BIRNBAUM-ORLICZ SPACES OF FUNCTIONS ON GROUPS

IRACEMA M. BUND
BIRNBAUM-ORLICZ SPACES OF FUNCTIONS
ON GROUPS

IRACEMA M. BUND

It is natural to ask how far the theory of closed invariant subspaces for $L_2(G)$ can be extended to Birnbaum-Orlicz spaces $L_A(G)$. If G is a compact group and A satisfies the Δ_2-condition for $u \geq u_0 \geq 0$, the class of all closed invariant subspaces of $L_A(G)$ is exactly the family $\{(L_A)_P: P \subset \Sigma\}$ where Σ is the dual object of G. Distinct subsets of Σ engender distinct subspaces.

The generalization of the classical L_p-spaces foreshadowed by Z. W. Birnbaum in 1930 [1] was the subject of a long article by Z. W. Birnbaum and W. Orlicz [2]. In the next four decades their theory has been extended by many writers, among them G. Weiss [9] and W. Luxemburg who invented convenient new definitions. More recently M. Jodeit and A. Torchinsky [7] introduced a generalization of the concept of Young's function which we adopt here.

The essential introductory definitions and theorems are stated in §1; proofs may be found in [3], [8] and [9]. In §2 we show that if G is a locally compact group, the Birnbaum-Orlicz space $L_A(G)$ is a left Banach L_1-module and a right Banach $(L_1 \cap L_\uparrow)$-module. Finally in §3 we establish the result stated in the synopsis. Our notation is as in [4], [5] and [6].

1. Preliminaries. (1.1) A function A on $[0, \infty]$ will be called a generalized Young's function if it is left continuous on $[0, \infty]$, $A(u)/u$ is nondecreasing for $u > 0$, and $A(0) = 0$. It easily follows that

\[(i)\quad A(\alpha u) \leq \alpha A(u) \quad \text{for} \quad 0 \leq \alpha \leq 1 \quad \text{and} \quad 0 \leq u < \infty.\]

The zero function and the function $A(u) = \infty \cdot \xi_{[0,\infty]}(u)$ are trivial generalized Young’s functions. Throughout the remaining of this work the letter A will denote a nontrivial generalized Young’s function. We also fix $a = \sup\{u: A(u) = 0\}$.

A Young’s function A_0 is associated to A by the equality $A_0(u) = \int_0^u A(t)/t \, dt$.

(1.2) Let (X, \mathcal{M}, μ) be an arbitrary measure space. The set $L_A(X, \mathcal{M}, \mu)$ of all complex-valued, \mathcal{M}-measurable functions defined μ-a.e. on X, such that $\int_X A(\alpha |f|) \, d\mu < \infty$ for some positive number α is
called a Birnbaum-Orlicz space. Where no confusion seems possible, we will write $L_A(X)$ for $L_A(X,\mathcal{M},\mu)$.

The equality

(i) $p_A(f) = \inf\{k \in [0,\infty]: \int_X A(|f|/k)\,d\mu \leq 1\}$

defines a nonnegative finite-valued function on $L_A(X)$ which is a norm in case A is convex. This suggests that we define a norm on $L_A(X)$ by the equality $\|f\|_A = p_A(f)$. With this norm, $L_A(X)$ is a Banach space.

If $f \in L_A(G)$ the following hold:

(ii) $\|f\|_A \leq p_A(f) \leq 2\|f\|_A$;

(iii) $\int_X A(|f|/p_A(f))\,d\mu \leq 1$, provided that $p_A(f) > 0$.

Denoting the Young's complement of A by \tilde{A}, for f in $L_A(X)$ and g in $L_A(X)$ we obtain

(iv) $\int_X |fg|\,d\mu \leq 2p_A(f)p_A(g)$.

If $\mu(X)$ is finite, $L_A(X)$ is contained in $L_1(X)$ and for $f \in L_A(X)$ we have

(v) $\|f\|_1 \leq [4/(\tilde{A})^{-1}(1/\mu(X))]\|f\|_A$,

where $(\tilde{A})^{-1}$ denotes the right inverse of \tilde{A}.

(1.3) **Theorem.** Let f be a complex-valued measurable function vanishing outside of a σ-finite set. Suppose that

$$N_A(f) = \sup \left\{ \int_X |fg|\,d\mu : g \in L_A(X), p_A(g) \leq 1 \right\} < \infty.$$ Then $f \in L_A(X)$ and we have $\|f\|_A \leq N_A(f)$.

(1.4) **Theorem.** Let X be a locally compact Hausdorff space. Let μ be a measure obtained from a nonnegative linear functional on $C_0(X)$, and let \mathcal{M} be the σ-algebra of all μ-measurable subsets of X. Then each function f in $L_A(X)$ can be written as $f = f_1 + f_2$, where $f_1 = f \chi_F$ for some σ-compact set F, and $|f_2| \leq a p_A(f)$ μ-a.e. on X. In particular, if $a = 0$, then f vanishes μ-a.e. outside of a σ-compact set.

2. **Birnbaum-Orlicz spaces of functions on groups.** From here on we consider spaces $L_A(G,\mathcal{M},\lambda)$, where G is a locally compact group, λ is a left Haar measure on G, and \mathcal{M} is the σ-algebra of λ-measurable subsets of G. We will often write $\int f\,d\lambda$ as $\int_G f(x)\,dx$.

Our first theorem follows easily from (20.2) in [4], and the fact that $L_1(G,\mathcal{M},\max\{1,1/\Delta\}\lambda)$ is complete.
(2.1) Theorem. A complex-valued measurable function \(f \) belongs to \(\mathcal{L}_1(G) \cap \mathcal{L}_1^*(G) \) if and only if \(\max\{1,1/\Delta\}f \in \mathcal{L}_1(G) \). The equalities

(i) \(\|f\| = \|f\| + \|(1/\Delta)f\| \),

and

(ii) \(\|f\| = \max\{1,1/\Delta\}f \)

define equivalent norms on the linear space \(\mathcal{L}_1(G) \cap \mathcal{L}_1^*(G) \). Precisely, we have

(iii) \(\|f\| \leq \|f\| \leq 2\|f\| \) for all \(f \in \mathcal{L}_1(G) \cap \mathcal{L}_1^*(G) \).

With either of these two norms, \(\mathcal{L}_1(G) \cap \mathcal{L}_1^*(G) \) is a Banach space.

(2.2) Theorem. Let \(f \) be a function in \(\mathcal{L}_A(G) \) and let \(s \) be an arbitrary element of \(G \). Then the functions \(f_s \) and \(f_s \) belong to \(\mathcal{L}_A(G) \) and we have:

(i) \(p_A(f) = p_A(f_s) \);

(ii) \(p_A(f_s) \leq \max\{1,\Delta(s^{-1})\}p_A(f) \).

Proof. It is clear that \(f_s \) and \(f_s \) are \(\lambda \)-measurable. Relations (i) and (ii) trivially become equalities if \(p_A(f) = 0 \). Suppose that \(p_A(f) > 0 \).

Theorem (20.1.i) in [4], and (1.2.iii) yield the inequality \(p_A(f_s) \leq p_A(f) \), from which (i) easily follows. Using (20.1.ii) in [4], and once again (1.2.iii) we write

\[
\int_G A(\|f_s\|/p_A(f_s)) d\lambda \leq \Delta(s^{-1}),
\]

which establishes (ii) in case \(\Delta(s^{-1}) \leq 1 \). For \(\Delta(s^{-1}) > 1 \), use (1) and (1.1.i).

The following result is part of (20.7) in the Russian edition of Hewitt and Ross “Abstract Harmonic Analysis”, to be published.

(2.3) Lemma. Let \(f \) be a \(\lambda \)-measurable function on \(G \). The following functions are \(\lambda \times \lambda \)-measurable on \(G \times G \):

\[
(x,y) \mapsto f(xy^{-1}), \quad (x,y) \mapsto f(y^{-1}x), \quad (x,y) \mapsto f(x),
\]

\[
(x,y) \mapsto f(x^{-1}), \quad (x,y) \mapsto f(y), \quad (x,y) \mapsto f(y^{-1}).
\]

(2.4) Theorem. Let \(f \) be a function in \(\mathcal{L}_A(G) \) vanishing outside of a \(\sigma \)-compact set \(F \) and let \(g \) be a function in \(\mathcal{L}_1(G) \). The integral

(i) \(g * f(x) = \int_G f(y^{-1}x)g(y)dy \)

exists and is finite for almost all \(x \) in \(G \). The function \(g * f \) is in \(\mathcal{L}_A(G) \) and we have
(ii) \(\| g * f \|_A \leq 4 \| f \|_A \| g \| \).

If \(g \in \mathcal{L}_1(G) \cap \mathcal{C}_1(G) \), the integral

\[
(iii) \quad f * g(x) = \int_G \Delta(y^{-1}) f(xy^{-1}) g(y) \, dy
\]

exists and is finite for \(\lambda \)-almost all \(x \) in \(G \). The function \(f * g \) is in \(\mathcal{L}_A(G) \) and we have

\[
(iv) \quad \| f * g \|_A \leq 4 \| f \|_A \| g \|,
\]

where \(\| \cdot \| \) is as in (2.1.i).

Proof. We may suppose that \(g \) vanishes outside of a \(\sigma \)-compact set \(E \). Thus the function \((x, y) \rightarrow f(y^{-1}x) g(y) \) vanishes outside of the \(\sigma \)-compact set \((EF) \times E \).

Let \(v \) be an arbitrary function in \(\mathcal{L}_A(G) \). From (2.3) we know that the mapping \((x, y) \rightarrow v(x)f(y^{-1}x) g(y) \) is \(\lambda \times \lambda \)-measurable. Plainly this function vanishes outside of \((EF) \times E \).

Recalling (1.2.iv) and (2.2.i), we obtain

\[
\int_G \int_G |v(x)f(y^{-1}x) g(y)| \, dx \, dy
\]

(1)

\[
\leq 2p_A(f) p_A(v) \| g \|.
\]

Thus we may apply (13.10) of [4] to conclude that

\[
\int_G \int_G |v(x)f(y^{-1}x) g(y)| \, dy \, dx
\]

(2)

\[
= \int_G \int_G |v(x)f(y^{-1}x) g(y)| \, dx \, dy.
\]

From (13.10) and (13.8) in [4], we see that the integral

\[
\int_G v(x)f(y^{-1}x) g(y) \, dy
\]

exists and is finite for \(\lambda \)-almost all \(x \) in \(G \), and that

\[
x \rightarrow v(x) \int_G f(y^{-1}x) g(y) \, dy.
\]

(3)

is a function in \(\mathcal{L}_1(G) \); in particular it is a \(\lambda \)-measurable function.

We define \(g * f(x) \) by the equality (i), provided the integral exists, and put \(g * f(x) = 0 \), otherwise. It is easy to see that \(g * f(x) \) is finite \(\lambda \)-a.e. on \(G \).

In (3) we may take \(v \) to be any function in \(\mathcal{C}_\infty(G) \). Recalling (11.42) in [4], we see that \(g * f \) is \(\lambda \)-measurable.
Consider v in $\mathcal{L}_A(G)$ with $p_A(v) \leq 1$. Taking account of (1) and (2), we obtain

$$\int_G |v(x)(g*f)(x)| \, dx \leq \int_G \int_G |v(x)f(y^{-1}x)g(y)| \, dy \, dx$$

$$= \int_G \int_G [v(x)f(y^{-1}x)g(y)] \, dx \, dy \leq 2p_A(f)\|g\|.$$

This implies that

(4)

$$N_A(g*f) \leq 2p_A(f)\|g\|.$$

Now we observe that $g*f(x) = 0$ for x outside of the σ-compact set EF. Thus from (4) and (1.3), we conclude that $g*f \in \mathcal{L}_A(G)$ and that $\|g*f\|_A \leq 2p_A(f)\|g\|$. Applying (1.2.ii) to this last inequality, we obtain (ii).

Next suppose that $g \in \mathcal{L}_1(G) \cap \mathcal{L}^\dagger_1(G)$. Consider the function

(5)

$$(x,y) \to v(x)f(xy^{-1})g(y)\Delta(y^{-1}),$$

where v is an arbitrary function in $\mathcal{L}_A(G)$. As in the previous case, we see that the function (5) is $\lambda \times \lambda$-measurable and vanishes outside of the σ-compact set $(FE) \times E$. From (1.2.iv) and (2.2.H) we obtain

$$\int_G |v(x)f(xy^{-1})| \, dx \leq 2\max\{1,\Delta(y)\}p_A(f)p_A(v).$$

Thus we have

$$\int_G \int_G |v(x)f(xy^{-1})g(y)\Delta(y^{-1})| \, dx \, dy$$

$$\leq 2p_A(f)p_A(v)\int_G \max\{1,\Delta(y^{-1})\}|g(y)| \, dy$$

$$= 2p_A(f)p_A(v)\max\{1,1/\Delta\}g\|,$$

$$\leq 2p_A(f)p_A(v)\|g\|,$$

the last inequality being a consequence of (2.1.ii) and (2.1.iii).

From this point on the proof is completely analogous to that presented above for $g*f$ and we omit it.
Theorem (2.4) serves as a lemma for the following general result.

(2.5) **Theorem.** Suppose that \(f \in \mathcal{L}_A(G) \) and \(g \in \mathcal{L}_I(G) \). Then the integral

(i) \(g * f(x) = \int_G f(y^{-1}x)g(y)dy \)

exists and is finite for \(\lambda \)-almost all \(x \) in \(G \). The function \(g * f \) is in \(\mathcal{L}_A(G) \) and we have

(ii) \(\|g * f\|_A \leq k \|f\|_A \|g\| \),

where \(k = 4 \) if \(a = 0 \) or if \(G \) is \(\sigma \)-compact, and \(k = 6 \) otherwise.

If \(g \in \mathcal{L}_I(G) \cap \mathcal{L}_I^*(G) \), the integral

(iii) \(f * g(x) = \int_G \Delta(y^{-1})g(y)dy \)

exists and is finite for \(\lambda \)-almost all \(x \) in \(G \). The function \(f * g \) is in \(\mathcal{L}_A(G) \) and we have

(iv) \(\|f * g\|_A \leq k \|f\|_A \|g\| \),

where \(k \) is as above and \(\| \cdot \| \) is as in (2.1.i).

Proof. If \(G \) is \(\sigma \)-compact, the assertion follows immediately from (2.4). If \(a = 0 \), it follows from (1.4) and (2.4). Thus we may suppose that \(a > 0 \) and that \(G \) fails to be \(\sigma \)-compact.

Using (1.4), we may write \(f = f_1 + f_2 \), where \(f_1 = f\chi_F \) for some \(\sigma \)-compact set \(F \), and \(|f_2| \leq ap_A(f) \). It follows that

(1) \(\int_G |f_2(y^{-1}x)g(y)|dy \leq ap_A(f)\|g\| \)

for all \(x \) in \(G \), and hence that \(g * f_2(x) \) exists and is finite for all \(x \) in \(G \). A short computation, in which we use (1), gives us

\[
 g * f_2(x) \|g * f_2\|_A \leq p_A(g * f_2) \leq a^{-1}\|g * f_2\|_A \leq 2\|f\|_A \|g\|.
\]

Applying (2.4.i) to \(f_1 \), we conclude that

\[
 \int_G f_1(y^{-1}x)g(y)dy + \int_G f_2(y^{-1}x)g(y)dy
\]

exists and is finite for \(\lambda \)-almost all \(x \) in \(G \). Hence the same is true of \(g * f(x) \).

Inequality (ii) follows from (2) and (2.4.ii) applied to \(f_1 \). The remaining assertions are similarly established.

(2.6) **Theorem.** The space \(\mathcal{L}_I(G) \cap \mathcal{L}_I^*(G) \) is a Banach algebra.
Proof. For f and g in $£_1(G) \cap £_1^*(G)$ we obtain

$$((1/\Delta)g) * ((1/\Delta)f) = (1/\Delta)(g * f).$$

Thus (2.1) and (2.5.i) tell us that $g * f \in £_1(G) \cap £_1^*(G)$. We use (1) to prove that $£_1(G) \cap £_1^*(G)$, with the norm $\| \cdot \|$ defined in (2.1.i), is a normed algebra:

$$\| g * f \| \leq \| g \| \| f \| + \| (1/\Delta)g \| \| (1/\Delta)f \|, \leq \| g \| \| f \|.$$

(2.7) Theorem. The space $£_\lambda(A(G))$ is a left Banach $£_1$-module and a right Banach $£_1 \cap £_1^*$-module.

Proof. For g in $£_1(G)$ and f in $£_\lambda(A(G))$, (2.5.ii) tells us that there is a positive number k such that $\| g * f \|_\lambda \leq k \| f \|_\lambda \| g \|_\lambda$.

Next we show that, for f as above, and g_1 and g_2 in $£_1(G)$, we have $g_1 * (g_2 * f) = (g_1 * g_2) * f$. Using (20.1) of [4], we obtain the equality

$$\int_G f(v^{-1}y^{-1}x) g_2(v) dv = \int_G f(v^{-1}x) g_2(y^{-1}v) dv,$$

which implies that

$$g_1 * (g_2 * f)(x) = \int_G \int_G f(v^{-1}x) g_2(y^{-1}v) g_1(y) dy dv.$$

By (2.5.i), $g_1 * (g_2 * f)$ is in $£_\lambda(A(G))$, and hence the integral in (1) exists and is finite λ-almost everywhere in G. From (1.4) we know that g_1 and g_2 vanish outside of σ-compact sets E_1 and E_2, respectively. Thus the function $(v,y) \to f(v^{-1}x) g_2(y^{-1}v) g_1(y)$ vanishes outside of the σ-compact set $(E_1 E_2) \times E_1$. By (2.3) this function is $\lambda \times \lambda$-measurable.

We apply (13.10) in [4] to conclude that for λ-almost all x in G we have

$$g_1 * (g_2 * f)(x) = \int_G \int_G f(v^{-1}x) g_2(y^{-1}v) g_1(y) dy dv$$

$$= \int_G f(v^{-1}x) (g_1 * g_2)(v) dv = (g_1 * g_2) * f(x).$$

It is now clear that $£_\lambda(A(G))$ is a left Banach $£_1$-module. The proof that $£_\lambda(A(G))$ is a right Banach $£_1 \cap £_1^*$-module is similar and we omit it.

3. Closed ideals in $£_\lambda(A(G))$ for G a compact group. Throughout this section we suppose that G is compact and that $\lambda(G) = 1$.
(3.1) **Theorem.** If \(f \) and \(g \) are in \(\mathcal{L}_A(G) \) the equality \(g * f(x) = \int_G f(y^{-1}x)g(y)dy \) defines a function in \(\mathcal{L}_A(G) \). We have

\[
\|g * f\|_A \leq (16/(\bar{A})^{-1}(1))\|f\|_A \|g\|_A.
\]

Proof. Follows from (2.5.i), (1.2.v) and (2.5.ii).

(3.2) **Theorem.** The Birnbaum-Orlicz space \(\mathcal{L}_A(G) \) is a Banach algebra under a norm which is a positive constant times \(\| \cdot \|_A \).

Proof. Define \(n_A(f) = (16/(\bar{A})^{-1}(1))\|f\|_A \) and use (3.1).

(3.3) **Theorem.** Suppose that \(A \) satisfies the \(\Delta_2 \)-condition for \(u \equiv u_0 \geq 0 \). Then the space \(\mathcal{E}(G) \) of trigonometric polynomials on \(G \) is \(\| \cdot \|_A \)-dense in \(L_A(G) \).

Proof. Our hypothesis imply that \(\mathcal{E}(G) \) is \(\| \cdot \|_A \)-dense in \(\mathcal{L}_A(G) \): see [3] or [8]. Theorem (27.39.ii) of [5] tells us that \(\mathcal{E}(G) \) is uniformly dense in \(\mathcal{E}(G) \), and it is easy to see that \(\mathcal{E}(G) \) is also \(\| \cdot \|_A \)-dense in \(\mathcal{E}(G) \).

(3.4) **Theorem.** Let \(A \) be as in (3.3). Suppose that \(S \) is a closed linear subspace of \(\mathcal{L}_A(G) \). Then \(S \) is a left [right] ideal in \(\mathcal{L}_A(g) \) if and only if \(S \) is closed under the formation of left [right] translates.

Proof. Since \(G \) is unimodular, it follows from (2.1) and (2.7) that \(\mathcal{L}_A(G) \) is a Banach \(\mathcal{L}_1 \)-module with respect to convolution. From (3.2) we know that \(\mathcal{L}_A(G) \) is a subalgebra of \(\mathcal{L}_1(G) \) which is a Banach algebra with the norm \(n_A \). Taking (3.3) into account, we see that \(L_A(G) \) has the properties stated in (38.6.a) in [5]. Thus the theorem follows immediately from (38.22.b) of [5].

(3.5) **Theorem.** Let \(A \) be as in (3.3). Then the class of all closed two-sided ideals in \(\mathcal{L}_A(G) \) is exactly the family \(\{ \mathcal{L}_P : P \subset \Sigma \} \). Distinct subsets of \(\Sigma \) engender distinct ideals.

Proofs. This is a direct application of (38.7) in [5].

References

Received February 22, 1974. This research was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo. This work is part of a doctoral dissertation written at the University of Washington. The author is grateful for the invaluable guidance of her research adviser, Professor Edwin Hewitt.

University of São Paulo.
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIKA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate, may be sent to any one of the four editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Jerusalem Academic Press, POB 2390, Jerusalem, Israel.

Copyright © 1975 Pacific Journal of Mathematics
All Rights Reserved