximal chain having three
elements. However, (Z, Λ ) does admit a compact Hausdorff topology
with Λ continuous.

III. Maximal semilattices and lattices. Throughout this
section 5 will denote a discrete semilattice which is absolutely
maximal. Since 5 is a locally compact semilattice with a base for the
topology which consist of subsemilattices, Hom( S,J) separates points
[4], Thus there exists a continuous injection a from S into a compact
semilattice. Since α(S) is closed it is compact and S therefore admits
a compact topology 3*(S) with multiplication continuous. By [5],
3*{S) is unique, and therefore (α(S),α) is the Bohr compactification of
S. Note that a(S) is the Bohr compactification of a(S) with the
discrete topology. Therefore, we first characterize those compact
semilattices T which are the Bohr compactification of Γ with the
discrete topology.

For a semilattice T we let Td denote T with the discrete topology.

PROPOSITION 5. Let T be a compact semilattice with T =
B(Td). Then

(a) Hom(Γ, IJ separates points.
(b) If U is a subsemilattice of Γ, then M(U) is both open and

closed.
(b') Each prime ideal of T is both open closed
(c) dim S = 0.

Proof, (a) Let JC, y G T and assume x <£ M(y). Let φ: T -» J, be
given by φ(s)=l if sGM(y) and 0 otherwise. Since T = B(Td),
φEHomίT,/,), and φ(y) = 1 ̂ 0 = φ(x). It now follows that Horn
(Γ,/i) separates points.

(b), (b') Same as (a).
(c) Since Hom(5, Iχ) separates points and S is compact, 5 can be

embedded in a 0-dimensional semilattice and is therefore 0-dimensional.

LEMMA 6. Let Ί be a compact semilattice with M(U) both open
and closed for each subsemilattice U of S. If C is a chain in Γ, then C is
finite.

Proof. Assume T has an infinite chain C. Then CL(C) is a chain
and must have a limit point z. Since M(z) is open, there is net {jcα}αeΓ in
C with xa I z and xa^ z for each a G Γ. Let N = Π aeΓM(xa); then
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M{U) is closed with z£M(U) with is a contradiction. Thus C must
be finite.

PROPOSITION 7. Let T be a compact semilattice. Then the follow-
ing are equivalent:

(a) T = B(Td).
(b) M(U) is both open and closed for each subsemilattice UofS.
(c) Each chain in T is finite.
(d) Hom(ΓJ1) = Hom(T ί ίJ1).
(e) There is a compact semilattice R with |1?|>1 with

Proof, (a) Φ (b) Φ (e) trivial, (e) Φ (b) by proof Proposition 5,
(b) Φ (c) by Lemma 6. Thus we show (c) Φ (a).

Let fEHom(TdyR) where R is a compact semilattice and each
chain in T is finite. Let {jcα}αeΓ be a net in T with xa j x. Since each
chain is finite, eventually xa = x and /(xα) | / ( x ) . Similarly, if yα f y
then /(y α ) t/(y) . By Proposition 4, /GHom(Γ,l?) and thus Γ =
B(Td).

LEMMA 8. Let T be a tppological semilattice and let R be a
subsemilattice of T with each chain finite. Then R is closed.

Proof. Let x G CL(JR). Let °U be the collection of sequences of
open sets about x satisfying; {[/n}"=1G °U if and only if Un+I[/π+i^ Un

for all n. Partially order °U by {I7n}:=1 ^{Vn};=ι if and only if Vn C t/π

for all n. Then % with this partial order is a directed set. Fix
{ί/j:=1 = α: G%. Then Π Γ=i CΛ is a subsemilattice of T and if (Π
Γ=il/n)ni?^0, then (ΠΓ=it/n)Πl? has a zero. For each positive
integer n let frπ G Un ΠR, and for each positive integer p let α£ =
bn+φn+2- -' bn+p. As before, an

p E.Un for all p. Since each chain in R is
finite, there is a q such that if p >q then a\ = αj. Thus {αj}p=1

converges to απ in Un. Clearly, if m > n then αm ^ α " . Thus there is
a m0 such that if n ^ m 0 then an = am°. It now follows that
αm°G(ΠΓ=it7n)ni?. Let z(a) be the zero of (Π7^UΛ)ΠR. Thus
{z(α)}αG% converges to x. Thus r = x 6 J J and R is closed.

We now summarize our results in the form of a theorem.

THEOREM 9. Let Tbea discrete semilattice. Then T is absolutely
maximal if and only if each maximal chain in T is finite.

It is clear that we also have



ALGEBRAIC MAXIMAL SEMILATTICES 247

COROLLARY 10. Let L be a discrete lattice with each chain
finite. Then each lattice homomorphic image of L is closed.

We close this section with some additional properties a semilattice
T with T = B(Td) must have. The proofs are all straightforward and
will be omitted.

PROPOSITION 11. Let T be a compact semilattice with T =
B(Td). Then

(a) Each semilattice of T is closed.
(b) If R is a sublattice of T, then R = B(Rd).
(c) If R is a homomorphic image of T, then R = B(Rd).
(d) T is stable (that is, there are no dimension raising

homomorphisms on T).

IV. Examples. Throughout this section Sd is assumed to be a
discrete absolutely maximal semilattice and 5 will denote B(Sd). For
each x E Sd let A(x) = {y E Sd \x < y and M (JC) Γϊ L(y) = {JC, y}.

LEMMA 12. For each x E Sd A(x) is infinite if and only if x is a
limit point of S. Further, if A(x) is infinite, then CL5(Λ(JC)) =

A(x)U{x}.

Proof. Assume A(x) is infinite and let {yα}«er be a net in A(x)
which converges (in 5) to y. Assume each ya ^ y. Let z E A (JC); then
zya = x if yajέ z. Thus zy = x. It now follows that y = y2 = limyyα =
limx = x. Thus CLs(A(x)) = A(x) U{JC} and JC is a limit point of 5.

Now assume x is a limit point of S and let {za}aGΓ be a net in 5
which converges to JC and zα^jc. For each « 6 Γ let xaEA(x)Π
L(Za). Such jcα's exist since each chain in T is finite. Thus {jcα}«er is
a net in A(x) which converges to JC. It now follows that A(JC) is
infinite.

EXAMPLE 13. Let X be a compact well-ordered space and let B
be the set of limit points of X. Let p be defined on X by xpy if and
only if x = y or x, y E B. Then XIp is a compact Hausdorff
space. Define multiplication on XIp by [JC] [y] = [JC] if [x] = [y] and B
otherwise. Then X\ρ with this multiplication is a compact semilattice
with each chain finite. Thus (Xlρ)d is an absolutely maximal semilat-
tice.
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EXAMPLE 14. Let Γ = {((l/n),(l/p))|n,p positive integers, n ^
p ^2n}U{(0,0)} with multiplication defined by

(0,0) if nϊm

(1 λ) (± 1) =WpJWqJ (II . ίl n\ .,
—,mini—,—}) if n = m.W [p'qίJ

Then each chain in Td is finite and thus Td is absolutely maximal. Note
that although chain in T is finite there is no upper bound on the length of
chains.

Observation 15. Let x be a limit point of 5. Then CLS(A (JC)) is
isomorphic to XIp for a suitable compact well-ordered space X (see
example 13).

Observation 16. There is a discrete semilattice Td which is
absolutely maximal and the set of limit points of T is 5.

Question 17. If S is a maximal semilattice is it absolutely
maximal?

Question 18. Are these reasonable conditions one can impose on
a locally compact semilattice to guarantee that it be maximal?
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A SHEAF THEORETIC REPRESENTATION OF RINGS

WITH BOOLEAN ORTHOGONALITIES

PATRICK N. STEWART

It is shown that certain associative rings with Boolean
orthogonalities are isomorphic to rings of global sections.

Let A be a ring and 1 a relation on A. For each subset 5 of A
define

Sλ = {xGA\x±s for all s E 5} and S±1 = (S1)1.

When S = {s} we write s1 and s11 instead of {s}1 and {s}11. Subsets of
A of the form S1 are polars. The relation 1 is a Boolean orthogonality
if all polars are two-sided ideals and if, for all JC, y G A,

1. x±y-»y±jc, 2. x±x-*x = 0, and
3. x^Πy^

The set of polars is a Boolean algebra (see [3]) with meet and join
defined by

BΛC = BΠC and B v C = (B1
 Λ C1)1.

Boolean orthogonalities have been studied by Davis [3], Cornish [1]
and by Cornish and Stewart [2].

Throughout this paper we shall assume that A is an associative ring
with an identity and with a Boolean orthogonality 1. We shall also
assume that the following finiteness condition is satisfied:

for any two elements x, y G A there is a finite set F QA
such that x11 A yλl = F11.

Notice that if F = {/„ -,/„}, then F ± = / | Λ Λ/i and Fλl =

An ideal / of A is a 1-ideal if F 1 1 C / for every finite set F C I , and
/ is I'prime if Ij£ A and whenever the intersection of two polars B and
C is contained in I, either B Cl or C Ql.

LEMMA. Assume that P is either a 1-prime ideal orP = A, that I is
a 1'ideal and that x EA\I is such that x L± A J X 1 C I implies that a EL P.
Then there is a L-prin e 1-ideal Q such that ICQ CP and x&Q.

249
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Proof. Using Zorn's Lemma select a 1-ideal Q D I maximal with
respect to the property "xg: Q and x±λ Λ 2 ±λ C Q implies that α E P" .
Clearly I CQ CP.

Suppose that B and C are polars neither of which is contained in Q.
Choose b <= B\Q and c e C\Q. Then

J3' = U {F 1 X |F is a finite subset of {b} U <?}

and
C" = U {Gx± IG is a finite subset of {c} U Q}

are 1-ideals which properly contain Q. By the maximality of Q either
J C ^ C B ' or x ^ Λ f t f C B ' for some ft,GΛ\P, and x u C C ' or
JC^ Λ cf1 C C for some CiGA\P. Thus we obtain finite sets
{b,fu ;fn}C{b}UQ and {c,gu-- ,gm}C{c}UQ such that one of
JC 1 1, JC^1 Λ fcf\ JCX± Λ cf1 or JC 1 1 Λ b\L

 Λ c j 1 is contained in

= (fc±1v/t±V • v/ ί i )Λ(C i i Vg{ i V ••Vgi,1)

= ( 6 i i Λ C l i ) v i ί i i

where H is a finite subset of Q (we have used the distributivity of the
Boolean algebra of polars and also the finiteness condition). If
b1L Λ c 1 1 C ζ), then JC11 c <? or JC11 Λ i l x C Q for some d G A \P both of
which contradict the choice of Q. Thus B Π C£Q and we conclude
that ζ) is 1-prime.

For the remainder of this paper X will be fixed set of 1-prime ideals
which contains all 1-ρrime 1-ideals and which is full (that is, if / is a
sum of polars and 1^ A, then I CP for some P E X).

PROPOSITION 2. (Cornish [1]). For each PEX,

{x<ΞA\x1£P}= Π{RGX\RCP}= Π{QEX\QCP

and Q is a 1-prime 1-ideal}.

Proof. Suppose that JC1 £ P and R is a 1-prime ideal contained in
P. Then JC11 Λ JC1 = (0) C £ and so x E Λ.

If x1 C P, then by Lemma 1 (take / = x1) there is a 1-prime 1-ideal
Q C P such that x£ Q. This establishes the result.
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The set described in the proposition will be denoted by OP. We note
that Op = P if_ and only if P is minimal in X.

Let P E X . The set OP, being an intersection of 1-ideals, is itself a
1-ideal. Define a relation (also denoted by 1) on AIOP by

(x + Op) 1 (y + Op) ^ x x ±
 Λ y ±λ C OP.

This relation is well-defined because if x, = x + a and y, = y + b where
α,fcE Op, then

xf1
 Λ yf± = (x + α)J"L

 Λ (y + f > ^ C (x X 1 v x LL) Λ ( y l x v 6 1 1)

and so x t 1 Λ y f1 C (x1JL Λ y 1J0 v F 1 1 where F is a finite subset of OP. It
is routine to check that

x1 + Op C (x + OP)X and x 1 1 + OP C (x + OP)± X

for each x E A, and that the relation 1 is a Boolean orthogonality on
AI Op.

PROPOSITION 3. For each P E X , P = P/OP w α 1-prime ideal of
AI Op which contains all proper polars of A/OP.

Proof Let_J5 jmd C be polars in A/OP such that B Π C C P .
Suppose that B£P. Then there is an element b E A such that
b 4- Op E B\P. Let c + OpEC. Then

(b11 + OP) Π (c1J- + OP) C (b + Op)11 Π(c + Op)11 CB nCCP

and s o b i i Π c i i C P . Since b ^ P w e conclude that c EP and soCCP.
Thus P is 1-prime.

Suppose that a11 Λ b 1 1 C OP. Then there is a finite set {/,, ,/n}C
Op such that

For each / = 1, , n, /• e OP and so f] £ P. Thus f\ Λ • Λ /i g P.
Also, ft11 Λ /t Λ - A / i C α 1 because α 1 1 Λ > ̂  Λ /f Λ Λ /ί = (0). If
α ^ Op, then α 1 C P and so, since f\ Λ Λ /ί ^ P, b 1 1 C P. Thus P
contains (α + Oi^)1 for all <? ^ OP. It follows that P contains all proper
polars of AIOP.
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Let S be the disjoint union of the factor rings AIOP. The relation
(also denoted by 1) on the product

n{AIOP\P<ΞX}

= {f:X->S\f(P)GAIOP for all PGX}
defined by

f±g*+f(P)±g(P) in AI Op for all PEX

is a Boolean orthogonality. Each a EL A determines a function a G
U{AIOP\PEX} defined by ά(P) = a + OP. It follows from Lemma 1
that Π {PIP is a 1-prime 1-ideal} = (0) and so Π {OP | P G X} = (0).
Thus we obtain the usual embedding

A^A CU{AIOP\PGX}.

This embedding respects orthogonalities; that is, a 1 b in A if and only
if a 1 b in the product.

We define a topology on X by declaring the basic open sets to be
the subsets of the form

Notice that X(a)Π X(b)D X(c) for all c G aLL A bLL and so these sets
do qualify as a topological base.

Suppose that {X(a)\a G C} is a cover of X consisting of basic open
sets. Then X{aλl\a GC} = A because X is full. Since A has an
identity there is a finit^set F C C such that X{alλ\a GF} = A Thus
{X(a)\a GF} covers X and so X is quasi-compact.

Give 5 the topology generated by sets of the form a [ U] =
{a + Op IP G_l/} where U is open in X and a EA. We obtain a sheaf of
rings (5, TΓ, X) where π : S —»X is the projection onto X.

Let Γ = {/1 / G U{A IOp\PG X} is continuous} be the ring of global
sections. The following observation shows that A C Γ: for all x, y G A,
{P G X\x - y G Op} is open in X. To see this notice that if x - y G OQ,
then Q G X(u) C { P G X | j c - y G OP} where M is any element in (x -

THEOREM 4. A = Γ.

Proof. Let / G Γ. Since X is quasi-compact there are finite sets
{α,, •••,#„} and {t;,, ,ϋn} such that X = X(α,) U UX(απ) and
f(P) = i;, + OP for all P G X(α,).

Notice that vx{- v}B Π{OP\PE X(α,) Π X(α,)}, so (u, - v} )
1 C
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Q G X implies that a I 1 Λ 2 ) λ C Q. It follows from Lemma 1 (take
P = A and / = (u,- - i?,-)1 for each JC£ (ty - i?,-)1) thai

and s o α f Λ i ^ C (t?,- - t?,.)1. Thus (u, - vβ11 A z^Ca).
Since X = X(a,)U •• U X ( α J and X is full, a t 1 * + flί1

Choose M, E α i 1 such that 1 = w, + + wn and let v = uivί + +
Then

υ - Vj = ι ι , ( i ; , - t>/)+ + Mn(ι;n - ^ G α C O p

for all P G XXα,-). Thus /(P) = v} + OP = v + OP for all P G X ί ^ ) and so

f-rings (Keimal [4]). Let A be an /-ring with identity. The
relation defined byjc±y<H»|jc| Λ | y | = 0 i s a Boolean orthogonality and
x11 Λ y^ = (\x I Λ y I) 1 1 . Let X be the set of irreducible /-ideals.
Then X is full because polars are /-ideals and sums of /-ideals are
again /-ideals. Also, all 1-ρrime 1-ideals are irreducible /-ideals and^so
A is isomorphic to the /- ring of all global sections of the sheaf (S, π, X).

Reduced rings (Koh [5]). Let A be a ring with identity and no
nonzero nilpotent elements. The relation defined by JC 1 y *+xy = 0 is a
Boolean orthogonality and x1^ Λ y11 = (xy)11. Let X be the set of all
prime ideals of A. Clearly X is full. Also, all l-prime 1-ideals are
completely prime and so A is isomorphic to the ring of global sections
of the sheaf (5, τr,X). Each stalk A/OP is reduced (Proposition 2) and
the prime ideal P/OP contains all zero divisors (Proposition 3).

Semiprime rings. Let A be a semiprime ring with identity. The
relation defined by x 1 y <->(x)(y) = (0) is a Boolean orthogonality.
However, the finiteness condition may not be satisfied as the following
example shows.

Let R be a semiprime ring with identity, R' the ring of 3 x 3
matrices with entries from R,

0
0
0

1
0
0

0
0
0

and y =

0
0
0

0
0
0

1
0
0

Define x and y in P = Π{JRΠ | Rn = R' for n = 1,2, •} by

jc(n) =
0
y
0

if
if
if
if

n = 1
nΦ 1
n = 1
nψ± 1

(mod
(mod
(mod
(mod

2)
2)
3)
3).
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Notice that xy = yx = x2 = y2 = 0. Let E be the subring of P which is
generated by the identity of P, x, y and

${Rn I Rn = R' for n = 1,2, •}. Then

JC11 = { / G £ | / ( M ) = 0 for n^\ (mod 2)},

y±1 = {/EE|/(n) = 0 for n^ί (mod 3)},

and so

jp11 Λ y 1 1 = {/GE|/(n) = 0 for n ^ l (mod 6)}.

If JC11 Λ y±1 = {/i, •• s/π}11, then at least one of the / must satisfy
/i(n)^0 for infinitely many positive integers n. But then there are
integers α, β and γ such that /(n) = (α + βx + γy) (n) for all but a finite
number of positive integers n. This is incompatible with the require-
ment that fi(n) = 0 for nφ 1 (mod 6).

When the finiteness condition is satisfied (for instance, when A
satisfies the maximum condition on annihilators), A is isomorphic to the
ring of all global sections of the sheaf (S, π, X) where X is the set of
prime ideals of A, Each stalk AIOP is semiprime (Proposition 1) and the
prime ideal P/OP contains all two-sided annihilator ideals of A/OP

(Proposition 2).
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A GENERALIZED JENSEN'S INEQUALITY

TING O N TO AND YIP KAI WING

A generalized Jensen's inequality for conditional expectat-
ions of Bochner-integrable functions which extends the results of
Dubins and Scalora is proved using a different method.

1. Introduct ion. Let (Ω,F,P) be a probability space,
(U,[| ||) a complex (or real) Banach space and (V,|| ||, ^v) an ordered
Banach space over the complex (or real) field such that the positive cone
{v E V: v ^ vθ} is closed. Let x be a Bochner-integrable function on
(Ω,F,P) to U. Let G be a sub-σ-field of the σ- field F and let / be a
function on Ω x U to V such that for each u E U the function /( ,u) is
strongly measurable with respect to G and such that for each ω E Ω the
function f(ω, •) is continuous and convex in the sense that f/(ω,iii) +
(1-f) /(ω,M2) = ι>/(ω,ίw, + (1-0^2) whenever u l9 M 2 E U and Ogf ^
1. For any Bochner-integrable function z on (Ω,F,P) to any Banach
space W, we define E[z |G] "a conditional expectation of z relative to
G" as a Bochner-integrable function on (Ω,F,P) to W such that E(z |G]
is strongly measurable with respect to G and that

ί E[z\G](ω)dP= ί z(ω)dP9

J A J A
A E G ,

where the integrals are Bochner-integrals.
The purpose of this note is to prove the following generalized

Jensen's inequality:

THEOREM. ///(- , JC( )) is Bochner-integrable, then

(J) £[/(-, x( )) |G](ω)gJ(ω,E[x |G](ω)) a.e.

The above theorem extends the results of Dubins [2] (cf. Mayer [5,
p. 79]) and Scalora [6, p. 360, Theorem 2.3]. It is proved in [2] that the
theorem is true for the case in which the spaces U and V are both the
real numbers R, while in [6] Scalora uses the methods of Hille-Phillips
[4] to prove the theorem when the function /(ω,w) is replaced by a
continuous, subadditive positive-homogeneous function g(u) on U to
V. It should be noted that the method of the proof used here is
different than those used previously, the previous methods appear to be
ineffective for a proof of the extension.
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2. Preliminaries. We refer to [4] and [6] for the definitions
and basic properties of the concepts of Bochner-integrals and the
conditional expectation of a Bochner-integrable function. Our proof
of the theorem is based on the following lemmas. Unless otherwise
specified, functions in Lemma 1-5 are defined on (Ω,F, P) to U.

LEMMA 1. ([4, p. 73, Corollary 1]). A function is strongly
measurable if and only if it is the uniform limit almost everywhere of a
sequence of countably-valued functions.

LEMMA 2. (Egoroff's theorem, [4, p. 72] or [3, p. 149]). A se-
quence {z, }Γ=i of strongly measurable functions is almost uniformly
convergent to a function z if and only if

)-z(ω) | |-»0 a.e. asi-><*>.

The following lemma is an immediate consequence of Lemma 1 and
Lemma 2.

LEMMA 3. If z is a strongly measurable function, then for any
positive number M there exists a sequence {z,}Γ=i of simple functions
suchthat || Zi(ω) || ^ ||z(ω)|| + M a.e., i = 1,2, , and | |zi(ω)-z(ω)||-»0
a.e. /

LEMMA 4. ([6, p. 356, Theorem 2.2]).
(a) // z(ω) = u on Ω then E[z |G](ω) = u a.e.
(b) If z and zh i = 1,2, , are Bochner-integrable functions such

that z(ω) = ΣΓ=iί/Zi(ω) a.e. where U are scalars then J3[z|G](ω) =
τuUE[Zι\G]{ω) a.e.

(c) || E [z I G](ω) || g E [ || z \\ \ G ](ω) a.e., for any Boxhner-integrable
function z.

(d) // z is a Bochner-integrable function and zhi = 1,2, , are
strongly measurable functions such that ||z, (ω) —z(ω)||-*0 a.e. as
i -» oo, and if there is a real-valued integrable function y (ω) ̂  0 such that
||Zi(ω)||^y(ω) a.e., i = 1,2, ,then z ̂ s are Bochner-integrable and
||£[zί |G](ω)-E[z|G](ω)||-^0 a.e. as /->^.

LEMMA 5. If z is a Bochner-integrable function and zhi =
1,2, -",are strongly measurable functions such that ||z i(ω)-z(ω)||->0
uniformly a.e. as /—»<*>, then there exists an integer N such that
z, ,/ = N,N + 1, , are Bochner-integrable functions, and

a.e. as i —»oo.
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Proof An immediate consequence of Lemma 4 and the fact that
E[ |G] is a positive operator on the space of all real-valued integrable
functions.

LEMMA 6. // z is a strongly measure function on (Ω,G,P) to a
Banach space W, and if on (Ω,F,P), y is a numeric ally-valued
integrable function such that zy is a Bochner-integrable function with
values in W, then

E[zy\G](ω) = zE[y\G](ω) a.e..

Proof By using Lemma 3 and Lemma 4, the proof when W is the
real numbers R as given by Billingsley [1, p. 110, Theorem 10.1] can be
applied to obtain the general result.

LEMMA 7. Let g be a convex function on U to V. // u{ G U and

tι G R, U ̂  0, i = 1,2, n, such that

2 U = 1, then J fig (a*) ̂  , g ( Σ W ) .
ι = l ι = l \i = l /

Proof. By induction.

3. Proof of the theorem. We first note that if F G F with
P ( F ) > 0 and z is a simple function on (Ω,F>P) to U such that
Λ>/( ,2( )) is Bochner-integrable, then

(1)

To see this, let z = Σf=i utχAι, where w, G U and A ' s are disjoint sets of F
such that ΣΓ-IXA. = 1. It is clear that F C{ω: £[^ F |G](ω)>0}
a.e.. Since /( , u{,) is strongly measurable with respect to G and /(ω, )
is convex, by using Lemma 4, (b), Lemma 6 and Lemma 7, we then have
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' E[χF |G](ω) f§ nEtex* |G](ω))a.e. on F

e O n

Nextly, since x is assumed to be a Bochner-integrable function on
(Ω,F,P) to U, x is strongly measurable, and hence by the definition of
strong measurability (or by Lemma 3) there exists a sequence {xjΓ=i of
simple functions on (Ω,F,p) to U such that ||jc l(ω)-x(ω)||~>0
a.e.. Furthermore, since /(ω, ) is continuous on U it follows that
||/(ω,xι(ω))-/(ω,jc(ω))||->θa.e..

Therefore, by Lemma 2 we can find an increasing sequence,
Ω ^ ί l s C •••, of sets of F with P(Ω-Ω*)< 1/fc, k = 1,2, , such that

(2) \\χakjίω)xi(ω)--χ(ϊko(ω)x(ω)\\-*0 uniformly a.e. and
(3) \\χnΛω)f(ω,xi(ω))-χnk(ω)f(ω,x(ω))\\->0 uniformly a.e., as

/-*oo? for each k = 1,2,' .
According to Lemma 5, (2) implies
(2') \\E[χakXi \G](ω)-E[X[ϊkx |G](ω)||->0 uniformly a.e. as ί->«>,

for each k = 1,2, , and (3) implies
(3') \\E[χ«J(',xX ))\G](ω)-E[χnJ( ,x( ))\G](ω)\\-+O uni-

formly a.e. as i —><», for each k = 1,2, .
Now by using the continuity of /(ω, ) again, it follows from (2')

that

E[χίϊkx\G](ω)
E[χ

ak

a.e. on Ω* as ί ->oo.
On the other hand, from (1) we obtain

d') E(XoJ( , *•(

a.e. on ίl t, for each /c = 1,2, , and each / = 1,2,3 - .
Letting j->oo j n (Γ) and using (3') and (4), we obtain

d") E[XaJ( ,x(-))\G](ω) ^υ

a.e. on Ωfc, since the positive cone of (V; ̂  v) is closed.
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Finally, since |^ Ω k (ω) | ^ 1 and χnΛω)^ 1 a.e., by using Lemma 4,
(a) and (d), and the continuity of /(ω, ), when k —><*> we have

(J) E[fC ,x( ))\G](ω)^υf(ω,E[x\G](ω)) a.e..

4. R e m a r k . In particular, when G is the trivial sub-σ-field
Z = {Ω,φ}, inequality (J) reduces to

jj(ω,x(ω))dP ^ ,/(ω, J^

When the function /(ω,w) is replaced by a continuous and convex
function g on U to V, inequalilties (J) and (J') become

(K) E[g(x( ))\G](ω)^vg(E[x\G](ω)) a.e. and

As we have mentioned in the introduction, this result extends a theorem
of Scalora [6] in which the stronger condition that g is subadditive and
positive-homogeneous is assumed.
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SECOND ORDER DIFFERENTIAL OPERATORS
WITH SELF-ADJOINT EXTENSIONS

ARNOLD L. VILLONE

Let 'M denote the Hubert space of square summable analytic
functions on the unit disk, and consider those formal differential
operators

which give rise to symmetric operators in 3€. Examples have
been given where the symmetric operators associated with these
formal operators have defect indices (0, 0) and (2, 2) and hence
are either self-adjoint or have self-adjoint extensions in W. In
this note a class of symmetric operators with defect indices (1,1)
is given.

Let sA denote the space of functions analytic on the unit disk and $?
the subspace of square summable functions in si with inner product

( / 'g )"/l<, fWsWdxdy.

A complete orthonormal set for $f is obtained by normalizing the
powers of z. From this it follows that %t is identical with the space of
power series Σ™=Qanz

n which satisfy

(1.1)

Let L be such that it maps polynomials into Sίf and has the property
n,zm) = (zn,Lzm), n, m =θ, l ,2 , . Let SD0 be the subspace of

polynomials and set Tof = Lf for / in 3)0. Then To is symmetric and the
defect indices m+ and m" of its closure, 5, are just the number of
linearly independent solutions of Lu = in and Lu = - iu respectively
which are in $?. See [2]. In [2] and [3] examples of such symmetric
operators 5 with defect indices (0, 0) and (2, 2) are provided. We now
give a class of operators with defect indices (1, 1).
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2. Consider the operator L9

(2.1) L = ( c 1 z 3 + c 1 z ) ^ + ((c2 + 3 c 1 ) z 2 + c 2 ) ^ + 2c2z.

In [3] it is shown that L gives rise to symmetric To. Concerning the
defect indices of its closure 5, we have the following.

THEOREM 2.1. Let L be the operator of (2.1) then S has defect
indices m + = m~ = 1.

Proof. The idea of the proof is to show that the equation Lφ =
±iφ has precisely one power series solution φ(z) = Ί^=Qaiz

i and that
there exists a K > 0 and a positive integer p such that | α, f = Kj~ιlp for /
sufficiently large. Consequently the series ΣJL0|αy |

2/(j + 1) converges
and φ belongs to 9€, and m+ = m~ = 1.

Dividing Lφ = ± ίφ by c, we have the differential equation

(2.2) (z3 + ωz)φ" + [(3 + α)z2 + β]φ' + lazφ = λφ,

where ω = cjcu a = c2/cu β = c2lcl9 and λ = ±//c,.
Substituting ΣJ=oajz

i into (2.2) we obtain

(2.3) 00, + Σ [(/ + l)(ω/ + β)aj+ι + (/2 + /α + α - l

If β = 0 we have a0 = 0 and (2.3) can be solved recursively for
α2, #3, * * *, in terms of αj since ωj + β never vanishes. Thus we have
but one analytic solution

If β 7̂  0, we have α, = λao/β and (2.3) can be solved recursively for
α2, α3, etc., provided that (ωj + β) never vanishes for j =
1,2, . Thus we are able to obtain the single formal power series
solution φ(z) = 1 + axz + α2z

2 + . The case when (ωj 4- β) van-
ishes for some positive integer / presents some complications and will
be considered later in the proof. Solving (2.3) for aj+ι we have
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But βlω = c2lcι = α, hence (2.4) becomes

( 2 A)

Thus we obtain the estimate

(2.5) k+i|^Λ
\ω\

Since | ω | = 1 we have

(2.6) \aj+]

where

and

_ j 2 + ja -f (α -

We now estimate | w,(/)| and | w2(/)| for large /. Since | u2(j)I tends
to zero as j~2 it follows that there exists an M > 0 such that

(2.7) I u2(/)| = — , for / sufficiently large.

Concerning |MIO#)| we obtain, upon dividing,

«,(/) = (l - j ) + j Im(α)i + OO"2).

Thus I iiiθ')|2 = 1 ~ 2// 4- O(j~2), and hence by a direct calculation,

For ξ >0, we note that |ιii(j)| = 1 - ί/"1 for j sufficiently large if and
only if - 1< - £, or ξ < 1. Hence we have
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(2.8) I u^j) I ^ 1 - 1 , for / sufficiently large

and 0 < £ < l .

Using (2.6), (2.7), and (2.8) we obtain, for j sufficiently large,

w h e r e M(j) = max{\a]-]\,\aj\}.
Thus, for sufficiently large /, we have

(2.9) \aj+ι\^(\-y

where 0 < γ =ξ/2<l
Now consider the expression (l — γj~ι)(j — l)~ιlp, where p is a

positive integer. This is dominated by (j 4- l)"1/p for j sufficiently large
if and only if

Hence, if and only if - pγ + 1 < - 1 or - py < - 2. Since γ > 0,
p > 21 y. Thus we have

(2.10)

We now show that there exists a positive constant K for which
\a}\^Kj-ιlp for j ^ 1. Let j , be such that (2.9) and (2.10) hold for
/ > /,. Let K = max^y, | α, \j1/p so that | α; | ^ Kj~υp for / ^ /,. Using
(2.9) it follows that

where

Hence,
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and using (2.10) we have

(2.11) | f l J i + I | ^KGΊ+ir 1 / p

We now proceed inductively to establish

(2.12) | f l / l + k |^K0i + *r I / p , fc=2,3, .

Let

Kλ = max \aAjVp

making use of (2.11). Using (2.9) we have

where,

M ( / i + D = Max (I aiι+ιl\ah\)

It follows from (2.10) that

Continuing on in this manner we establish (2.12). Hence any
solution ΣJ=oa}z

i whose coefficients satisfy (2.4) is in $f. To complete
the proof we have only to deal with the case where jω 4- β vanishes for
some positive integer /.

We now consider the case when jω 4- β vanishes for some positive
integer n. The analytic solution obtained from (2.3) by taking α0 = ax =
• = an = 0, and solving recursively for an+2, cιn+3, , in terms of an+] is,
as we have seen, in 3€. If there were a second analytic solution
corresponding to a0^ 0 it would be in IK as well, and m*(m~) would be
2. We now show that this is not the case, i.e., m+ = m~ = 1. To do
this we make use of the following result.

Let μ be such that Im(μ)>0 and let 3)+

μ be the nullspace of the
operator S* - μ. Then the dimension of 3)+

μ is equal to m +. Similarly,
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let Im(μ) < 0 and let 3)~μ be the nullspace of the operator S* - μ, then
the dimension of S)~ is equal to ra~, [1, p. 1232].

Using this we see that m + is just the number of linearly independent
solutions of Lφ = μφ in ffl for any μ such that Im(/x)>0. Similarly,
m " is the number of linearly independent solutions of Lφ = μφ in $f for
any μ such that Im(μ) < 0. Hence, if we can show that there exist μ
such that Im μ > 0 (Im μ < 0) for which there is no analytic solution
corresponding to a0^0 we will have shown that m+ = m~ = 1.

Consider (2.3), where A is now μ/c2, and suppose that β =
- nω. Taking j = 1,2, , n we obtain the following set of n + 1 linear
equations in α0 thru αn:

0' + 1)0' - n)ωaj+ι + (j2 + ja + a - ί)aM = λah

j = l , 2 , , n - l

(n2 + na + a - l)an-\ = λan.

Thus we are led to consider the homogeneous system

- λa0- nωaλ = 0

2aa0- λdi + 2 ( 2 - n)ωa2 = 0

(n2+ na -2n)an-2- λan-x - nωan = 0

(n2+ na + a - X)an-\ - λan = 0

Since the parameter λ = μ/c2 appears only on the diagonal the system
determinant A (A) is a polynomial in λ of degree n + 1,

Thus Dn (λ) vanishes at most n + 1 points in the complex plane, and we
can find μ in the upper half-plane and lower half-plane for which
Dn(μlc2) ¥" 0. Thus a0 = ax = = an = 0 and there is only one analy-
tic solution of Lφ = μφ.
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ON THE STRUCTURE OF THE
FOURIER-STIELTJES ALGEBRA

MARTIN E. WALTER

If G is a locally compact group, denote its Fourier-Stieltjes
algebra by B(G) and its Fourier algebra by Λ(G). If G is
compact, then B(G) = Λ(G) and σ(B(G)), the spectrum o!
B(G), is G. If G is not compact then σ(B(G)) contains partial
isometries and projections different from e, the identity of
G. More generally, σ(B(G)) is closed under operations that
commute with "representing" and the "taking of tensor
products". It is shown that σ(B(G)) contains a smallest
positive element, zF; and that g G G Cσ(B(G))h+zFg G
σ(B(G))zF is an epimorphism of G into G, the almost periodic
compactification of G.

A structure theorem is given for the closed, bi-translation,
invariant subspaces of B(G). In so doing we introduce the
concepts of inverse Fourier transform localized at TΓ, and the
standardization of TΓ, where TΓ is a continuous, unitary represen-
tation of G.

Introduction. In this paper we establish some facts about the
structure of the Fourier-Stieltjes algebra, J3(G), of a locally compact
group G, which were inspired by [7], [11] and [14]. In particular, we
apply the characterization of the (nonzero) spectrum of B(G),
σ(J9(G)), obtained in Theorem 1 (ii) of [17] to investigate further the
structure of this spectrum. As one of several applications, we relate
the smallest, positive element of σ(B(G)) to the almost periodic
compactification of G. It soon becomes apparent that a deep under-
standing of closed, bi-translation invariant subspaces (and more spe-
cially, sub-algebras and ideals) of B(G) is needed. It is to this end that
we introduce a canonical or standard form for any continuous, unitary
representation π of G on Hubert space, and with it the notion of the
inverse Fourier transform "localized at TΓ".

We follow the notational conventions of [17] and define in the text
any new notations introduced.

The spectrum of B(G). If s Eσ(B(G)) there are naturally as-
sociated two (norm-decreasing, algebra) endomorphisms of B(G), viz.,
γ5: b 6 B ( G ) h s , f e GJS(G) and δs: b EB(G)H>b .s EB(G) where,
for example, (x,s.b) = (xs,b) for all JC G W*(G) = B(G)'. Letting
5 . B(G) = {s .b G B(G): b G B(G)} = γs(B(G)), similarly for B(G). s,

267
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we observe that these are right, respectively left, translation invariant
subalgebras of B(G); where we adopt the convention that the right
translate of b E B(G) by g E G is ft . g and <x, ft . g) = <gx, b) for all
JC E W*(G). We also observe that the kernels of ys and δs are right,
respectively left, translation invariant ideals of B(G). In case s = s2

we write, for example, (e - s). B(G) = ker γs, where e is the unit in
W*(G). We should also observe that s2 = s implies that s . B(G) and
(e - s). B(G) are norm-closed. We now have the following:

PROPOSITION 1. // s E W*(G) is an idempotent, i.e., s2 = s, then
the following are equivalent:

(i) sεσ(B(G));
(ii) s ,B(G)is an algebra and (e - s). B(G) is an ideal in B(G);
(ii)' ys is an endomorphism
(iii) B(G).sis an algebra andB(G) .(e-s)is an ideal inB(G);
(iii)' 8S is an endomorphism.

Proof. That (i) implies (ii) and (ii)' is immediate. We now show
that (ii) => (ii)' => (i). Consider that for bί9 b2 E B(G),

s . (bxb2) = s .((s . b λ + ( e - s ) . bx){s . b 2 + ( e - s ) . b2))

= s . ( s . b ] S . b 2 ) + s . ( ( ( e - s ) . b d ( b 2 ) )

+ s . ( ( s b ι ) ( e - s ) . b 2 )

= s . ( s . b { s . b 2 ) ( s i n c e (e - s) . B ( G ) i s a n i d e a l a n d s 2 = s )

= s . bx s . b2 (since s . B(G) is an algebra),

hence (ii)'. Evaluation at e shows that sEσ(£(G)), thus (ii)'Φ
(i). The remainder of the proposition follows immediately by sym-
metry.

If s2 = s E σ(B(G)), we call (e - s). B(G) aright-prime or δ-prime
ideal; similarly, B{G) .{e - s) is called a left-prime or γ-prime ideal,
where our terminology here is influenced by [13]. Note that a δ-prime
ideal ICB(G) has the property that if (ft, .gι)(b2. g2) El for all
gugiEGj then either ft,E/ or b2EL

The following results show that σ(B(G)) is closed under certain
operations, and a basis for generalizing some of the results of [14], [15]
on the structure of the spectrum of convolution measure algebras is thus
obtained. Recall first that any operator s on Hubert space has a left
and right polar decomposition, viz., s = vy\s\y where |s \y = (s*s)m and
s = \s\δvδ where \s\δ = (ss*)1/2. Also for later notational convenience
let σ(B(G))+ and σ(B(G))p denote the positive, hermitian elements and
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(self-adjoint) idempotents in σ(5(G)), respectively. Note that idem-
potents of norm one are self-adjoint and that vδ = υγ. We then have:

THEOREM 1. If s E σ(B(G)), then vΎ, vS9 \ s |γ, and \ s \δ are also in
σ(B(G)).

LEMMA. Ifs E σ(B(G))+, then the positive square root, s 1/2, is also
in σ(B(G))+.

Proof of Lemma. Let π, and τr2 be any two continuous unitary
representations of G on Hubert space, and by the same letters denote
their canonical extensions to W*(G). Abusing notation again, let
TΓ, ® τr2 denote both the usual tensor product group representation of G
and its canonical extension to W*(G). Now in W*(G) s m s m = s, and
π, <g> ττ2(s

 m s m) = (π, (8) π2(s m))\ But TΓ, ® π2(5) = 77,(5) <g) τr2(s)
since 5Gσ(B(G)), cf., [17], Theorem 1, (ii); and 7Γi(s)(g)7r2(s) =
(πi(51/2)®π2(51/2))2. Thus by uniqueness of the positive square root,
we have π,(s m) <g) τr2(sI/2) = TΓ, ® π2(51/2), hence s m G σ(B(G)) by [17]
Theorem 1, (ii) again.

Proof of Theorem 1. We prove υγ and \s |γ are in σ{B{G)), the
remainder of the theorem follows by symmetry. Note first that s*s E
σ(B(G)), since s*s^0, cf., [17] Theorem 1 (iii). Thus by the lemma
\s\y Eσ(B(G)). Now again let ττ,,π2 be representations as
above. We have τr,(g)772(s) = τr1(g)π2(ϋγ)7r1(g)π2(|5 | γ ) and
τr,(5)(g)7r2(5) = (π 1(ί; γ)(g)7r 2(ι; γ))(π 1(|5| γ)(g)7r 2(|5| γ)). Since 5, \s\y E
σ(B(G)) we have

π,(| 5 | y) 0 τr2(| 5 | γ)

= (π,(ι?γ)(g)7r2(ι;γ))(7r1(|5|γ)(g)π2(|5|γ))

Now ϋ*t?γ is the support of | s | γ , by the definition of the polar
decomposition. But it is easy to see that TΓ, ®π2(t>γ) and
πi(ι; γ )0 τr2(ι?γ) are partial isometries, both with initial projections equal
to the support of ττ,(|s \y)<S}π2(\s | γ ) . Thus again by uniqueness of the
polar decomposition and [17] Theorem 1 (ii), we have υΎ Eσ(B(G)).

As corollaries of the method of argument in the foregoing proofs
we have:

COROLLARY. IfsE σ(B(G))+, thens2 E σ(B(G)) for all complex z
with Re z > 0.
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REMARK. We understand by 5° the support projection of s, which
is in σ{B(G))\ and the map z\-+sz is analytic for Rez >0.

REMARK. Speaking loosely, the weakly compact *-semigroup
σ(B(G)), see first corollary of Theorem 2, is closed under any operation
that commutes with representing and the taking of tensor products. To
see that "raising to the z power" has these properties when defined,
application of the spectral theorem for self-adjoint operators will
suffice; or alternatively apply a standard analytic function proof.

COROLLARY. Let s and t be in σ(B(G))+ and let s^t, then there
exists a unique a Gσ(JB(G)) satisfying sm=atm, with support of a
majorized by that of t.

Proof. This follows from [4] Chap. 1, §1.6, Lemma 2.

We now show that σ(J3(G))+ has a smallest element zF, which is a
central idempotent.

THEOREM 2. zF = sup{z[π]: z[π] = support in W*(G) of finite
dimensional (unitary) representation TΓ}. Then zF is a central projec-
tion in W*(G), and zFGσ(B(G))+. Moreover if sEσ(B(G))+, we
have zFs = zF, i.e., zF g s.

Proof It is clear that zF.B(G) is an algebra, since the tensor
product of two finite dimensional representations is itself finite
dimensional. That (e - zF). B(G) is an ideal in B(G) follows from
[13], Briefly, if bx G (e - zF). B(G) and b2 G 5(G), let ττPi and ττPi be
the cyclic representations arising from, say, the left absolute values pλ

and p2 which arise from the left polar decompositions of bx and b2,
respectively. Then z[πPι]zF = 0, and thus z[πPχ (g) πpJzF = 0, by [13].
Butz[πP i]. bx = b{\ andz[ττP2]. b2

 = bτ. Hencez[ττPi(g)7Γp2].bxb2= bιb2,
and thus zF . bxb2 = 0. Thus by Proposition 1, zF G σ(B(G)).

We now show thatzF is the smallest element in σ(B(G))+. First
consider the case where q is an idempotent in σ{B(G))+. Now Zpq is
an idempotent in σ(B(G))+ satisfying zF g z^, or else Zpq = 0. In the
latter case (e - q). B(G) is an ideal of B(G) that contains 1, the identity
of B{G)\ hence q =0, which is impossible since 0£σ(B(G)). More
generally, if zFq^zF, consider that (e - Zpq). B(G) is a closed, right
translation invariant ideal in B{G) which contains a positive definite
function p which is a coefficient of a finite dimensional, irreducible
representation π. If π is on Hubert space Hm there is an orthonormal
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basis {fJrLV of Hn so that, supposing p = ωξi,ωξuξi E(e -
i = 1,2, ,dimπ; but then

dim*UIIII 7Γ

= Σ UMωM e(e-Zpq).B(G)

where ωξuξι(π(x)) = (π(x)ξι\ξi), the bar denoting complex conjugation,
i = 1,2, dim π. Thus again we get 4 = 0, an impossibility. Thus zF

is the smallest idempotent in σ(B(G))+. In general, let s E σ(B(G))+;
and let es = weak-limn_oo 5n, the projection on the eigenspace of 5
corresponding to eigenvalue 1. Since σ(B(G)) is weakly compact,
es E σ(J3(G))+ (because es ^ 0). But then zF ^ es § 5, and we are done.

We can now refine [17] Theorem 1, (iii):

COROLLARY. σ(B(G)) is a weakly compact ^-semigroup.

REMARK. The reader should be careful to note that σ(B(G)) is not
a topological semigroup (in general) in the weak topology. However,
σ(B(G)) is a topological semigroup in the strong topology (see discus-
sion of topology following Proposition 3). Then σ(B(G)) is not (in
general) compact in the strong topology, neither is * strongly continu-
ous, though * is weakly continuous.

Proof. All that remains to be shown is that if x, y E σ(B(G)), then
xy / 0. But by Theorem 2 above, we have that zF is smaller than either
the support or range projections of x and y. Thus it is easy to see that
zFxy Φ 0, hence xy ̂  0.

The following corollary is stated to illustrate in the simplest case, a
relationship between the topology of G and the idempotents in
σ(JΪ(G))+.

COROLLARY. G is compact if and only if the only central element in
σ(B(G))p is e.

Proof If G is compact, A(G) = B(G); and σ(B(G)) is G. Thus
the only idempotent in σ(B(G)) is e. Conversely, let s E σ{B{G)), and
let 5 = vy Is \y. Then zF ^ v* υy, and zF^-υyυ*. But zF = e by
hypothesis, hence υy is unitary, and | s \y = e. Thus σ(B(G)) is topolog-
ically isomorphic with G, e.g., G is compact, cf. [17] Theorem 1.

EXAMPLE. Consider the group SL(2,R). In this case zF = z0 =
support of the trivial representation of G. We must always have
zF ^ zθ9 and this example shows that equality may be obtained.
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Any analysis of the structure of a semigroup should include a
discussion of its ideals, idempotents, and groups. To begin with we
have:

PROPOSITION 2. // sEσ(B(G)), the principal left ideal
σ(B(G))s = σ(B(G))\s\y = {tEσ(B(G)): t*t^s*s}. Similarly,

sσ(B(G)) = I s \δσ(B(G)) = {ίG σ(B(G)): tt* g 55*}.

Proof. Clearly σ(B(G))s C{t E σ(B(G)): t*t^s*s}, since if x E
σ(B(G))9 \\x \\ww = 1, and (xs)*(xs) ^s*s \\x \\2

W*(G) Now s = vΎ\s\γ

implies σ(B(G))s = σ(B(G))υy \s \y Cσ(B(G))\s \y. But v*s = \s\y

yields the opposite inclusion. Finally, suppose t*t^s*s,
t G σ(B(G)). Then by the second corollary of Theorem 1,11 \γ = a \ s \Ύ

for some a Eσ(B(G)). But then t = v'y\t \y = v\a \s \y is in
σ(B(G))\s\y =σ(B(G))s. To get the corresponding "right-handed"
proposition just observe that the * operation on σ(B(G)) induces a
symmetry between right and left.

Letting 151" denote the projection on the eigenspace of \s\y

corresponding to eigenvalue 1, we have the following chain of inclu-
sions:

COROLLARY. If S E σ(B(G))> then for 1< a < β,

σ(B(G))\s\;Cσ(B(G))\s\β

yCσ(B(G))\s\a

yCσ(B(G))s

A similar statement holds for the corresponding principal, right ideals.

Proof. We have, e.g., | s \β

y = 15 \β

y'
a \ s \a

y. The rest is clear.

PROPOSITION 3. ICσ(B(G)) is a left-ideal if and only if s El,
t £σ(B(G)), and t*t ^s*s imply t EL A corresponding statement
holds for right ideals.

Proof. If 5 and t satisfy the above conditions, then for some
aEσ(B(G)),

t = ΌΎ \t \y = vya \s \y E σ(B(G))\s\y = σ(B(G))s Cl.

Conversely, given 5 El Cσ(B(G)) where / satisfies the above condi-
tion, we must show that xs El if x E σ(B(G)). But (Jt5)*(x5) ̂  s*s,
hence we are done.
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We remark that there is a map from the (weakly) closed, right ideals
in σ(B(G)) to the left translation invariant "radical" ideals in B(G),
where if / is such an ideal in σ(J9(G)), the corresponding radical ideal is
{b E B(G): b(s) = 0 for all s E /}.

Before going further we must discuss the strong and weak to-
pologies on σ(i?(G)), as is done in [14] for G abelian. We have that
σ(J3(G)) is compact, the involution * is continuous, and multiplication
is separately continuous in the weak (or what is the same, weak
operator) topology on σ(B(G)). Also, the weak topology is weaker
than any of the following strong topologies. (Note that consequently
principal ideals in σ(B(G)) are weakly hence strongly closed.) Due to
the non-abelianess of G, there are four strong topologies on σ(JB(G)):
the strong operator topology; the left-strong topology, i.e., s -» s0 in
σ(B(G)) if and only if \\ys(b)-Ύso(b)\\-*0 for each bEB(G); the

right-strong topology, i.e., s ->s0 in σ(B(G)) if and only if \\δs(b)-
δso(b)\\-^0 for each b E B(G); and the *-strong topology, i.e., s -» s0 in
σ(B(G)) provided both s-+s0 and s*—•$$ in the strong operator
topology. It is easy to verify that s -»s0 strongly (as operators in
W*(G)) if and only if s-* s0 left-strongly, and s*-+st strongly (as
operators in W*(G)) if and only if s -» s0 right-strongly, and the
involution * is a homeomorphism between the left and right strong
topologies. Multiplication in σ(B(G)) is jointly continuous in all the
strong topologies, whereas the involution is continuous in the *-strong
topology. Finally, it is clear that the map s E σ(B(G))-*s*s E
σ(B(G))+ (resp., ss* E σ(B(G))+) is continuous from the left-strong
(resp., right-strong) topology to the weak topology.

It is well to note the following for later use.

PROPOSITION 4. (i) If {sa} is a net in σ(B(G)), s E σ(β(G)), and
stsa^s*s (resp., sa s * ̂  ss *) for all α, then sa-^s left-strongly (resp.,
right-strongly) // and only if sa-+ s weakly

(ii) the weak and left-strong (resp., right-strong) topologies agree
on any set of the form {s Eσ(J5(G)): s*s = ί, t Eσ(β(G))+} (resp.,
{s E σ(B(G)): w* = ί, ί e σ(B(G))+});

(iii) The weak and left- (or right) strong topologies agree on any
subset of σ(B(G))+ which is totally ordered.

Proof (i) Suppose s* sa ^ s*s and sa —> s weakly. Then for a
positive definite function p EJ3(G), and x E W*(G),

(p9x (sa-s))\ g

sup p(xx*y12p((sa - s)*(sa - s))m^\\p\\yl\2p(s*s)-2Rcp(s*sj)m
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which converges to zero. Since any b G B(G) is a linear combination
of four positive definite functions we are done. The rest of (i) is by
symmetry.

(ii) Immediate from (i).
(iii) Let s and net {sa} be in a totally ordered subset of

σ(B(G))+. Our claim follows from the inequality p((sa-s)2)^
2\p(sa -s)\9 where p is positive definite, cf., [4] Appendice II.

Now any interval, {/ e σ(B(G))+: s^t^ s2} in σ(B(G))+, deter-
mined by 5i,5 2Eσ(β(G))+ is closed in both the weak and strong
topologies. On the other hand,

PROPOSITION 5 / // S Cxr(B(G))+ is strongly closed, then S con-
tains minimal and maximal elements.

Proof. All strong topologies coincide on the set of self-adjoint
elements in σ(B(G))+, now apply Proposition 4 (iii), weak compactness
of σ(J3(G))+, and Zorn's lemma.

As in the abeJian case, minimal elements of strongly open-closed
subsets of σ(B(G))+ are especially important in the theory. Before
discussing these objects, however, let us have the following notations,
GPΎ ={sG σ(B(G)): s*s = p}, Gp,δ = {s E σ(B(G)): ss* = p}, Gp =
Gpy Π Gpδ, where p G σ(B(G))p.

PROPOSITION 6. (i) Gp is a topological group with * for inverse, p
for identity, and the right or left-strong topology or the weak topology —
all of which coincide on Gp. Gp is * -strongly closed in σ(B(G)).

(ii) Gpγ Cσ(B(G))p, Gp,δ Cpσ(B(G)) and the following inclusions
hold: σ(B(G))pσ(B(G))D pσ(B(G))U σ(B(G))p D pσ(B(G))Π
σ(B(G))p = pσ(B(G))p => Gp.

Proof The proof is rather easy and left to the reader.
Now consider the following conditions on s Gσ(B(G))+.
Condition (A): There does not exist a net {sa }Cσ(B(G))+ satisfy-

ing sa ψ s and limα sa = s.
Condition (B): There does not exist a net {sa}Cσ(B(G))+ satisfy-

ing slf s2 (which implies sar s) and \imasa = s.
Note that in both conditions weak and strong limits are

equivalent. Also Condition (A) implies Condition (B). Both condi-
tions imply that s G σ(B(G))p, since if s2β s then sa? s (respectively,
s2a^ s2) and limα ι, s

a = s. We should also observe that if s is central,
then s satisfies condition (A) if and only if it satisfies condition (B),
since if sa and s commute, 0^sa^s is equivalent to 0 ^ s | ^
s2. What is much more important for us, however, is that if 5 satisfies



ON THE STRUCTURE OF THE FOURIER-STIELTJES ALGEBRA 275

5 2 = 5 § 0 , then we have that 0 ^ 5 α S 5 2 = s holds if and only if
0 g si^ s2 = s. Note that 0^sa^s2= s implies that (e - s)sa =
sa(*e - s) = 0, hence sas = ssa = say and we are done, since for positive
operators sa9 s, si ^ s2 always gives sa ^ s. Thus we have the following
generalization of the notion of critical point introduced in [14]:

DEFINITION. If p Eσ(B(G))+ satisfies condition (A), or equival-
ently condition (B), then p is called a critical element of σ(B(G))+.

Observe that p is critical if and only if p is weakly isolated in

(pσ(B(G)))+ = {ί e σ(B(G))+: t2^p} = {tE cr(B(G))+: t g p }

= pσ(B(G))+p=(pσ(B(G))p)+.

We now have the following characterization of critical elements:

PROPOSITION 7. (i) p Eσ(B(G))+ is critical',
(ii) Gpy is left-strongly (weakly) open in σ(B(G))p;
(iii) Gp,δ is right-strongly (weakly) open in pσ(B(G))\
(iv) Gp is strongly (weakly) open in pσ(B(G))p;
(v) p is a minimal element of a strongly open and closed subset of

σ(J8(G))+.

Proof. Consider the map θ: s Eσ(B(G))\->s*s Eσ(B(G))+ is
continuous from the left-strong to the weak topology. Now in {t E
σ(J8(G))+: t2 ^ p}, if p is critical {p} is weakly open; and Gpy - θ~\p) is
thus left-strongly open in

σ(B(G))p = θ-\{t Gcr(β(G))+: t2^p}).

That Gpy is weakly open in σ(B(G))p follows from Proposition 4 (i),
thus (i) implies (ii). Clearly, (i) also imples (iii). Conversely, since
{p}=σ(B(G))+ΠGp,γ, and (σ(B(G))p)+ = σ(B(G))+ Π σ(B(G))p, we
have (ii) implies (i). Clearly (iii) implies (i) also. It is now easy to see
that (i) is equivalent to (iv). Now suppose p is critical, then p is a
minimal element of the strongly (weakly) open-closed set {t E
σ(B(G))+: p ^t2} = {t E σ(B(G))+: pt = p} (which is the inverse image
of weakly isolated point {p} under weakly continuous map t E
σ(B(G))+t-+ptp Epσ(B(G))+p). Conversely, if p is a minimal ele-
ment of some strongly open and closed set 5 Ccr(J5(G))+, then {p} =
SΠ{t E σ(J3(G))+: t ^ p} is strongly (weakly) isolated in
pσ(B(G))+p = {t E σ(B(G))+: t g p}, and p is thus critical. Hence (i)
is equivalent to (v), and we are done. Since GpM Gpγ, and Gp are
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weakly open in weakly compact pσ(B(G)), σ(B(G))p, pσ(B(G))p
respectively, we have:

COROLLARY. // p is critical Gpδ, Gpy are locally compact spaces,
and Gp is a locally compact topological group.

We now investigate a special critical point, viz., zF, which is critical
by Theorem 2. Note that if z is a central critical element then a
continuous homomorphism θz: g EGt-*gz EGZ results. In general, at
the very least one has that '02: b G B(GZ) >-+b °θz G B(G) is a normdec-
reasing homomorphism between the corresponding Fourier-Stieltjes
algebras. In the case of zF we have:

PROPOSITION 8. GZF is the almost periodic compactification of G,
and '02F is an isometry ofB(GF) onto B(G) Π AP(G) = zF . B(G), where
ΛP(G) denotes the almost periodic functions on G.

Proof. Let G denote the almost periodic compactification of G,
then /: G -> G the canonical inclusion is such that 'i: B(G)—• AP(G) Π
B(G) (isometrically), where AP(G) Π B(G) is a bi-translation invariant,
closed subalgebra of B(G), i.e., AP{G) Π B(G) = z0. B(G) where z0 is
a central projection in W*(G), cf., [5] 2.27 and [17]. Now zF . B(G) C
z o.B(G) since any element in zF.B(G) is almost periodic, [3],
16.2.1. Now zF G σ(B(G)) implies zF G σ(J3(G)), where we identify
B(G) and zQ.B(G). But z o εσ(B(G)), namely, the identity. But G
is compact, hence by the second corollary of Theorem 2, zF = z0. Thus
B(G) = zF . B(G). Now the dual group (in the sense of [18]) of B(G)
is uniquely determined, and is G; while the dual group of zF . B(G) is
the compact group σ(B(G))zF = GZF. Thus G is topologically isomor-
phic with GZF.

A natural discussion now arises. Given a central critical element
z, then the closure of 02(G), call it Gθz, in Gz is a locally compact group,
and (with a slight abuse of notation) *θz: B(GΘJ-*B(G) is an isometric
isomorphism onto a closed, bi-translation invariant subalgebra of
B(G). Also, of course, the inclusion /: Gθz-+Gz induces a norm-
continuous homomorphism'/: B (Gz) —> B (Gθz) with the additional prop-
erty that '/(A(G2)) = A(Gθz), cf., [8]. One question then is Gθz = G2?
By Proposition 8 the answer is yes if z = zF. In general, it is not hard to
see that the complete analysis of a central critical point z in σ(B(G))+

depends ultimately on the resolution of the following question: Does the
algebra of functions z.B(G) contain an element of A(GZ)? The
affirmative answer to this question in case G is abelian was furnished by
Taylor, cf. [14], [15] and references therein, with much machinery and
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considerable work. A closely related question is: what types of
commutative Banach algebras are dual to a locally compact group G (in
the sense of [18])? Must such a dual algebra contain a copy of A(G)Ί A
tool which we hope will help resolve these questions is considered in the
next section.

Generalized inverse Fourier-transform. In [7], [8] C. S. Herz
demonstrates that A(G) is the quotient of L\G) (g)L2(G) (the projec-
tive tensor product of L\G) with itself) by the kernel of the continuous
surjection P: L\G)®L\G)^> A(G) determined by P(ξβ)η) = η * | ,
where η *ξ(g) = J ξ(g~'x)η(x)dx for £τ/GL 2 (G). With this norm
A(G) is a Banach algebra. Now we note that L\G) is a Hubert
G-module, i.e., there is a continuous unitary representation of G on
L2(G), viz., the left regular representation λ, and that A(G) is just the
collection of coefficients of λ. A natural question is: can this result be
generalized to an arbitrary Hubert G-module H^ i.e., to the case where
we have a continuous, unitary representation π of G in HπΊ We give an
affirmative answer to this question, and in so doing introduce the notion
of the generalized inverse Fourier transform localized at π, as well as the
notion of the standardization of π. These concepts have been moti-
vated by our desire to better understand closed, bi-translation invariant
subspaces, subalgebras, and ideals in £(G). We present this section
with the hope that it will be a useful tool which will bring to bear on any
unitary group representation almost the entire calculus previously only
used in association with the left-regular representation. Technically
we have been motivated by [7], [8], [10], [11] as will become apparent,
but the Tomita-Takesaki theory makes the dominant contribution.

We first note that L\G) ® L\G) may be identified with the nuclear
(or trace class) operators, SΓ(L2(G)), on L\G) via the map
r: L2(G)(g)L2(G)->^"(L2(G)) determined by τ(f®τj) = < ,η)ξ,
where although L\G) and its dual L\G) are "the same" we prefer to
retain the distinction. Note that < ,τj> indicates we view η as in
L2(G), ( \η) indicates we view η E.L2(G).

REMARK. From an intuitive point of view we regard 5~(L2(G)) as a
semi-abelianized, discretized version of another noncommutative L1-
measure algebra associated with a weight. The precise meaning of this
statement will be made clear when we discuss the standardization of
7r. Suffice it to say that the map P of C. S. Herz behaves very much
like an inverse Fourier-transform of an IΛspace onto A(G).

A version of our next theorem, we have been informed by mail, was
obtained independently by a student of P. Eymard, G. Arsac, in his
Ph.D. thesis. The research of this paper was carried out independently
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by the present author without knowledge of the work of Arsac. Our
point of view and motivation are different, and our "concrete" trans-
form and standardization concepts, as far as we know, have not been
discussed by Arsac. Whereas our proof of Theorem 3 is based on an
inverse transform of nuclear (i.e., trace class) operators, Arsac's proof
is based on the more abstract projective tensor product representation
of this object as a Banach space. Our proofs differ in that we look at a
"concrete" transform of nuclear operators; also, we have a C*-algebra
of operators to deal with; and thus we obtain more detailed
results. Our approach emphasizes the action of G and closely resem-
bles the classical Fourier-transform theory.

DEFINITION. Given a continuous, unitary, representation π of G
on Hπ, we denote the nuclear operators on Hπ by S'iH^). We define
the inverse Fourier-transform of t E ^(H^) to be that complex-valued
function on G defined by fπ: g E G *->Tr(π (g)t), where Tr is the
normalized trace on ^(H^). We refer to this map as the inverse
Fourier transform (localized) at π.

REMARK. This transform is obtained by considering t E SΓ(Hπ) as
an element in the predual of ^(Hπ) and then restricting to the von
Neumann algebra {π(g): g E GYC^iH^). In this way we shall see
that U Ez[τr].B(G). If we define the transform by g^G^
Tr(π(g)*t), then U E z[ττ]. B(G), where π is the representation "con-
jugate" to π.

THEOREM 3. (i) The function tπ(g) = Tr(π(g)t) on G is in
z[π].B(G), where z[π] is the support of π in W*(G), i.e., z[π]B(G) is
the closed, bi-translation invariant subspace of B(G) determined by the
coefficients {(ττ( )ξ |η): ξ,η E H^} of π.

(ii) //1 is a positive operator in SΓ(Hπ), then tπ E z[ττ]. P(G), and
|IMB(G) = f.(e) = ||φ(H.) = Tr(O. // t = v\t\ESΓ(Hπ) (left polar de-
composition in ^{Hπ)), then f* = u . | f |i (left polar decomposition with
respect to £(Hπ)), and \\ tn \\BiG) g ||ί \\nHn).

(Hi) For each b Ez[π].B(G), there is a teSΓ(Hπ) such that
b=tπ.

(iv) The map t E ^(Hπ)^ U E B(G) is one-to-one if and only ifπ
is irreducible.

Proof. Given t E SΓiH^), let t = υ \ 11 be its polar decomposition,
with | ί | = ΣΓ-iλf ( | 6 ) $ where ί,E// f f, | | 6 | | = 1 , and λ.g O for all
ί,Σr=1λ,=Tr(|φ. Thus tΛg) = Tr(π(g)t) = Ύr(ΣJ=]λi(\ξi)π(g)vξi))
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= ΣΓ-iλ,Tr(( |δ)ir(g)ϋ$). where the last equality follows from the
Holder inequality

Tr (ττ(g)v Σ λ,( |&)ξ) I ̂  \\π(g)v |UH., I Σ M |ξ,)U
\ i = n I I \\i = n I

Thus tv(g) = Σ%ιλi(π(g)υξi\ξι) = Σ7=ιλt(v .ω*)(g) is in B(G); since
(restricted to G) ΣΓ=iλ, ω6 GP(G) norm — converges in B(G) to an
element in P(G)\ and since v ..(ΣΓ=i λ/ω ,̂) = ΣΓ=i λtι; . ωξi, when restricted
to { π ( g ) : g £ G Γ is in z[π].B(G). Note that HΣΓ-Λt? .α>J| B ( σ ) ^
ΣΓ=i λ, = Tr( 111). Thus (i) and (ii) have been demonstrated. As for (iii)
and (iv) they are almost obvious from the remark immediately above,
since z[π], B(G) is the predual of the von Neumann algebra {π(g): g G
G}\ SΓ(Hπ) is the predual of 2(Hπ), cf., [4] Chap. I, §3 Theoreme I, and
{π(g): g G G}" = £(Hπ) if and only if π is irreducible.

REMARK. Note that the partial isometry υ in part (ii) of Theorem 3
is in general not in {ττ(g): g G G}" but only in ^ ( H J . Thus ||fπ ||B(σ) can
be a zero even if t is not zero, and z[τr]. B(G) is the Banach space
coimage of Λ.

REMARK. Theorem 3 can immediately and obviously be applied to
any group representation π such that, for example, π{L\G)) Π SΓ(Hπ)
is large; and there are many groups whose irreducible representations,
for example, have this property. Thus one might say that B(G) is
"sufficient" for the Fourier analysis of such groups. We contend,
however, in a forthcoming paper that B(G) is "sufficient" for the
Fourier analysis of any locally compact group, cf., the final remark of
this paper.

We now introduce the concept of the standardization of a continu-
ous, unitary group representation π. This procedure amounts basically
to translation of the Tomita-Takesaki theory into the special context of
group theory. This standardization process gains added significance
when one realizes that with the machinery of this theory any continuous
unitary, representation π of group G becomes a "modified left-regular"
representation accompanied by the calculus thereof. As an application
we will apply Theorem 3 in this setting.

Given any TΓ, as above, let Af(τr) (or Afw, whichever notation is
more convenient) be the von Neumann algebra {π(g}: g EG}"C
$(Hπ). On M(ττ) there exists a normal, faithful, semi-finite weight
denoted by φ(π), or φπ; we can thus put the pair {Λί(τr), φ(π)} into
standard form, cf., [6], [11], [12], [16]. Very briefly, we take left-ideal
nφ(τr) = {x GM(ττ): φπ(x*x)< +°°}; Hφ(πh the completion of nφiπ) with



280 MARTIN E. WALTER

respect to the nondegenerate inner product induced by φ(π), and
η: x G nφ H> η(x) G Hπ the usual inclusion. We then denote by λiψπ)
the faithful ^representation of M(ττ) on Hφi7Γ) determined by λ(<pπ)(jc)
η(y) = λ{φπ)Ύ]{xy) for all x G Afπ, y 6n f ( π ) . But λ((pj°7r is thus also
a continuous, unitary representation of G and it is quasi-equivalent to
π. Thus in particular, z[λ(φ7Γ)°π] = z[π], and both representations
determine the same subspace of B(G).

DEFINITION. Given any quasi-equivalence class {π} of continuous,
unitary representations of locally compact group G, then for π G {π}
construct πs = λ(φπ)°π G{ττ}, and call πs the standardization of π.

REMARK. With abuse of notation we will often drop the subscript s
and use π to denote both π and ττs, also Hπ will henceforth refer only to
Hπs = Hφ(π), etc.

We thus have the following corollary of Theorem 3:

COROLLARY. Let π be the representation of G in standard
form. Then the inverse Fourier-transform localized at π has, in addi-
tion to properties (i), (ii), (iii), of Theorem 3,

(v) // b Gz[ττ].B(G), there exists an operator of rank one,
t = ( I η )ξ G ̂ ( H J , such that b = tπ. Furthermore, ξ, η G H^ can be
so selected that || b \\B{G) = || ξ \\Hw || η \\Hw.

REMARK. This corollary is obvious if one is familiar with the
Tomita-Takesaki theory. A quick proof is as follows: Observe that if π
is standard, i.e., Mπ on Hπ, with unitary involution Jn, and self-dual cone
Pπ CHπ, then any sigma-finite projection in Mπ has a cyclic vector ξ
(which can be chosen from Pπ). But now we are done, cf., [4] Chap. II,
§ 1 cor. of Thm. 4 and the discussion of standard forms following this
corollary. Each positive, weakly continuous functional on Afw, i.e., in
z[π].P(G) is of the form ωξ, with ξ£Pπ. (In fact the map
ξ G Pπ CHπ ι-> ωξ G (M7Γ)+ = z [ π ] . P(G) is a norm, homeomorphism, cf.
[1], [2], [6].) Thus given b G z[π] ,B{G), let v .p =b be the (left)
polar decomposition of b with respect to Mπ, i.e., v G Afπ, p G
z[π].P(G). T h e n \\p \\B(G) = ωξ(e) = \\ξ\\2^, a n d p=tu w h e r e ί, =
( \ξ)ξ, and b = f2, where f2 = ( | ^ ) ^ , where ||fc ||β(G) = ||f||||^||. Thus
every element in z[π]. B(G) is a transform of a rank-one operator of
"minimal cross-norm". (We have in fact shown more, since we can
select ξ G P,.)

REMARK. AS a corollary of the above discussion we get a more
detailed version of [5], Thm. p. 218. Thus we may think of b G
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z[π] B(G) as a generalized convolution (with a "twist") of two
elements from Hn, cf., L\G)*L\G)~ = A(G).

REMARK. We mentioned earlier that ^(H^) was a semi-
abelianized, discretized version of another noncommutative ίΛmeasure
"algebra". The measure "algebra" we have in mind is the ίΛspace of
weight ψπ. We have a definition and embryonic theory for this space
analogous to the work done in [9] and [10] for the unimodular (trace)
case. This ίΛspace is the "proper" domain for the inverse Fourier
transform; however, to go into details here would take us beyond the
scope of this paper. We intend to go into this subject in depth in an
upcoming paper.
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SUBHARMONICITY AND HULLS

JOHN WERMER

For X a compact set in C2, h{X) denotes the polynomially
convex hull of X. We are concerned with the existence of
analytic varieties in h (X)\X. X is called "invariant" if (z, w)
in X implies (eIθz, e~ιβw) is in X, for all real θ. X is called an
"invariant disk" if there is a continuous complex-valued function
a defined on O ^ r ^ l with a(0) = a(\) = 0, such that X =
{(z, w) 11 z I ̂  1, w = <z (I z I )/z}. Let X be an invariant set and
put f(z, w) = zw. Let Ω be an open disk in C\f(X) and put
/ ~ ! ( Ω ) = {(Z,H>) in h(X)\zwEΩ}. In Theorem 2 we show

that if /~'(Ω) is not empty, then /~'(Ω) contains an analytic
variety. Let now X be an invariant disk, with certain hypoth-
eses on the function a. Then we show in Theorem 3 that /~!(Ω)
is the union of a one-parameter family of analytic varieties. A
key tool in the proofs is a general subharmonicity property of
certain functions associated to a uniform algebra. This prop-
erty is given in Theorem 1.

1. Let X be a compact Hausdorff space, let A be a uniform
algebra on X and let M be the maximal ideal space of A.

Fix / E A. For each ζ G C put f'\ζ) = {p G M \f(p) = ζ} and for
each subset Ω of C, put f~\Ω) = {p G M \ f(p) G Ω}. Consider an open
subset Ω of C\f(X). Supposing f~ι(Ω) to be nonempty, what can be
said about the structure of / '(Ω)? Work of Bishop [2] and Basener [1]
yields that if f'ι(ζ) is at most countable for each £GΩ, then /~'(Ω)
contains analytic disks. On the other hand, Cole [4] has given an
example where no analytic disk is contained in f~\Ω). In §2 we prove.

THEOREM 1. Let Ω be an open subset of C\f(X). Choose
g G A. Define Z(ζ) = supΓ' ( ί ) \g |, ζ G Ω. Then log Z is subharmonic
in Ω.

This theorem is proved by a method of Oka in [5].
In §3 we apply Theorem 1 to the following situation: X is a compact

set in C2, A is the uniform closure on X of polynomials in z and
w. Here M = h(X), the polynomially convex hull of X. We assume
that X is invariant under the map Tθ:

(z,w)-^(eiez,e~iew) for 0^0 <2π.

283
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Put / = zw. Let Ω be an open disk contained in C\f(X) with
0 g Ω. Here /"'(Ω) = {(z, κ>) E ft (X) | zw G Ω}.

THEOREM 2. Iff~\Ω) is not empty, then f~ι(Ω) contains an analy-
tic disk.

In §4, we consider the case when X is a disk in C2, defined:

where a is a continuous complex valued function defined on 0 ^ r ^ 1,
with a(r) = o(r).

X is evidently invariant under Tθ for all θ. In Theorem 3 we give
an explicit description of h(x) for a certain class of such disks X.

2. Proof of Theorem 1. (Cf. [5], §2.) Fix ζoeΩ and let
ζn~^ζo. Assume Z(ζn)->t. We claim Z(fo) = ί For choose pn in
f~\ζn) with |g(pn) | = Z(ζn). Let p be an accumulation point of
{pn}. Then \g(p)\^t, whence Z(ζ0) ^ t, as claimed. Thus Z is upper-
semicontinuous at ζQ, and so Z is upper-semicontinuous in Ω.

Theorem 1.6.3 of [6] gives that an upper-semicontinuous function u
in Ω is subharmonic provided for each closed disk DCΩ and each
polynomial P we have

(1) u g R e P on 3D implies w ^ R e P on D.

Fix a closed disk D contained in Ω and let D be its
interior. Choose a polynomial P such that log Z g Re P on 3D. Then

^ l on <9D.

Hence for each ζ in 3D, if x is in /"*(£), then

(2) |g(jc)| |exp(-P(/))( jc) |^ l , or

|g exp(-P(/)) |g l at x.

Now g - exp( - P(/)) is in Λ. Put N = f'\D). The boundary of N is
contained in f~\3D). Hence by the Local Maximum Modulus Princi-
ple for uniform algebras, for each y in N we can find x in f~\3D) with
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whence by (2) we have

(3) \g exρ(-P(/))(y) | = 1.

Fix ζ0 in D. Choose y in f-\ζ0) with |g(y) | = Z(£o). Applying (3)
to this y, we get

(4) Z(ζ0) I exp( - P(ζo)) | ^ 1 .

Hence logZ(f0) = Re P(f0). So (1) is satisfied, and so logZ is
subharmonic in Ω, as desired.

3. Proof of Theorem 2. Since X is invariant under the maps
Tθ, h(X) is invariant under each Tθ. Fix £EΩ. There are two pos-
sibilities:

(a) \z\ is constant on f~\ζ).
(b) 3 r,, r2 with 0 < r, < r2 and 3

(z,, w,), (z2, w 2 )e/"'(£) with |z, | = r,, |z 2 | = r2.

Suppose (b) occurs. Then the circles: z = r,e'0, w = ζlrxe
iβ, 0 ^

θ ^2ττ and z = r2e
iβ, w = ζ\r2e

x\ 0 ^ θ ̂ 2 π both lie in Λ(X). Hence
the analytic annulus: r, < \z \ < r2, w = ζlz lies in f~\ζ). Thus if (b)
occurs at any point ζ in Ω, /~'(Ω) does contain an analytic disk. Hence
to prove the Theorem, we may assume that (a) holds for each ζ E
Ω. Define, for £ E Ω , Z(ζ) = supΓ ( ί ) | z |, W(ζ) = supf-\ζ)\w\. Fix
(Zo,Wo)E/"1(0. Since we have case (a), Z(ζ) = \zo\. Hence W(ζ) =
|wo | and so Z(ζ)W(ζ) = \ζl whence

Since log Z and log W are subharmonic in Ω while log | ζ | is harmonic,
log Z, log W are in fact harmonic in Ω. Put U = log Z and let V be the
harmonic conjugate of U in Ω. Put φ(£) = eu+iV(ζ). Then φ is
analytic in Ω and | φ \ = Z in Ω.

Assertion. The variety z = φ{ζ), w = ζlφ(ζ), ζ EΩ, is contained
in Λ(X).

Fix ί £ Ω . Choose (z,, w,) e / " 1 ^ ) . Then Z(ί) = |^i|, so
| φ ( ^ ) | = |z! |, i.e., 3 real α with zx = φ(ζ)eia. Then H>, =
ζlφ(ζ)eia. But ( r^z .^^OεΛW. Hence (φ(ζ), ζlφ(ζ)E h(X).
The Assertion is proved, and Theorem 2 follows.

Note. Questions related to the result just proved are studied by J.
E. Bjόrk in [3],
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4. Invar iant d isks in C 2 . Let P be a polynomial with
complex coefficients, P(t) = Σ"= I cnt

n, which is one-one on the unit
interval with endpoints identified, i.e., we assume that P(l) = P(0) = 0
and P(tι)/P(t2) if 0 ^ f , < f 2 < 1. Also assume P'(t)^0 for O S ί S
1. Then the curve β given parametrically: £ = P(ί), O ^ ί ^ l , is a
simple closed analytic curve in the £-ρlane whose only singularity is a
double-point at the origin. Denote by θ the angle between the two arcs
of β meeting at 0. Assume θ < π. Define a(r) = P(r2), i.e.,

(5) α ( r ) = Σ cv2".
π = l

Let X be the disk in C2 defined

(6) X

The function / = zw maps X on β. Denote by Ω the interior of β.

THEOREM 3. 3 function φ analytic in Ω such that h(X) is the
union of X and {(z, 0) | | z | ̂  1} and

{ ( z , w ) | z w G Ω and \z \ = \φ(zw)\}.

COROLLARY. Every point of h(X)\X lies on some analytic disk
contained in h(X).

NOTATION. Λ(Ω) denotes the class of functions F defined and
continuous in Ω and analytic in Ω.

SΛ denotes the algebra of functions on \z \ ̂  1 which are uniformly
approximable by polynomials in^z and α( |z | )/z .

LEMMA 1. Let G G C [ O , 1]. // G ( | z | ) e » , then 3 F E A ( Ω )
such that G(r) = F(a(r)) for O ^ r ^ l .

Proof Let g be a polynomial in z and α (| z | )/z. Calculation
gives that there is a polynomial g in one variable with

j - Γ g(reiθ)dθ=g(a(r)l O^r^l .
Z7Γ JO

Choose a sequence {gn} of polynomials in z and α ( | z |)/z approaching
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G(|z|) uniformly on | z | ^ l . Then gn(a(r))-+G(r) uniformly on
O S r S l . Hence 3 F G A (Ω) with gn -> F uniformly on β, so G(r) =

LEMMA 2. // / = zκ>, ίften f~\ίϊ) is not empty.

Proof. Fix fo ε Ω. If /"'(Ω) is empty, then / - ζ0 ή 0 on h (X) and
so (zκ> - ζoy

ι lies in the closure of the polynomials in z and w on
X Then (a(\z\)-ζoYιe%. By Lemma 1, 3 F 6 Λ ( ί l ) with
F(a(r)) = (a(r)-ζ0)

1. Then (f - ζoy
ι G A(Ω), which is false. So

f~\Ω) is not empty.

LEMMA 3. Fix ζ G 0\{O}. Let (z0, w0) be a point in h(X) with
zowQ = ζ. Then (zo,wo)EX.

Proof. Assume (zo,wo)f£X. Let r be the point in (0, 1) with
a(r) = ζ. Put, for each r, γΓ = {(reiθ, (a(r)/reiθ)) \ 0 ̂  θ < 2ττ}. Then yr

is a polynomially convex circle contained in X. Hence 3 polynomial P
with I P(Zo, HO) I > 2, IP \ < 1 on γr. Choose a neighborhood N of γΓ on
X where \P \ < 1. The image of X\N under the map (z, w)-> zw is a
closed subarc βλ of β which excludes £. Choose FGΛ(Ω) with
F(£)=l, | F | < 1 on β\{^}. Then 3 δ > 0 such that | F | < l - δ on
βx. Hence \F(zw)\<l-δ on X\N. Also |F(zw) |^ 1 on X. Fix n
and put

Q=F(zw)n P(z,w).

| | 2 . On N , | Q | S | P | < 1 . On X\N, \Q\<
(1 - δ)π maxx IP |, and so | Q \ < 1 oη X\N for large n. Then | Q \ < 1
on X. Since F is a uniform limit on β of polynomials in ζ, Q is a
uniform limit on XU{(z0, w0)} of polynomials in z and w. This
contradicts that (z0, vv0) G h(X). Thus (z0, κ>0) G X We are done.

Note. Since / maps X on β and C\/(X) is the union of the
interior and exterior of β, we conclude from the last Lemma that h(X)
is the union of X and f~\{0}) and /'(Ω).

We need some notation now. For each ζ G β \{0}, denote by r(ζ)
the unique r in (0, 1) with a(r) = £

Since a is a polynomial in r vanishing at 0, there is a constant d > 0
such that

(7) r(f)>d|f|, all ζGβ.
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For ζ0 €= Ω, denote by μζo harmonic measure at ζ0 relative to
Ω. Since β consists of analytic arcs, with one jump-discontinuity for
the tangent at ζ = 0, μζo = KζQ ds, where Kζo is a bounded functions on β
and ds is arc-length. Define

U(ζ0) = ί \ogr{ζ)dμζo(ζ).

Since (7) holds, this integral converges absolutely. U is a harmonic
function in Ω, bounded above, and continuous at each boundary point
ζ G β\{0} with boundary value log r(ζ) at ζ.

For ( G Ω , define

= sup |z | , W(ζ) = sup\w\.
Γ\ζ) Γ'(f)

LEMMA 4. For all ζEΩ, log Z(ζ) g U(ζ) and log W(ζ) ^

Proo/. Fix £Gβ\{0}, choose ζnEΩ with ^ n - ^ ^ and suppose
Z(£n)->λ. Choose pn (=Γ\ζn) with Z ( ^ ) = |z(pn)|. Without Joss of
generality, pn-*p for some point pG/ι(X). Then f(p)z=zζ By
Lemma 3, p G X, i.e., p = (reίθ, (α(r)/relθ)) for some r, 0. Also a(r) = ζ
and so r = r(ζ), whence \z(pn)\-^r(ζ) and so λ = r(ζ). Thus
Z(£')-^>r(£) as ζ'-*ζ from within Ω, and so logZ assumes the same
boundary values as (7, continuously on β\{0}.

For each positive integer k, let Cik = {ζ G Ω11 ζ \ > I Ik}. dίlk is the
union of a closed subarc βk of β\{0} and an arc ak on the circle

|ί| = l/k.
Fix £ 0 EΩ. For large k,ζ0Eίlk. Denote by μfj the harmonic

measure at ζ0 relative to Ω .̂ An elementary estimate gives that there is
a constant Cζo independent of k such that

(8) μf:(α,)^Q0 ^forall k.

Let 5 be any function subharmonic in Ω and assuming continuous
boundary values, again denoted S, on β\{0}. Assume 3 constant M
with 5 ^ M in Ω. Then for all /c,

(9) S(£o)^ί & W + f Mdμ%\ whence
Jβk J
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Applying (9) with S = log Z, we get

(10) l o g Z ( ^ ) ^ | 1 / d μ ί V + M Q , — ,

since as we saw earlier, logZ = U on /3\{0}.
By (7), if ζ' G ak,

U{ζ')= f log r(ί)dμ t (ί) > C + ί log|£|dμ { (f),

where C is a constant, so

U(ζ')>C + \og\ζ'\ = C + \ogj-. Hence

βk

Combining this with (10) and letting /c—>oc, we get that logZ(£0) =
U(ζo)9 as desired. A parallel argument gives the assertion regarding
W. We are done.

LEMMA 5. With Z defined as above, log Z(ζ) = U{ζ) for all f E Ω ,
and \ogW(ζ) = \og\ζ\-U(ζ).

Proof. Suppose either equality fails at some point ζ0. By the last
Lemma, this implies that

+ \ogW(ζ0)<log\ζ0\.

Fix p 6/-'(ίo). Then \z(p)\^Z(ζ0), \w(p)\^W(ζ0), so

l o g | z ( p ) ) v ( p ) | < l o g | f o | .

But z(p)w(p) = ζθ9 so we have a contradiction, proving the Lemma.

Proof of Theorem 3. Let V denote the harmonic conjugate of U
in Ω and put φ = eu+iV. Fix (z0, w0) G / ' ( Ω ) and put f 0 =
z0 vv0. Unless | z o | = Z(ζ0) and | wo| = W(ζ0), we have

by the last Lemma. So we must have | z o | = Z(f0) = \Φ(ζo)\.
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Conversely fix ζ0 E ίl and let (z0, vv0) be a point in C2 such that
zo wo = f0 and |zo | = |Φ(ίo)| Choose (z,, w,) ef'ι(ζ0). By the preced-
ing |z,| = |φ(£0)|, so 3 real a with zo = elαZi, wo=e'iawί. Hence
(zo,wo)E/ι(X), so (zo^oίE/XΩ). Thus /"'(Ω) consists precisely of
those points (z, n>) with zw GΩ and |z | = |φ(zw)|.

To finish the proof we need only identify /"'(O). The circle
{(z,0) I \z I = 1} lies in X, so the disk D: {(z,0) | \z | g 1} is contained in
/'(O). If (Zo, wQ) G /-'(O) and does not lie in D, then z0 = 0, H>0 ̂  0. The
same argument as was used in proving Lemma 3 shows that then
(z0, w0) £h(X), contrary to assumption. So /'(O) = D, and the proof
of Theorem 3 is finished.

REMARK. AS we have just seen, f~\Ω) is the union of varieties Vβ,
0 ^ α < 2τr, where Va is defined:

What does the boundary of such a variety Vα in h(X) look like? It splits
into two sets:

5 = {(z, w)<ΞdVa\zw(Ξβ\{0}} and

T = {(z,w)EdVa |zw=0}.

It is easy to see that S is an arc on X cutting each circle: {(z,w)E
X I \z I = r}, 0< r < 1, exactly once while Γ is a closed subset of the
diskD={(z,0) | | z |S l } .

It is remarkable that even though X is itself very regular, the rest of
the hull of X is attached to X in a very complicated way.
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A MAP OF E3 ONTO E3 TAKING NO DISK
ONTO A DISK

EDYTHE P. WOODRUFF

An example is given of an u.s.c. decomposition in which no
disk in E3 maps onto a disk under the natural projection map P,
and, furthermore, the decomposition space E3/G is homeomor-
phic to E\ Each nondegenerate element is a tame arc. The
image P(H) of the set of nondegenerate elements is
O-dimensional, although Cl P(H) is E3. The basic construction
used is called a knit Cantor set of nondegenerate elements.

Bing and Borsuk [3] have given an example of a 3-dimensional
absolute retract R containing no disk. They define a particular u.s.c.
decomposition of E3 that yields R as the decomposition space. Hence,
their example is a closed map of E3 taking no disk onto a disk, but, of
course, their image is not E3.

In [8] the author defined a set X CE3 to be the P-lift of a set Y
contained in the decomposition space E3\G if and only if X and Y are
homeomorphic and the image of X under the natural projection is
Y. A disk is said to said to be P-liftable if and only if it has a
P-lift. Using this terminology, the example that is constructed in this
note has no P-liftable disk in the image space.

In [1] Armentrout asked whether there exists a pointlike decompo-
sition G of E3 such that there is a 2-sρhere S in E3\G that can not be
approximated by a P-liftable sphere. This was first answered by the
author in [9] by giving an example of a space E3\G containing such a
2-sphere. In the decomposition space of this note no 2-sphere is
P-liftable. Hence, this space is another answer to Armentrout's query.

The construction we describe in this note is based on a knit
example in the author's papers [6], [7], and [9]. It is assumed that the
reader is familiar with this example and the notations in [6]. We also
need the following definitions.

DEFINITION. Let J\ be the circle in the x—y plane with radius 1
and center at the origin, and J2 be the circle in the y—z plane with
radius 1 and center at y = - 1, z = 0. Any two tame simple closed
curves Jx and J2 in E3 are said to simply link if and only if there is a
homeomorphism of E3 onto itself taking Jx and J2 onto /Ί and Jf

2,
respectively. Two disjoint compact sets Si and S2 are said to simply
link if and only if there exist simple closed curves /, C Si and J2 C S2

such that Jx and J2 simply link.
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DEFINITION. Let {Λf,} be a defining sequence for a decomposition
G. The sequence Ml, ML ML Ml ML ML Ml, , denoted by {M{},
is called a compound defining sequence for G if and only if (1)
i = 1,2,3, (2) 1 g j g ί (3) {Mj} with the lexicographic order indi-
cated above on the indices is a defining sequence; (4) Mj"1 is a regular
neighborhood of Mi; and (5) M\ = M,. Given any decomposition of
E 3 with a defining sequence, there exists a compound defining sequence.

In [6] and [9] the author gave an example of a knit decomposition
Go of E\ a 2-complex X in E\ and an ε > 0 such that P(X) C E3/G0 is a
disk D having the property that no disk Dε which is ε-homeomorphic to
D is jP-liftable. This decomposition used "knit Cantor sets of non-
degenerate elements". In the figure two countably infinite sets of arcs
knit from the point p to the point q are indicated. Each arc pictured
represents a Cantor set of arcs. These Cantor sets of arcs and the
limiting arc gp containing p and q are the nondegenerate elements of the
decomposition Go. The 2-complex X consists of eight squares that do
not form a disk. Notice that each arc except gp pierces X in a
point. Since in JE3/G0 the arc gp has an image that is a point, the image
of X is a disk D. The decomposition is a modification of two (2,1)
toroidal decompositions. The entwining of the nondegenerate ele-
ments caused by the (2,1) toroidal decompositions is not indicated in the
figure. It would be above and below the portions shown. The result
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of the entwining is that Bd Γo is not homotopic to a point in E3 - H*. It
was shown that E3IG0 is homeomorphic to E3. In the proof only disks
that are ε -homeomorphic to D were considered. Using similar argu-
ments, it can be shown that there is no disk δ in E3 such that P(δ) is a
disk in E3/Go and Bd X is homotopic in E3 - M, to Bd δ. (In [6] M, is
the first manifold in a particular defining sequence for Go.) Hence, for
this decomposition Go, there is a regular neighborhood Γo of Bd X in E3

which is an unknotted polyhedral solid torus such that no simple closed
curve homotopic in Γo to its core bounds a disk δ that has an image in
E3IGo that is a disk.

Simply linking Γo, there is an unknotted polyhedral solid torus 5 0

that contains Mu which in turn contains all the nondegenerate elements
of Go. Let Tc and Sc be any pair of simply linked unknotted
polyhedral solid tori. There is a homeomorphism of E3 onto itself that
takes Γo and So onto Tc and S c, respectively. Given d > 0 , this
homeomorphism can be chosen so that the diameter of each nondegen-
erate element is less than d. (This follows from the proof that E3/GΌ is
homeomorphic to E3.) Hence, given simply linked unknotted
polyhedral solid tori Tc and 5 C and given d > 0, there is a decomposi-
tion Gc of E3 with nondegenerate elements Hc such that (1) i / ? C 5 c ;
(2) for each g G Hc, diam g <d; and (3) no disk δ with Bd δ homotopic
in Tc to its core has an image in E3\GC which is a disk.

We now construct a family ?Γ of solid tori Tc. Associated with
each Tc there are an Sc and Hc having the above properties. The
family is dense in E3 and so chosen that for any disk D in E3 there are a
solid torus Tc E f and a tame simple closed curve / CD Π Tc such that
J is homotopic in Tc to its core. Let G be the union of H =
{gEHc'.Hc is associated with some Γ C E J } and points in E3-
H. Then no disk projects onto a disk under the mapping
P:E3^E3IG.

The family 3~ is constructed in stages. To define the first stage, we
start with the set of points Ύx = {(p/2, q/2, r/2): p, q, and r are
integers}. Associated with Ύλ is the set ^ of all unknotted polygonal
simple closed curves having vertices in Ύx and diameters not greater
than one.

For any tame unknotted simple closed curve /, let L, =
lub{d: there is a polygonal simple closed curve K in the unbounded
component of E3-Nd(J) such that K simply links /} . (Here Nd(J)
denotes the d-neighborhood of /.) For each C ε ^ i , choose a
polygonal simple closed curve Kc that simply links C and lies in the
unbounded component of the complement of the Lc/2-neighborhood of
C. These can certainly be chosen so that the diameter of each Kc is
less than four and each Kc fails to intersect the union of the other such
simple closed curves associated with elements of ^i. For each Kc,
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choose a polyhedral solid torus Sc with core Kc and contained in the
Lc/4- neighborhood of K c This implies that C simply links Sc. The
set of these solid tori Sc can be chosen to be mutually disjoint.

The method for choosing the solid torus Tc that simply links Sc

depends on the fact that the union of two solid tori with common
boundaries and disjoint interiors is the 3-sphere obtained as the union of
E3 and the point at infinity. Since simply linked tori do not have
common boundaries, for each C enlarge Sc slightly: choose a solid
torus 5 c that satisfies the definition of Sc and contains Sc in its
interior. Let N be the Lc/4-neighborhood of C Let Ac be the
complement of a polyhedral 3-ball containing N U Sc and having
diameter less than eight. Let Bc be a polyhedral 3-ball (a tubular
neighborhood of a polygonal arc) in E3 - (Ac U N U 5C) connecting Ac

and Sc in such a way that C\(E3-(AC U Bc USC)) is a polyhedral
unknotted solid torus having C as a core. Denote this solid torus with
core C by Γc. Observe that Tc contains the Lc/4-neighborhood of C
and simply links Sc. Let 5Γ, = {Tc: C E «,}. This is the first stage of
the construction of the family 5".

For each Tc and Sc, we choose a decomposition Gc, having the
above properties with respect to Tc and Sc and having no nondegener-
ate element with diameter greater than one. It can be assumed that
each nondegenerate element is polygonal.

From the definition of a compound defining sequence it follows that
each component which is a solid torus is one of a finite nest of solid tori
which are regular neighborhoods of the innermost one of the nest. We
assume that all solid tori in a nest are tubular neighborhoods of the same
polygonal simple closed curve.

To define the nth stage, let Tn ={(p/(2n),q/(2n),r/(2")):/?,<?, and r
are integers}. The family %n is the set of all unknotted polygonal
simple closed curves having vertices in Vn and diameters again not
greater than one. Complete choices of Tc and Sc as in the first stage
with the added requirement that each Kc miss all nondegenerate
elements from previous stages.

We next determine the size requirement for nondegenerate ele-
ments at the nth stage. For any C E %, the associated solid torus 5C

intersects the compound defining sequences of only a finite number ot
the setsHc previously defined. Call them Hk,ί^k ^kc, where kc is
the appropriate integer. For each Hk, let - {(Mk){} be the compound
defining sequence. Because Sc misses each set ί/f, there are only a
finite number of (Mk){ whose boundaries intersect 5C. For each C, let
xc = m\n{d: d is the distance between two sets Bd (Mk)\ Π Sc for some
values of i, /, and k}. This xc is strictly positive. We require that each
nondegenerate element in Hc have diameter less than xc and less than
1/n. There is a decomposition Gc satisfying this and the conditions
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above with respect to Sc and the corresponding Tc. Again assume that
each image of a nondegenerate element is polygonal and that manifolds
in compound defining sequences are unions of prisms. This completes
the construction of the nth stage.

Let G be the union of H = {g EHC: C £<€„ for some positive
integer n} and points in E3-H*. This decomposition G defines the
map claimed in the title.

The proof is based on McAuley's countably shrinkable theorem [4],
as slightly revised by Reed [5], To use the theorem it is necessary to
shrink certain elements without permitting others to grow too
much. Some of the shrinking is based on Bing's shrinking of the (2,1)
toroidal decomposition [2]. Recall that, in the construction, elements
at a later stage are not permitted to intersect boundaries of more than
two manifold stages in previous compound defining sequences. This
allows growth of later stage nondegenerate elements to be controlled
during the shrinking of a particular stage. The proof is tedious, but
straightforward.

The author wishes to thank Charles H. Goldberg for his comments
concerning the construction and proof.
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