Pacific Journal of Mathematics

ORTHOGONALLY ADDITIVE AND ORTHOGONALLY INCREASING FUNCTIONS ON VECTOR SPACES

STANLEY P. GUDDER AND D. STRAWTHER

Vol. 58, No. 2

April 1975

ORTHOGONALLY ADDITIVE AND ORTHOGONALLY INCREASING FUNCTIONS ON VECTOR SPACES

S. GUDDER AND D. STRAWTHER

A real-valued function $f: X \rightarrow R$ on an inner product space X is orthogonally additive if f(x + y) = f(x) + f(y) whenever We extend this concept to more general spaces called $x \perp y$. orthogonality vector spaces. If X is an orthogonality vector space and if there exists an orthogonally additive function on Xwhich satisfies certain natural conditions then there is an inner product on X which is equivalent to the original orthogonality and $f(x) = \pm ||x||^2$ for all $x \in X$. We next consider a normed space X with James' orthogonality. A function $f: X \rightarrow R$ is orthogonally increasing $f(x + y) \ge f(x)$ if whenever $x \perp y$. Orthogonally increasing functions on normed spaces are characterized.

1. Pythagoras' theorem. Pythagoras' theorem states that the function $f(x) = ||x||^2$ is orthogonally additive, that is f(x + y) = f(x) + f(y) whenever $x \perp y$ where x, y are vectors in the plane. One of the concerns of this paper is a converse of Pythagoras' theorem on an inner product space X. That is, if $f: X \rightarrow R$ is orthogonally additive, is $f(x) = c ||x||^2$ for some $c \in R$? As it stands, the answer is no, since any linear functional is orthogonally additive.

Some natural additional conditions on f are:

(1) $f(x) \ge 0$, nonnegativity;

(2) f(x) = f(-x), evenness;

(3) $\lambda_i \to \lambda$ implies $f(\lambda_i x) \to f(\lambda x)$ for all $x \in X$, hemicontinuity. We shall show that orthogonal additivity along with (1), or with (2) and (3) imply $f(x) = c ||x||^2$ for some $c \in R$.

2. Orthogonality vector spaces. In this paper, vector spaces will be real and of dimension ≥ 2 . In Theorem 2.2 we shall prove that Pythagoras' theorem characterizes inner product spaces in a certain sense.

A vector space X is an orthogonality vector space if there is a relation $x \perp y$ on X such that

(01) $x \perp 0, 0 \perp x$ for all $x \in X$;

(02) if $x \perp y$ and $x, y \neq 0$, then x, y are linearly independent;

(03) if $x \perp y$, then $ax \perp by$ for all $a, b \in R$;

(04) if P is a two-dimensional subspace of X, then for every $x \in P$ there exists $0 \neq y \in P$ such that $x \perp y$;

(05) if P is a two-dimensional subspace of X, then there exist nonzero vectors $u, v \in P$ such that $u \perp v$ and $u + v \perp u - v$.

Any vector space can be made into an orthogonality vector space if we define $x \perp 0$, $0 \perp x$ for all x, and for nonzero vectors x, y define $x \perp y$ iff x, y are linearly independent. Also an inner product space is such a space; we shall see that a normed space is one also with James' definition of orthogonality.

LEMMA 2.1. Let (X, \bot) be an orthogonality vector space and let $f: X \to R$ be orthogonally additive and hemi-continuous. (a) If f is odd, then f is linear. (b) If f is even, then $f(\alpha x) = \alpha^2 f(x)$ for all $\alpha \in R, x \in X$ and if $x \bot y$ and $x + y \bot x - y$, then f(x) = f(y).

Proof. Same as in [2; Lemmas 2, 3].

REMARK. The referee has pointed out to us that there is a mistake in the proof of Lemma 2 [2]. In that proof it is incorrectly stated that $F(2^r u) = 2^r F(u)$ for all rational r when, in fact, this is only proved for integral r. However, it is easily seen that $F(3^r u) = 3^r F(u)$ for all integral r. Indeed, in the notation of that proof

$$F(3u) - F(v) = F(3u - v) = F(u + v + 2u - 2v)$$

= $F(u + v) + F(2(u - v)) = 3F(u) - F(v).$

Hence, by induction $F(2^p \ 3^q \ u) = 2^p \ 3^q F(u)$ for all integral p and q. Since these scalars $2^p \ 3^q$ are dense, continuity implies $F(\alpha \ u) = \alpha F(u)$.

An inner product $\langle \cdot, \cdot \rangle$ on (X, \bot) is \bot -equivalent when $x \bot y$ iff $\langle x, y \rangle = 0$.

THEOREM 2.2. If there exists an $f: (X, \bot) \to R$ which is orthogonally additive, even, hemicontinuous, and not identically 0, then there is a \bot -equivalent inner product $\langle \cdot, \cdot \rangle$ on (X, \bot) . In fact, $\langle x, y \rangle = \frac{1}{4}[f(x + y) - f(x - y)]$ and the induced norm satisfies $||x||^2 = f(x)$ for all $x \in X$, or $||x||^2 = -f(x)$ for all $x \in X$. Moreover, if $\langle \cdot, \cdot \rangle_1$ is another \bot -equivalent inner product on (X, \bot) , then there is a nonzero $c \in R$ such that $\langle \cdot, \cdot \rangle_1 = c \langle \cdot, \cdot \rangle$.

Proof. We first show that f has constant sign. Let $0 \neq x \in X$ and suppose f(x) > 0. Let $0 \neq y \in X$. If $y = \alpha x$, then $f(y) = \alpha^2 f(x) > 0$. If y, x are linearly independent, let P be the generated 2-dimensional subspace. Then there exist $u, v \in X$ satisfying (05) and

(02). Hence y = au + bv, x = cu + dv for $a, b, c, d \in R$. By Lemma 2.1 (b), $f(y) = (a^2 + b^2)f(u)$, $f(x) = (c^2 + d^2)f(u)$ so f(y) > 0. Similarly, f(x) < 0 implies f(y) < 0. For concreteness, suppose $f(x) \ge 0$ for all $x \in X$. One can now show that $f(x)^{1/2}$ is a norm on X which satisfies the parallelogram law so X is an inner product space. If $x \perp y$ then f(x + y) = f(x) + f(y) and so $\langle x, y \rangle = 0$. Conversely, suppose $x, y \ne 0$ and $\langle x, y \rangle = 0$. By (04) there is a $z \ne 0$ in the span of $\{x, y\}$ such that $x \perp z$. Hence $\langle x, z \rangle = 0$ and by (02) y = ax + bz for some $a, b \in R$. From $\langle x, y \rangle = 0$ it follows that a = 0 so $x \perp y$. Corollary 3.4 concludes the proof.

If X is a normed linear space, James [1] defines $x \perp y$ iff $||x + ky|| \ge ||x||$ for all $k \in \mathbb{R}$. With this definition of \perp , (X, \perp) is an orthogonality vector space. Indeed, (01), (02), (03) follows easily, (04) follows from [1; Corollary 2.3] and (05) follows from [2; Lemma 1].

The next result generalizes to inner product spaces a result of Sundaresan [2] whose proof relies on the completeness of Hilbert space.

COROLLARY 2.3. Let X be a normed space and let $f: X \to R$ be an orthogonally additive, even, hemicontinuous function. (a) If X is not an inner product space, then $f \equiv 0$. (b) If X is an inner product space, then there is a $c \in R$ such that $f(x) = c ||x||^2$ for all $x \in X$.

We next prove a generalization of the Riesz representation theorem.

COROLLARY 2.4. Let X be an inner product space and let $f: X \to R$ be orthogonally additive and satisfy $|f(x)| \le M ||x||$ for all $x \in X$. Then f is a continuous linear functional and hence, if X is a Hilbert space, $f(x) = \langle x, z \rangle$ for some $z \in X$.

Proof. We can assume M > 0. Clearly f is continuous at 0. Let $x \neq 0$. We first show that $\beta \to 1$ implies $f(\beta x) \to f(x)$. Let $\beta > 1$, $y \perp x$, ||y|| = 1 and $u = x + (\beta - 1)^{1/2} ||x|| y$. Then $(u - x) \perp x$ and $(u - \beta x) \perp u$. Thus f(u) - f(x) = f(u - x) and $f(\beta x) - f(u) = f(\beta x - u)$. Hence

$$|f(x) - f(\beta x)| \leq |f(x) - f(u)| + |f(u) - f(\beta x)|$$
$$\leq M ||x|| [2(\beta - 1)^{1/2} + (\beta - 1)].$$

Now let $0 < \beta < 1$, $y \perp x$, ||y|| = 1 and

$$u = \beta x + (1 - \beta)^{1/2} \beta^{1/2} ||x|| y.$$

Then $(u - \beta x) \perp \beta x$ and $(x - u) \perp u$. Again $f(u) - f(\beta x) = f(u - \beta x)$, and f(x) - f(u) = f(x - u), so that

$$|f(x) - f(\beta x)| \le |f(x - u)| + |f(u - \beta x)|$$

$$\le M ||x|| [(1 - \beta) + 2(1 - \beta)^{1/2} \beta^{1/2}]$$

It follows that $f(\beta x) \rightarrow f(x)$ as $\beta \rightarrow 1$. We now show that f is norm continuous. If $x_i \rightarrow x$, there exist $y_i \perp x$ such that $x_i = \alpha_i x + y_i$. Taking the inner product with x, we see that $\alpha_i \rightarrow 1$ and hence $y_i \rightarrow 0$. Since $f(x_i) = f(\alpha_i x + y_i) = f(\alpha_i x) + f(y)$, we have $f(x_i) \rightarrow f(x)$ as $x_i \rightarrow x$ and f is norm continuous. Applying Corollary 2.3 and Lemma 2.1(a), there is a continuous linear functional f_2 such that $f(x) = c ||x||^2 + f_2(x)$. Hence $|c| ||x|| \leq M + ||f_2||$ for all $x \in X$, which implies c = 0.

3. Orthogonally increasing functions. In this section orthogonality on a normed space X will always be defined according to James' definition (see §2). A function $f: X \rightarrow R$ is orthogonally increasing iff $x \perp y$ implies $f(x + y) \ge f(x)$. We shall later define other types of increasing functions.

In the last section we characterized orthogonally additive, hemicontinuous functions. We saw that they formed a very restricted class, being the sum of a linear functional and a constant times the norm squared. The orthogonally increasing functions form a much larger class. Indeed, if $g: R^+ \rightarrow R$, where $R^+ =$ nonnegative reals, is any nondecreasing function then f(x) = g(||x||) is orthogonally increasing since $x \perp y$ implies $f(x + y) = g(||x + y||) \ge g(||x||) = f(x)$. The main result of this section characterizes orthogonally increasing functions on a normed space and shows that they are essentially of this form.

Let X be a normed space. A function $f: X \to R$ is radially increasing if $\alpha > 1$ implies $f(\alpha x) \ge f(x) \forall x \in X$, and f is spherically increasing if ||x|| > ||y|| implies $f(x) \ge f(y)$. It is clear that spherically increasing implies radially increasing and simple examples show that the converse need not hold. In a strictly convex (rotund) normed space, spherically increasing function on such a space and let $x \perp y$. Then $||x + y|| \ge ||x||$. If ||x + y|| > ||x||, then by spherical increasing

$$f(x+y) \ge f(x).$$

Now suppose ||x + y|| = ||x||. Then

$$||x + \frac{1}{2}y|| = ||\frac{1}{2}(x + y) + \frac{1}{2}x|| \le \frac{1}{2}||x + y|| + \frac{1}{2}||x|| = ||x||.$$

Since $x \perp y$, $||x + \frac{1}{2}y|| \ge ||x||$ so $||x + \frac{1}{2}y|| = ||x||$. But a normed space is strictly convex if and only if $||u|| = ||v|| = ||\frac{1}{2}(u + v)||$ implies u = v, and so $||x + y|| = ||x|| = ||x + \frac{1}{2}y||$ implies y = 0. Hence $f(x + y) \ge f(x)$ and f is orthogonally increasing. It is well known that any uniformly convex space is strictly convex, in particular an inner product space is strictly convex.

In a general normed space, spherically increasing need not imply orthogonally increasing. Indeed, let $X = (R^2, \|\cdot\|_{\infty})$; that is, $X = R^2$ with $\|(x_1, x_2)\| = \max(|x_1|, |x_2|)$. Note that X is not strictly convex. Let $f: X \to R$ be defined as follows: $f(x) = \|x\|$ if $0 \le \|x\| < 1$, $f(x) = 2\|x\|$ if $\|x\| > 1$, f(x) = 1 if $\|x\| = 1$ and $x \ne (1, 0)$, and f((1, 0)) =2. It is easy to check that f is spherically increasing. If x = (1, 0) and y = (0, 1) then $x \perp y$ but f(x + y) = f((1, 1)) = 1 < 2 = f(x). Hence f is not orthogonally increasing. The next theorem shows that orthogonally increasing implies spherically increasing.

THEOREM 3.1. Let X be a normed space with dim $X \ge 2$ and let $f: X \to R$ be orthogonally increasing. Then f is spherically increasing and there exists a countable number of spheres S_1, S_2, \cdots such that f is norm continuous at w iff $w \notin \bigcup S_i$. Furthermore, there exists a nondecreasing function $g: R^+ \to R$ such that f(w) = g(||w||) for every $w \notin \bigcup S_i$.

Proof. We first show that f is radially increasing. Let $0 \neq y \in X$ and let $\alpha > 1$. By a modification of the proof of Lemma 1 [2] there exists $0 \neq x \in X$ such that $y \perp x$ and $(y + x) \perp [(\alpha - 1)y - x]$. Hence

$$f(\alpha y) = f[y + x + (\alpha - 1)y - x] \ge f(y + x) \ge f(y)$$

and f is radially increasing. We now show that f is norm continuous on a dense subset of X. Let $||x_0|| = 1$ and let $V = \{\lambda x_0; \lambda \in R^+\}$. Then f restricted to V is an increasing function and hence is continuous in V on a dense subset B of V. We shall show that f is norm continuous on $B - \{0\}$. Let $0 \neq x \in B$ and let $x_i \to x$. Now there exists y_i such that $x \perp y_i$ and $x_i = \alpha_i x + y_i$. Since

$$||x_i - x|| = ||(\alpha_i - 1)x + y_i|| \ge |\alpha_i - 1| ||x||$$

we have $\alpha_i \to 1$. By the Hahn-Banach theorem, there exist continuous linear functionals f_{x_i} on X such that $f_{x_i}(x_i) = ||x_i||^2$ and $||f_{x_i}|| = ||x_i||$. Now

$$|f_{x_i}(x_i) - f_{x_i}(x)| = |f_{x_i}(x_i - x)| \le ||x_i|| ||x_i - x||$$

so $f_{x_i}(x) \rightarrow ||x||^2$. Letting $k_i = ||x_i||^2 / f_{x_i}(x)$ we see that $k_i \rightarrow 1$. Furthermore, for every $\alpha \in R$ we have

$$||x_i + \alpha (k_i x - x_i)|| \ge f_{x_i} [(1 - \alpha)x_i + \alpha k_i x] / ||f_{x_i}||$$

= [(1 - \alpha) ||x_i||^2 + \alpha k_i f_{x_i}(x)] / ||f_{x_i}|| = ||x_i||.

Hence $x_i \perp (k_i x - x_i)$. Thus

$$f(k_ix) = f(x_i + k_ix - x_i) \ge f(x_i) = f(\alpha_ix + y_i) \ge f(\alpha_ix).$$

Since $\alpha_i, k_i \to 1$ we have $f(k_i x), f(\alpha_i x) \to f(x)$ so $f(x_i) \to f(x)$ and f is norm continuous on a dense subset of X. We next show that f is spherically increasing. Let $x, y \in X$ and suppose ||y|| > ||x||. We shall show there exists $\lambda > 1$ and $x = x_0, x_1, \dots, x_n \in X$ such that $y = \lambda x_n$ and $x_{i-1} \perp (x_i - x_{i-1}), i = 1, \dots, n$. It would then follow that

$$f(y) = f(\lambda x_n) \ge f(x_n) = f(x_{n-1} + x_n - x_{n-1}) \ge f(x_{n-1}) \ge \cdots \ge f(x_0) = f(x).$$

To show such λ and x_i exist we proceed as follows. We can assume without loss of generality that ||x|| = 1, that x and y are linearly independent, and that the 2-dimensional subspace generated by $\{x, y\}$ is R^2 with x = (1, 0). Let S be the unit sphere in R^2 corresponding to the unit sphere in X. Since the norm is a convex function, using polar coordinates, we can assume that S is given by $\rho = F(\theta)$ where F is a continuous function on $[0, 2\pi]$, which is periodic of period π , the right-hand derivative F' exists everywhere, and F' is bounded. Let S_0 be a unit sphere obtained by reflecting S about the x-axis. Then, in polar coordinates, S_0 is given by $\rho_0 = F_0(\theta)$ where $F_0(\theta) =$ $F(2\pi - \theta)$. Denote orthogonality with respect to S and S₀ by \perp and \perp_0 respectively, and the norm with respect to S and S_0 by $\|\cdot\|$ and $\|\cdot\|_0$ respectively. We now construct a polygonal path P starting at x and sweeping twice around the origin with vertices $x_0 = x, x_1, x_2, \dots, x_{2n}$ as follows. The angle between x_{i-1} and x_i is $2\pi/n$, $x_{i-1} \perp (x_i - x_{i-1})$ for $i = 1, 2, \dots, n$, and $x_{i-1} \perp_0 (x_i - x_{i-1})$ for $i = n + 1, n + 2, \dots, 2n$. Now

$$||x_{2n}||_0 \ge ||x_{2n-1}||_0 \ge \cdots \ge ||x_n||_0 = ||x_n|| \ge ||x_{n-1}|| \ge \cdots \ge ||x||.$$

Indeed, since $x_{2n} = x_{2n-1} + (x_{2n} - x_{2n-1})$ we have $||x_{2n}||_0 \ge ||x_{2n-1}||_0$ and the others follow in a similar way. Furthermore, $||x_n|| \ge ||w||$ for any $w \in P$ which precedes x_n . Indeed, if w is on the edge with vertices x_n and x_{n-1} then $w = \lambda x_n + (1 - \lambda)x_{n-1}$ for some $0 \le \lambda \le 1$ and hence $||w|| \le \lambda ||x_n|| + (1 - \lambda) ||x_{n-1}|| \le ||x_n||$. A similar argument holds for other $w \in P$. Hence, if we can show that $\lim_{n \to \infty} ||x_{2n}||_0 = 1$ we will be finished with this part of the proof. A simple calculation shows that the slope of S in the forward direction at angle θ is

$$[F(\theta)\cos\theta + F'(\theta)\sin\theta]/[F'(\theta)\cos\theta - F(\theta)\sin\theta].$$

Since $x \perp (x_1 - x)$ it follows that the slope of $x_1 - x$ equals the slope of S in the forward direction at $\theta = 0$. Letting ρ_1 be the ρ coordinate of x_1 we have

$$\rho_1 \sin (2\pi/n) / [\rho_1 \cos (2\pi/n) - 1] = [F'(0)]^{-1}.$$

Hence

$$\rho_1 = [\cos(2\pi/n) - F'(0)\sin(2\pi/n)]^{-1}$$

and this formula holds even if F'(0) = 0. In a similar way, a straightforward calculation gives

$$\rho_i = \rho_{i-1} \{ \cos(2\pi/n) - [F'(2\pi i/n)/F(2\pi i/n)] \sin(2\pi/n) \}^{-1},$$

 $i = 2, 3, \dots, n$. A similar formula holds for ρ_{0i} , i = n + 1, $n + 2, \dots, 2n$. Using the fact that $F_0(2\pi i/n) = F[2\pi (n - i)/n]$ and $F'_0(2\pi i/n) = -F'[2\pi (n - i)/n]$ we obtain

$$\rho_{02n} = \{\cos^2(2\pi/n) - [F'(0)]^2 \sin^2(2\pi/n)\}^{-1} \\ \times \{\cos^2(2\pi/n) - [F'(2\pi/n)/F(2\pi/n)]^2 \sin^2(2\pi/n)\}^{-1} \\ \times \cdots \times \{\cos^2(2\pi/n) - [F'((n-1)2\pi/n)/F((n-1)2\pi/n)]^2 \sin^2(2\pi/n)\}^{-1}.$$

Letting $M = \sup[F'(\theta)/F(\theta)]^2$ we have

$$\lim_{n\to\infty}\rho_{02n} \leq \lim_{n\to\infty} \left[\cos^2(2\pi/n) - M\sin^2(2\pi/n)\right]^{-n}.$$

But L'Hospital's rule shows that

$$\lim_{x \to 0} (2\pi/x) \log [\cos^2 x - M \sin^2 x] = 0$$

so

$$\lim_{n \to \infty} \rho_{02n} = 1. \quad \text{Hence} \quad \lim_{n \to \infty} ||x_{2n}||_0 = 1.$$

We next show that f is norm continuous except on a countable set of spheres. Let $||x_0|| = 1$. Then from the above, f is norm continuous at δx_0 except for countably many δ 's, say $\delta_1, \delta_2, \cdots$. Suppose f is continuous at $x = \delta x_0$ and ||y|| = ||x||. If $\lambda > 1$ then $f(\lambda x) \ge f(y)$, so letting $\lambda \to 1$ we have $f(x) \ge f(y)$ and in a similar way we show that $f(x) \ge f(y)$ so f(x) = f(y). To show f is continuous at y, let $y_i \to y$. As ||y|| = ||x|| > 0, it is possible, for i sufficiently large, to find a sequence $a_i \in R$ such that $a_i \to 0$, $a_i > 0$ and $||y_i|| - a_i > 0$. Let $x_i = (||y_i|| + a_i)x/||y||$ and $z_i = (||y_i|| - a_i)x/||y||$. Then $||x_i|| > ||y_i|| > ||z_i||$ so $f(z_i) \le f(y_i) \le f(x_i)$. Now $x_i \to x$, $z_i \to x$ and since f is continuous at x we have $f(y_i) \to f(x) = f(y)$. Hence f is continuous at y. If $S_i = \{x \in X; ||x|| = \delta_i\}$, it follows that f is continuous at w iff $w \notin \bigcup S_i$. Define $g: R^+ \to R$ by $g(\alpha) = f(\alpha x_0)$. Then g is a nondecreasing function and if $w \notin \bigcup S_i$ we have $f(w) = f(||w|||x_0) = g(||w||)$.

Using Theorem 3.1 we can prove a result similar to Corollary 2.3 concerning nonnegative orthogonally additive functions.

COROLLARY 3.2. Let X be a normed space with dim $X \ge 2$ and let $f: X \to R^+$ be orthogonally additive. (a) If X is not an inner product space, then $f \equiv 0$. (b) If X is an inner product space, then there is a $c \in R^+$ such that $f(x) = c ||x||^2$ for all $x \in X$.

In the rest of this section X will denote an inner product space with dim $X \ge 2$ and inner product $\langle \cdot, \cdot \rangle$.

COROLLARY 3.3. If $f: X \to R^+$ is orthogonally additive, then there is a $c \in R^+$ with $f(x) = c ||x||^2$.

COROLLARY 3.4. Let $\langle \cdot, \cdot \rangle_1$ be another inner product on X. If $x \perp y$ implies $x \perp_1 y$, then there is a c > 0 such that $\langle u, v \rangle_1 = c \langle u, v \rangle$ for all $u, v \in X$.

Proof. Let $g(w) = ||w||_1$. If $x \perp y$ then $x \perp_1 y$ so $g^2(x + y) = g^2(x) + g^2(y)$. Hence g^2 is orthogonally additive so there is a c > 0 with $||w||_1 = g(w) = c ||w||$. Hence

$$\langle u, v \rangle_1 = [\| u + v \|_1^2 - \| u - v \|_1^2] / 4 = c^2 [\| u + v \|^2 - \| u - v \|^2] / 4$$

= $c^2 \langle u, v \rangle.$

COROLLARY 3.5. If $f: X \to R$ is orthogonally additive and $f(x) \ge -M ||x||^2$ for all $x \in X$ for some $M \ge 0$, then there is an $\alpha \in R$ such that $f(x) = \alpha ||x||^2$.

Proof. If $g(x) = f(x) + M ||x||^2$, then $g: X \to R^+$ is orthogonally additive. Hence there is a $c \ge 0$ such that $g(x) = c ||x||^2$. Hence $f(x) = (c - M) ||x||^2$.

In a similar way, Corollary 3.5 holds if $f(x) \leq M ||x||^2$, for all $x \in X$.

Let $x_0 \in X$, c, $d \in R^+$ and define $f(x) = c ||x - x_0||^2 + d$. Then $f(x) \ge f(x_0)$ and if $x \perp y$ we have

$$f(x + y) = c ||x - x_0||^2 - 2c \langle y, x_0 \rangle + c ||y||^2 + d$$

= $c ||x - x_0||^2 + c ||y - x_0||^2 - c ||x_0||^2 + d$
= $f(x) + f(y) - d - c ||x_0||^2 = f(x) + f(y) - f(0).$

We now show that the converse holds.

COROLLARY 3.6. Let $f: X \to R$ satisfy: (a) there is an $x_0 \in X$ such that $f(x) \ge f(x_0)$ for all $x \in X$, (b) if $x \perp y$ then

$$f(x + y) = f(x) + f(y) - f(0).$$

Then is a $c \ge 0$ such that $f(x) = c ||x - x_0||^2 + f(x_0)$ and if $c \ne 0$, x_0 is unique.

Proof. Let $g(x) = f(x + x_0) - f(x_0)$. Then $g: X \to R^+$. Let $x \perp y$ and write $x = x_1 + x_2 + x_3$ where x_1 is a multiple of x, x_2 is a multiple of yand x_3 is orthogonal to x and y. Then g(x + y) = g(x) + g(y). Hence $g(x) = c ||x||^2$ for some $c \ge 0$ and $f(x + x_0) = c ||x||^2 + f(x_0)$. Hence $f(x) = c ||x - x_0||^2 + f(x_0)$. If $c \ne 0$ and $f(x) \ge f(y_0)$ for all $x \in X$ then $f(y_0) = f(x_0)$ and $f(y_0) = c ||y_0 - x_0||^2 + f(x_0)$. Thus $||y_0 - x_0|| = 0$ so $y_0 = x_0$.

COROLLARY 3.7. Let $f: X \to R$ be orthogonally additive. If there is an $x_0 \in X$ such that $f(x_0) = ||x_0||^2$ and $|f(x)| \le ||x_0|| ||x||$ for all $x \in X$, then $f(x) = \langle x, x_0 \rangle$ for all $x \in X$.

Proof. Let
$$g(x) = ||x||^2 - 2f(x) + ||x_0||^2$$
. Then
 $g(x) \ge ||x||^2 - 2||x|| ||x_0|| + ||x_0||^2 = (||x|| + ||x_0||)^2 \ge 0 = g(x_0).$

Also $x \perp y$ implies g(x + y) = g(x) + g(y) - g(0). Hence by Corollary 3.6 there is a $c \ge 0$ such that $g(x) = c ||x - x_0||^2$. Therefore

$$2f(x) = ||x||^2 + ||x_0||^2 - c ||x - x_0||^2 = (1 - c) ||x||^2 + (1 - c) ||x_0||^2 + 2c \langle x, x_0 \rangle.$$

Since f(0) = 0 we have $(1 - c) ||x_0||^2 = 0$. Thus either c = 1 or $x_0 = 0$. If $x_0 = 0$ then $|1 - c| ||x||^2 = 2|f(x)| \le 0$ for all $x \in X$ so again c = 1. Hence $f(x) = \langle x, x_0 \rangle$.

ACKNOWLEDGMENT. The authors would like to thank the referee whose comments helped to improve this paper and generalize some of the results.

References

1. R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61 (1947), 265-292.

2. K. Sundaresan, Orthogonality and nonlinear functionals on Banach spaces, Proc. Amer. Math. Soc., 34 (1972), 187-190.

Received March 28, 1974 and in revised form December 26, 1974.

UNIVERSITY OF DENVER

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)

University of California Los Angeles, California 90024

R. A. BEAUMONT University of Washington Seattle, Washington 98105 J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

• • •

AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate, may be sent to any one of the four editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is issued monthly as of January 1966. Regular subscription rate: \$72.00 a year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Jerusalem Academic Press, POB 2390, Jerusalem, Israel.

> Copyright © 1975 Pacific Journal of Mathematics All Rights Reserved

Pacific Journal of Mathematics Vol. 58, No. 2 April, 1975

Zvi Artstein and John Allen Burns, <i>Integration of compact set-valued functions</i>	297
Mark Benard, Characters and Schur indices of the unitary reflection group [321] ³	309
Simeon M. Berman, A new characterization of characteristic functions of absolutely continuous	
distributions	323
Monte Boisen and Philip B. Sheldon, <i>Pre-Prüfer rings</i>	331
Hans-Heinrich Brungs, <i>Three questions on duo rings</i>	345
Iracema M. Bund, Birnbaum-Orlicz spaces of functions on groups	351
John D. Elwin and Donald R. Short, Branched immersions between 2-manifolds of higher	
topological type	361
Eric Friedlander, <i>Extension functions for rank</i> 2, <i>torsion free abelian groups</i>	371
Jon Froemke and Robert Willis Quackenbush, The spectrum of an equational class of	
groupoids	381
Barry J. Gardner, Radicals of supplementary semilattice sums of associative rings	387
Shmuel Glasner, <i>Relatively invariant measures</i>	393
George Rudolph Gordh, Jr. and Sibe Mardesic, <i>Characterizing local connectedness in inverse</i>	411
limits	411
Siegfried Graf, On the existence of strong liftings in second countable topological spaces	419
Stanley P. Gudder and D. Strawther, <i>Orthogonally additive and orthogonally increasing</i>	407
functions on vector spaces	427
Darald Joe Hartfiel and Carlton James Maxson, A characterization of the maximal monoids and	437
maximal groups in β_X Robert E. Hartwig and S. Brent Morris, <i>The universal flip matrix and the generalized</i>	457
faro-shuffle	445
William Emery Haver, <i>Mappings between</i> ANRs that are fine homotopy equivalences	457
	463
J. Bockett Hunter, <i>Moment sequences in l^p</i>	
Barbara Jeffcott and William Thomas Spears, <i>Semimodularity in the completion of a poset</i>	467
Jerry Alan Johnson, <i>A note on Banach spaces of Lipschitz functions</i>	475
David W. Jonah and Bertram Manuel Schreiber, <i>Transitive affine transformations on</i>	192
groups	483
Karsten Juul, Some three-point subset properties connected with Menger's characterization of houndaries of plane convex sets	511
boundaries of plane convex sets Ronald Brian Kirk, The Haar integral via non-standard analysis	517
	517
Justin Thomas Lloyd and William Smiley, On the group of permutations with countable support	529
Erwin Lutwak, <i>Dual mixed volumes</i>	531
Mark Mahowald, <i>The index of a tangent 2-field</i>	539
	549
Keith Miller, Logarithmic convexity results for holomorphic semigroups	
Paul Milnes, <i>Extension of continuous functions on topological semigroups</i>	553
Kenneth Clayton Pietz, <i>Cauchy transforms and characteristic functions</i>	563
James Ted Rogers Jr., <i>Whitney continua in the hyperspace</i> $C(X)$	569
Jean-Marie G. Rolin, <i>The inverse of a continuous additive functional</i>	585
William Henry Ruckle, Absolutely divergent series and isomorphism of subspaces	605
Rolf Schneider, A measure of convexity for compact sets	617
Alan Henry Schoenfeld, <i>Continous measure-preserving maps onto Peano spaces</i>	627
V. Merriline Smith, Strongly superficial elements	643
Roger P. Ware, A note on quadratic forms over Pythagorean fields	651
Roger Allen Wiegand and Sylvia Wiegand, <i>Finitely generated modules over Bezout rings</i>	655
Martin Ziegler, A counterexample in the theory of definable automorphisms	665