THE SPECTRUM OF AN EQUATIONAL CLASS OF
GROUPOIDS

Jon Froemke and Robert Willis Quackenbush
THE SPECTRUM OF AN EQUATIONAL CLASS OF GROUPOIDS

J. Froemke and R. Quackenbush

The spectrum of an equational class \mathcal{H} is the set of positive integers $\text{Spec}(\mathcal{H}) = \{ n \mid \exists \mathfrak{A} \in \mathcal{H}, |\mathfrak{A}| = n \}$. It is obvious that $1 \in \text{Spec}(\mathcal{H})$ and $x, y \in \text{Spec}(\mathcal{H})$ implies $xy \in \text{Spec}(\mathcal{H})$ for any equational class \mathcal{H}; i.e. $\text{Spec}(\mathcal{H})$ is a multiplicative monoid of positive integers. Conversely, G. Grätzer showed that given any multiplicative monoid of positive integers \mathcal{I} there is an equational class \mathcal{H} such that $\mathcal{I} = \text{Spec}(\mathcal{H})$. In this paper we show that \mathcal{H} can be chosen to be an equational class of groupoids.

Our first step is to give a simplified proof of Grätzer's theorem. For $n \geq 1$ let $A_n = \{0, 1, \cdots, n\}$. Define the function $p(x)$ on A_n by $p(x) = x + 1 \pmod{n + 1}$. Let $t(x, y, z)$ be the ternary discriminator function (t.d.f.) on A_n; i.e. $t(x, y, z) = z$ if $x = y$ and $t(x, y, z) = x$ if $x \neq y$. If the reader is not familiar with the properties of $t(x, y, z)$ he should consult [6]; for the concepts and notations of universal algebra see [2]. Let $\mathcal{A}_n = \langle A_n; t, p \rangle$.

Theorem 1. (G. Grätzer [1]). Let \mathcal{I} be a multiplicative monoid of positive integers. There is an equational class \mathcal{H} of type $(3,1)$ such that $\text{Spec}(\mathcal{H}) = \mathcal{I}$.

Proof. Let $\mathcal{H}' = \{ \mathcal{A}_{n-1} \mid n \in \mathcal{I} - \{1\} \}$ and let $\mathcal{H} = \text{HSP}(\mathcal{H}')$. Because the t.d.f. is represented by $t(x, y, z)$ on each \mathcal{A}_n, \mathcal{H} has distributive congruences. Hence by the well known theorem of B. Jónsson [3] we have that $\mathcal{H} = P_3 \text{HSP}_r(\mathcal{H}')$. In particular the subdirectly irreducible members of \mathcal{H} are contained in $\text{HSP}_r(\mathcal{H}')$. Let \mathcal{U} be a prime product of members of \mathcal{H}', say $\{ \mathcal{A}_j \mid j \in J \}$ (the reader is referred to [2] for properties of prime products). If \mathcal{U} is finite then it is isomorphic to some \mathcal{A}_j. Thus let \mathcal{U} be infinite. Since $t(x, y, z)$ represents the t.d.f. on \mathcal{U}, all subalgebras of \mathcal{U} are simple. Using $p(x)$ we can form a sentence σ_n in the first order theory of \mathcal{H} which implies the existence of at least n distinct elements and which is true in \mathcal{A}_m for $m \geq n - 1$. Since \mathcal{U} is infinite, σ_n is true in almost all members of $\{ \mathcal{A}_j \mid j \in J \}$ and so σ_n is true in \mathcal{U} for all n. Hence every subalgebra of \mathcal{U} is infinite. This means that the finite subdirectly irreducible members of \mathcal{H} are contained in $\text{HS}(\mathcal{H}')$. But each $\mathcal{A}_i \in \mathcal{H}'$ is simple and has no proper subalgebras. Hence up to isomorphism the finite subdirectly

381
irreducible members of \mathcal{H} are the members of \mathcal{H}'. Finally we note that because of $t(x,y,z)$, \mathcal{H} has permutable congruences. Since each $\mathcal{A}_i \in \mathcal{H}'$ is simple this means that every finite algebra in \mathcal{H} is a direct product of algebras from \mathcal{H}' so that $\mathcal{I} = \text{Spec}(\mathcal{H})$ and the theorem is proved.

Corollary 1. Let $\{\mathcal{A}_n \mid n \geq 1\}$ be algebras of type τ with $\vert \mathcal{A}_n \vert = n + 1$. Let $t(x,y,z)$ and $p(x)$ be polynomials of type τ such that $t(x,y,z)$ represents the t.d.f. on each \mathcal{A}_n and $p(x) = x + 1 (\text{mod } n + 1)$ in each \mathcal{A}_n. Given any multiplicative monoid of positive integers \mathcal{I} there is an equational class \mathcal{H} of type τ such that $\mathcal{I} = \text{Spec}(\mathcal{H})$.

Proof. Note that the proof of Theorem 1 only requires that $t(x,y,z)$ and $p(x)$ be polynomials, not that they be operations.

Thus we need to construct a set of groupoids $\{\mathcal{B}_n\}$ satisfying the conditions of Corollary 1. First we will construct $\{\mathcal{B}_n \mid n \geq 3\}$ and later construct \mathcal{B}_1 and \mathcal{B}_2. The multiplication table for $\mathcal{B}_n = \langle \{0,1,\cdots,n\}; \omega \rangle$ for $n \geq 3$ is given in Fig. 1.

MULTIPLICATION TABLE FOR \mathcal{B}_n, $n \geq 3$

<table>
<thead>
<tr>
<th>ω</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>$n - 1$</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>\cdots</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>n</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>:</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n - 1$</td>
<td>$n - 1$</td>
<td></td>
<td>n</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$$</td>
<td>n</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$n - 2$</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 1

The multiplication table is filled in according to the following rules; the reader should check that for $n \geq 3$ these rules are consistent (all addition is mod $n + 1$):

1. $\omega(x,x) = x + 1$ for all x.
2. $\omega(x + 1,x) = x - 1$ for all x.

\(\omega(0, 1) = \omega(n, 0) = 0; \omega(x, x + 1) = 1 \text{ for } x \neq 0, n. \)

(4) \(\omega(n, x) = 0 \text{ for } x \neq 0, n - 1, n. \)

(5) \(\omega(0, n - 1) = n; \omega(0, x) = x \text{ for } x \neq 0, 1, n - 1, n. \)

(6) \(\omega(x, 0) = x \text{ for } x \neq 0, 1, n. \)

(7) In all other cases, \(\omega(x, y) \neq 1. \)

Lemma 1. There are groupoid polynomials \(t'(x, y, z) \) and \(p(x) \) such that \(t'(x, y, z) \) represents the t.d.f. on each \(\mathbb{A}_n, n \geq 3 \) and such that \(p(x) = x + 1(\text{mod } n + 1) \) in \(\mathbb{A}_n, n \geq 3. \)

Proof. The proof will consist of a list of definitions of polynomials together with their values on \(\mathbb{A}_n. \) The reader should have no trouble verifying each member of the list.

(1) \(\alpha(x) = \omega(x, x) = x + 1. \) Thus \(p(x) = \alpha(x). \)

(2) \(\beta(x) = \omega(\alpha(x), x) = x - 1. \)

(3) \(\gamma(x) = \omega(x, \alpha(x)) = \begin{cases} 0 & \text{if } x = 0, n, \\ 1 & \text{otherwise.} \end{cases} \)

(4) \(C_1(x) = \gamma(\alpha(x)) = 1. \)

(5) \(C_0(x) \equiv \beta(C_1(x)) = 0; C_n(x) \equiv \beta(C_0(x)) = n. \)

(6) \(\delta_{n-1}(x) = \gamma(\omega(C_n(x), x)) = \begin{cases} 1 & \text{if } x = n - 1, \\ 0 & \text{otherwise.} \end{cases} \)

(7) \(\delta_n(x) = \delta_{n-1}(\beta(x)) = \begin{cases} 1 & \text{if } x = n, \\ 0 & \text{otherwise;} \end{cases} \)

(8) \(\delta_k(x) = \delta_k(\beta^k(x)) = \begin{cases} 1 & \text{if } x = k, \\ 0 & \text{otherwise.} \end{cases} \)

(9) \(\delta_j(x) = \delta_k(\delta_j(x)) = \begin{cases} 0 & \text{if } x = j, \\ 1 & \text{otherwise.} \end{cases} \)

(10) \(\Delta_{k,l}(x, y) = \delta_0(\omega(\delta_i(x), \delta_j(y))) = \begin{cases} 1 & \text{if } (x, y) = (j, k), \\ 0 & \text{otherwise.} \end{cases} \)

(11) \(\overline{\Delta}_{k,l}(x, y) = \delta_0(\Delta_{k,l}(x, y)) = \begin{cases} 0 & \text{if } (x, y) = (j, k), \\ 1 & \text{otherwise.} \end{cases} \)

(12) \(\omega(0, \omega(0, y)) = y \) and \(\omega(n, \omega(n, y)) = 0. \)

(13) \(x \cdot y = \alpha(\omega(\beta(\delta_0(x)), \omega(\beta(\delta_0(x)), \beta(y)))). \)

(14) \(1 \cdot y = 1, 0 \cdot y = y. \)

(15) \(\sigma(x) = \omega(C_0(x), x); \sigma^2(x) = x. \)

(16) \(\tau(x) = \omega(x, C_0(x)); \tau^2(x) = x. \)

(17) \(x + y = \omega(\tau^2(x), \sigma(y)); 1 + y = y + 1 = y. \)

(18) \(\omega(x, \alpha(y)) = 1 \text{ iff } (x = y \text{ and } x \neq 0, n) \text{ or } ((x, y) = (0, n)) \text{ or } ((x, y) = (3, 1)). \)

(19) \(\bar{\varepsilon}(x, y) = \Delta_{0,0}(x, y) \)
\(+ (\Delta_{n,n}(x, y) + (\Delta_{0,n}(x, y) \cdot (\Delta_{3,1}(x, y) \cdot \delta_1(\omega(x, \alpha(y))))). \)
This concludes the proof of Lemma 1.

Each of the \(\mathcal{B}_n \), \(n \geq 3 \), is a primal algebra (i.e. a finite nontrivial algebra such that every function on the algebra is representable by a polynomial). A theorem of E. S. O'Keefe [4] asserts that a set of pairwise nonisomorphic primal algebras of a type consisting of just one operation is independent. In particular this guarantees that for any finite subset of \(\{ \mathcal{B}_n \} \) there is a polynomial representing the t.d.f. However, this does not guarantee that there is a polynomial representing the t.d.f. on all \(\mathcal{B}_n \).

Now consider \(\mathcal{B}_1 \) and \(\mathcal{B}_2 \) as given in Fig. 2. It is well known that \(\mathcal{B}_1 \) is primal. To see that \(\mathcal{B}_2 \) is primal we invoke a theorem of G. Rousseau [7] which states that if \(\mathcal{A} \) is a finite nontrivial algebra of type \(\langle n \rangle \) with \(n \geq 2 \) then \(\mathcal{A} \) is primal iff \(\mathcal{A} \) has no proper subalgebras, has no proper automorphisms, and is simple. It will be shown shortly that every element of \(\mathcal{B}_2 \) is the value of a constant polynomial. Hence the first two conditions hold. To see that \(\mathcal{B}_2 \) is simple note that if \(0 = 1 \) then \(0 = \omega(0, 1) = \omega(1, 1) = 2 \); if \(0 = 2 \) then \(1 = \omega(0, 0) = \omega(2, 0) = 2 \), and if \(1 = 2 \) then \(0 = \omega(0, 1) = \omega(0, 2) = 1 \). Hence \(\mathcal{B}_2 \) is primal. Thus by the above mentioned theorem of O'Keefe there is a polynomial \(t''(x, y, z) \) representing the t.d.f. on \(\mathcal{B}_1 \) and \(\mathcal{B}_2 \).

\[
\begin{array}{c|cc}
\omega & 0 & 1 \\
\hline
0 & 1 & 1 \\
1 & 1 & 0 \\
\end{array}
\quad
\begin{array}{c|cccc}
\omega & 0 & 1 & 2 \\
\hline
0 & 1 & 0 & 1 \\
1 & 1 & 2 & 0 \\
2 & 2 & 1 & 0 \\
\end{array}
\]

Figure 2

Lemma 2. There is a polynomial \(\phi(x, y) \) such that \(\phi(x, y) = x \) in \(\mathcal{B}_1, \mathcal{B}_2 \) while \(\phi(x, y) = y \) in \(\mathcal{A}_n, n \geq 3 \).

Proof. Again we make a series of definitions and statements each of which is easily verifiable.
(1) \(\alpha(x) = \omega(x,x) = x + 1 \) in \(B_n, n \geq 1 \).

(2) \(\beta(x) = \omega(\alpha(x),x) = \begin{cases} 1 & \text{in } B_1, B_2, \\ x - 1 & \text{in } B_n, n \geq 3. \end{cases} \)

(3) \(\rho(x) = \beta(\alpha(x)) = \begin{cases} 1 & \text{in } B_1, B_2, \\ x & \text{in } B_n, n \geq 3. \end{cases} \)

(4) \(\alpha'(x) = \omega(\rho(x),x) = \begin{cases} \text{a permutation in } B_1, B_2, \\ \alpha(x) & \text{in } B_n, n \geq 3. \end{cases} \)

(5) \(\beta'(x) = \omega(\alpha(x),\rho(x)) = \begin{cases} \text{a permutation in } B_1, B_2, \\ \beta(x) & \text{in } B_n, n \geq 3. \end{cases} \)

(6) \(\gamma'(x) = \omega(\rho(x),\alpha'(x)) = \begin{cases} \text{a permutation in } B_1, B_2, \\ \gamma(x) & \text{in } B_n, n \geq 3. \end{cases} \)

(7) \(C'_i(x) = \gamma'(\alpha'(\gamma'(x))) = \begin{cases} \text{a permutation in } B_1, B_2, \\ 1 & \text{in } B_n, n \geq 3. \end{cases} \)

(8) \(C_0(x) = \beta'(C'_i(x)) = \begin{cases} \text{a permutation in } B_1, B_2, \\ 0 & \text{in } B_n, n \geq 3. \end{cases} \)

(9) Compose \(C_0(x) \) with itself sufficiently many times to get

\[
\eta(x) = \begin{cases} x & \text{in } B_1, B_2, \\ 0 & \text{in } B_n, n \geq 3. \end{cases}
\]

(10) \(\mu(x,y) = \omega(\eta(x),\rho(y)) = \begin{cases} \text{a permutation in } x \text{ of order } 2 \text{ in } B_1, B_2, \\ \text{a permutation in } y \text{ of order } 2 \text{ in } B_n, n \geq 3. \end{cases} \)

(11) \(\phi(x,y) = \mu(\mu(x,y),\mu(x,y)) = \begin{cases} x & \text{in } B_1, B_2, \\ y & \text{in } B_n, n \geq 3. \end{cases} \)

This concludes the proof of Lemma 2.

Theorem 2. Given any multiplicative monoid of positive integers \(\mathcal{S} \) there is an equational class of groupoids \(\mathcal{H} \) such that \(\mathcal{S} = \text{Spec}(\mathcal{H}) \). If \(\mathcal{S} \neq \{1\} \) then there are uncountably many such equational classes of groupoids and each is generated by its finite members.

Proof. Let \(\{B_n | n \geq 1\} \) be as defined in Fig. 1 and 2. Let \(\mathcal{H}' = \{B_n^{-1} | n \in \mathcal{S} - \{1\}\} \) and let \(\mathcal{H} = HSP(\mathcal{H}') \). Then taking \(p(x) = \alpha(x) \) and \(t(x,y,z) = \phi(t''(x,y,z),t'(x,y,z)) \) we see that by Corollary 1, \(\mathcal{S} = \text{Spec}(\mathcal{H}) \). If \(\mathcal{S} \neq 1 \) let \(m \in \mathcal{S} \) with \(m > 1 \). Then for \(n > 1 \) we can include or exclude \(Bm^n \) from \(\mathcal{H}' \) without changing the spectrum of \(HSP(\mathcal{H}') \).

Problem 1. For which equational subclasses of groupoids does Theorem 2 hold? It is known to be false for semigroups. If we consider idempotent groupoids, note that there are up to isomorphism, only three two element idempotent groupoids and any equational class containing one of them has a complete spectrum: all positive integers. For \(2 \notin \mathcal{S} \) it is likely that there is an equational class of idempotent groups whose spectrum is \(\mathcal{S} \).
Problem 2. If \mathcal{S} is finitely generated then we may take \mathcal{H}' to consist only of those \mathcal{B}_{n+1} for n in a given finite generating set of \mathcal{S}. Thus \mathcal{H} will be generated by a finite algebra (the product of the \mathcal{B}_{n+1}). Hence by a result of Kirby Baker, \mathcal{H} is finitely based and so by [5] 1-based. On the other hand, if \mathcal{H} is finitely based then necessarily \mathcal{S} is recursive. Is the converse true; namely if \mathcal{S} is recursive is the corresponding \mathcal{H} finitely based?

REFERENCES

Received March 26, 1974. The work of the second author was supported by a grant from the National Research Council of Canada.

OAKLAND UNIVERSITY
AND
UNIVERSITY OF MANITOBA
Zvi Artstein and John Allen Burns, *Integration of compact set-valued functions* ... 297
Mark Benard, *Characters and Schur indices of the unitary reflection group* [321]3 309
Simeon M. Berman, *A new characterization of characteristic functions of absolutely continuous distributions* ... 323
Monte Boisen and Philip B. Sheldon, *Pre-Prüfer rings* ... 331
Hans-Heinrich Brungs, *Three questions on duo rings* ... 345
Iracema M. Bund, *Birnbaum-Orlicz spaces of functions on groups* ... 351
John D. Elwin and Donald R. Short, *Branched immersions between 2-manifolds of higher topological type* .. 361
Eric Friedlander, *Extension functions for rank 2, torsion free abelian groups* 371
Jon Froemke and Robert Willis Quackenbush, *The spectrum of an equational class of groupoids* ... 381
Barry J. Gardner, *Radicals of supplementary semilattice sums of associative rings* 387
Shmuil Glasner, *Relatively invariant measures* ... 393
George Rudolph Gordh, Jr. and Sibe Mardešić, *Characterizing local connectedness in inverse limits* ... 411
Siegfried Graf, *On the existence of strong liftings in second countable topological spaces* 419
Stanley P. Gudder and D. Strawther, *Orthogonally additive and orthogonally increasing functions on vector spaces* .. 427
Darald Joe Hartfiel and Carlton James Maxson, *A characterization of the maximal monoids and maximal groups in βX* ... 437
William Emery Haver, *Mappings between ANRs that are fine homotopy equivalences* 457
J. Bockett Hunter, *Moment sequences in ℓp* ... 463
Barbara Jeffcott and William Thomas Spears, *Semimodularity in the completion of a poset* 467
Jerry Alan Johnson, *A note on Banach spaces of Lipschitz functions* 475
David W. Jonah and Bertram Manuel Schreiber, *Transitive affine transformations on groups* ... 483
Karsten Juul, *Some three-point subset properties connected with Menger's characterization of boundaries of plane convex sets* ... 511
Ronald Brian Kirk, *The Haar integral via non-standard analysis* .. 517
Justin Thomas Lloyd and William Smiley, *On the group of permutations with countable support* ... 529
Erwin Lutwak, *Dual mixed volumes* ... 531
Mark Mahowald, *The index of a tangent 2-field* ... 539
Keith Miller, *Logarithmic convexity results for holomorphic semigroups* .. 549
Paul Milnes, *Extension of continuous functions on topological semigroups* .. 553
Kenneth Clayton Pietz, *Cauchy transforms and characteristic functions* .. 563
James Ted Rogers Jr., *Whitney continua in the hyperspace C(X)* .. 569
Jean-Marie G. Rolin, *The inverse of a continuous additive functional* .. 585
William Henry Ruckle, *Absolutely divergent series and isomorphism of subspaces* 605
Rolf Schneider, *A measure of convexity for compact sets* .. 617
Alan Henry Schoenfield, *Continuous measure-preserving maps onto Peano spaces* 627
V. Merriline Smith, *Strongly superficial elements* ... 643
Roger P. Ware, *A note on quadratic forms over Pythagorean fields* .. 651
Roger Allen Wiegand and Sylvia Wiegand, *Finitely generated modules over Bezout rings* 655
Martin Ziegler, *A counterexample in the theory of definable automorphisms* 665