Vol. 58, No. 2, 1975

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Pre-Prüfer rings

Monte Boisen and Philip B. Sheldon

Vol. 58 (1975), No. 2, 331–344
Abstract

The purpose of this paper is to investigate the class of pre-Prüfer rings. A ring is defined to be in this class in case each of its proper homomorphic images is a Prüfer ring. It is shown for a domain D that if D is a pre-Prüfer ring, then the prime spectrum of D forms a tree and every finitely generated ideal of D containing a bounded element is invertible. If every finitely generated regularizable ideal of a ring R is invertible, then R is a pre-Prüfer ring. Examples are presented to show that the converse of each of the two results stated above is false.

Mathematical Subject Classification 2000
Primary: 13F05
Milestones
Received: 29 January 1974
Published: 1 June 1975
Authors
Monte Boisen
Philip B. Sheldon