MAPPINGS BETWEEN ANRS THAT ARE FINE HOMOTOPIE EQUIVALENCES

WILLIAM EMERY HAVER
MAPPINGS BETWEEN ANRs THAT ARE FINE HOMOTOPY EQUIVALENCES

WILLIAM E. HAVER

It is shown in this note that every closed \(UV^\infty \) map between separable ANRs is a fine homotopy equivalence.

We extend Lacher's result [6,7] that a closed \(UV^\infty \)-map between locally compact, finite dimensional ANRs is a fine homotopy equivalence to the case of arbitrary separable ANRs. It is hoped that this theorem will be useful in studying manifolds modelled on the Hilbert Cube. (See [1], section PF3. Added in proof. See also [9]).

A set \(A \subset X \) has property \(UV^\infty \) if for each open set \(U \) of \(X \) containing \(A \), there is an open \(V \), with \(A \subset V \subset U \) such that \(V \) is null-homotopic in \(U \). A mapping \(f: X \to Y \) of \(X \) onto \(Y \) is a \(UV^\infty \)-map if for each \(y \in Y \), \(f^{-1}(y) \) is a \(UV^\infty \) subset of \(X \). The mapping \(f \) is said to be closed if the image of every closed set is closed and proper if the inverse image of every compact set is compact. An absolute neighborhood retract for metric spaces is denoted an ANR. If \(a \) is a cover of \(Y \) and \(g_1 \) and \(g_2 \) are maps of a space \(A \) into \(Y \), \(g_1 \) is \(\alpha \)-near \(g_2 \) if for each \(a \in A \) there is a \(U \in \alpha \) containing \(g_1(a) \) and \(g_2(a) \). The map \(g_1 \) is \(\alpha \)-homotopic to \(g_2, g_1 \approx g_2 \), if there is a homotopy \(\lambda: A \times I \to Y \) taking \(g_1 \) to \(g_2 \) with the property that for each \(a \in A \) there exists \(U \in \alpha \) containing \(\lambda(\{a\} \times I) \). A map \(f: X \to Y \) is a fine homotopy equivalence if for each open cover, \(\alpha \), of \(Y \) there exists a map \(g: Y \to X \) such that \(fg \approx id_Y \) and \(gf \approx f^{\alpha}(id_X) \).

Various versions of Lemma 3 have been proven by Smale [8], Armentrout and Price [2], Kozlowski [5] and Lacher [6]. The difference in this lemma is that \(K \) is not required to be a finite dimensional complex.

Let \(K \) be a locally finite complex and \(j \) be a nonnegative integer. When there is no confusion we will not distinguish between the complex \(K \) and its underlying point set \(|K| \). If \(\sigma \) is a simplex of \(K \), then \(N(\sigma, K) = \{ \tau \subset K \mid \tau \cap \sigma \neq \phi \} \) and \(st(\sigma, K) = \{ \tau \subset K \mid \sigma < \tau \} \). Also \(K^j \) will denote the \(j \)-skeleton of \(K \) and \(\tau' = \{ \sigma \subset K \mid |N(\sigma, K)| \subset |K^j| \} \). Let \(\mathcal{U} \) be a covering of a space \(Y \) and \(B \) a subset of \(Y \). The star of \(B \) with respect to \(\mathcal{U} \), \(st^1(B, \mathcal{U}) \), is the set \(\{ U \in \mathcal{U} \mid B \cap U \neq \phi \} \). Inductively, \(st^n(B, \mathcal{U}) \) is defined to be \(st(st^{n-1}(B, \mathcal{U})) \). A covering \(\mathcal{V} \) is called a star\(^n\) refinement of \(\mathcal{U} \) if the covering \(\{ st^n(V, \mathcal{V}) \mid V \in \mathcal{V} \} \) refines \(\mathcal{U} \). Every open covering of a
metric space has an open star refinement for each positive integer \(n \) (c.f. [3]). We start by stating without proof two easily verified lemmas.

Lemma 1. Let \(K \) be a locally finite complex. Suppose \(\phi: K \to Y \) is a map, \(\mathcal{U} \) is an open cover of \(Y \), and \(k \) is a nonnegative integer. Then there is a subdivision \(\tilde{K} \) of \(K \) so that:

(a) if \(\sigma \) is a \(k \)-simplex of \(\tilde{K} \), then \(\phi(N(\sigma, \tilde{K})) \subseteq U \), for some \(U \in \mathcal{U} \),

(b) if \(\sigma <_{k-1} K \), then \(\sigma < \tilde{K} \).

We will call such a subdivision, \(\tilde{K} \), a \((k, \mathcal{U})\)-subdivision of \(K \). We note that for any vertex, \(v \), of \(K \) with \(v \notin k^{-1} K \) it follows that \(\phi(st(v, \tilde{K})) \subseteq U \) for some \(U \in \mathcal{U} \).

Lemma 2. Let \(\mathcal{U} \) be an open cover of the paracompact space \(Y \) and \(f: X \to Y \) a closed \(UV^* \)-map. Then there is an open locally finite refinement \(\mathcal{V} \) of \(\mathcal{U} \) such that for each \(V \in \mathcal{V} \), there is a \(U \in \mathcal{U} \) satisfying

(a) \(st(V, \mathcal{V}) \subseteq U \)

(b) if \(m \) is a positive integer and the map \(\gamma: \partial B^m \to f^{-1}(st(V, \mathcal{V})) \) is given, then \(\gamma \) can be extended to \(\tilde{\gamma}: B^m \to f^{-1}(U) \).

We will call such a refinement, \(\mathcal{V} \), a \(UV^* \) star refinement of \(\mathcal{U} \).

Lemma 3. Let \(f: X \to Y \) be a closed \(UV^* \)-map of an arbitrary space, \(X \), onto the paracompact space \(Y \). Let \(K \) be a locally finite complex and \(J \) a subcomplex of \(K \). Let \(\phi: K \to Y \) and \(\psi: J \to X \) be mappings such that \(f \psi = \phi \mid J \). Then given any open cover, \(\alpha \), of \(Y \) there exists a map \(\psi: K \to X \) extending \(\psi \) so that \(f \psi \) is \(\alpha \)-near \(\phi \).

Proof. Let \(K_0 \) be a \((0, \alpha)\)-subdivision of \(K \) and let \(\alpha_0 = \alpha \). Define inductively a sequence of covers of \(Y \), \(\{\alpha_i\}_{i=0}^\infty \), and subdivisions of \(K_0 \), \(\{K_i\}_{i=0}^\infty \), such that for each \(i > 0 \), \(\alpha_i \) is a \(UV^* \) star refinement of \(\alpha_{i-1} \) and \(K_i \) is an \((i, \alpha_i)\)-subdivision of \(K_{i-1} \).

Define \(\psi_0: K_0 \to X \) by letting \(\psi_0(v) = \psi'(v) \) if \(V \in J \) and otherwise an arbitrary element of \(f^{-1}(\phi(v)) \). Assume inductively that there exist maps \(\{\psi_i: K_i \to X\}_{i=0}^n \) such that for \(0 \leq i \leq n \):

1. \(\psi_i \mid J \cap K_i = \psi' \mid J \cap K_i \) and if \(j < i \), \(\psi_i \mid lK_j = \psi_j \mid lK_j \),
2. if \(v \) is a vertex of \(K_i \), \(\psi_i(v) \in f^{-1}(\phi(v)) \),
3. if \(\sigma \) is a \(j \)-simplex of \(K_i \) and \(k = \dim st(\sigma, K_i) \), then \(\phi(st(\sigma, K_i)) \cup f\psi_i(\sigma) \subseteq U \), for some \(U \in \alpha_{k-i} \).

[Note that \(\psi_0: K_0 \to X \) satisfies these conditions since if \(\sigma \) is a 0-simplex of \(K_0 \) the dimension of \(st(\sigma, K_0) \) is 0 and the fact that \(K_0 \) is a \((0, \alpha_0)\)-subdivision of \(K \) implies that \(\phi(st(\sigma, K_0)) \cup f\psi_0(\sigma) \subseteq U \) for some \(U \in \alpha_{0} \).]

We wish now to define \(\psi_{n+1}: K_{n+1} \to X \) satisfying conditions (1)-(3) for \(i = n + 1 \). For each vertex \(v \) of \(K_{n+1} \), let
\[
\psi_n(v) = \begin{cases}
\psi_n(v), & \text{if } v \text{ is a vertex of } ^nK_n \\
\psi'(v), & \text{if } v \in J
\end{cases}
\]

an arbitrary element of \(f^{-1}(\phi(v))\), otherwise

Assume (subinductive statement) that \(\psi_{n+1} | K_{n+1}^r \) has been defined so that

\[
(1') \quad \psi_{n+1} | J \cap K_{n+1}^r = \psi' | J \cap K_{n+1}^r \quad \text{and} \quad \psi_{n+1} | ^nK_n \cap K_{n+1}^r = \psi_n | ^nK_n \cap K_{n+1}^r,
\]

\[
(2') \quad \text{if } v \text{ is a vertex of } K_{n+1}, \quad \psi_{n+1}(v) \in f^{-1}(\phi(v)),
\]

\[
(3') \quad \text{if } \sigma \text{ is a } j\text{-simplex of } K_{n+1}^r \text{ and } k = \dim \text{st}(\sigma, K_{n+1}^r), \text{ then } \phi(\text{st}(\sigma, K_{n+1})) \cup f\psi_{n+1}(\sigma) \subseteq U, \text{ for some } U \subseteq \alpha_{k-1}.
\]

[Note that \(\psi_{n+1} | K_{n+1}^0 \) has been defined in such a manner that properties (1')-(3') are satisfied. Properties (1') and (2') follow immediately from the definition. Let \(v\) be a simplex of \(K_{n+1}^r\). If \(v\) is a vertex of \(^nK_n\), then property (3') follows from the fact that \(\psi_n\) satisfies property (3) of the main inductive statement since in this case \(\dim \text{st}(v, K_{n+1}^r) = \dim \text{st}(v, K_n^r)\). Suppose \(v\) is not a vertex of \(^nK_n\). By the remark following Lemma 1, \(\phi(\text{st}(v, K_{n+1}^r)) \subseteq U\) is contained in some element of \(\alpha_{n+1}^r\) and hence property (3') is again satisfied.]

Now let \(\sigma\) be an \((r+1)\)-simplex of \(K_{n+1}^r\). If \(\sigma\) is a subset of \(J\), let \(\psi_{n+1}(\sigma) = \psi' | \sigma\). If \(\sigma \subseteq ^nK_n\), let \(\psi_{n+1}(\sigma) = \psi_n | \sigma\). Otherwise, let \(k = \dim \text{st}(\sigma, K_{n+1}^r)\). For each \(r\)-simplex, \(\tau\), in \(\partial \sigma\), there is a \(u_\tau \subseteq \alpha_{k-r}\), containing \(\phi(\text{st}(\tau, K_{n+1})) \cup f\psi_{n+1}(\tau)\). Let \(\tau'\) be a fixed \(r\)-simplex in \(\partial \sigma\) and note that \(\psi_{n+1}(\partial \sigma) \subseteq f^{-1}(\text{st}(u_\tau, \alpha_{k-r}))\). Since \(\alpha_{k-r}\) is a \(UV^*\) star refinement of \(\alpha_{k-r-1}\), there is a \(U \subseteq \alpha_{k-r} = \alpha_{k-(r+1)}\) containing \(\text{st}(U_\tau, \alpha_{k-r})\) and an extension of \(\psi_{n+1}(\partial \sigma)\) which maps \(\sigma\) into \(f^{-1}(U)\). We call this extension \(\psi_{n+1}\) and note that \(\phi(\text{st}(\sigma, K_{n+1})) \cup f\psi_{n+1}(\sigma) \subseteq U\). In this manner, extend \(\psi_{n+1}\) to \(K_{n+1}^r\) and note that conditions (1')-(3') are satisfied. This completes the subinductive argument and hence the main inductive argument.

We now define \(\psi : K \to X\) by \(\psi(x) = \lim_{n \to \infty} \psi_n(x)\). For any \(x \in K\), the local finiteness of \(K\) assures that there exists an integer \(N\) so that \(x \in ^nK_N\). Hence for \(n \geq N\), \(\psi_n(x) = \psi_N(x)\). Therefore \(\psi\) is well-defined and continuous. Let \(x \in K\) and let \(\sigma\) be a simplex of maximal dimension containing \(x\). Then there exists an integer \(N\) such that \(|\sigma| \subseteq ^nK_N\). Choose a simplex \(B\) in \(^nK_N\) containing \(x\) and note that \(\psi(x) = \psi_N(x)\). By inductive statement (3), there is an open set \(U \subseteq \alpha_i\), for some \(i \geq 0\), such that \(\phi(\text{st}(B, K_N)) \cup f\psi(B) \subseteq U\). Since \(\alpha_i\) refines \(\alpha_0 = \alpha\), there is a \(V \subseteq \alpha\) such that \(\{\phi(x)\} \cup \{f\psi(x)\} \subseteq V\). Since \(\psi\) extends \(\psi'\), this completes the proof of Lemma 3.
REMARK. By a slightly more cumbersome process, ψ can be chosen so that $f\psi$ is an α-homotopic to ϕ.

Theorem. Let X and Y be separable ANRs and $f: X \to Y$ be a closed UV^*-map. Then f is a fine homotopy equivalence.

Proof. Let α be an open cover of Y. Let α_1 be a star refinement of α and α_2 a star refinement of α_1. Let β be an open refinement of α_2 such that any two β-near maps from any space into Y are α_2-homotopic (such refinements exists since Y is an ANR, c.f. [4]).

By Hanner's characterization of separable ANRs (c.f. [4]), there exist a locally finite polyhedron Q and maps $c: Q \to Y$ and $s: Q \to Y$ with property that $sc \preceq id_Y$. By Lemma 3, there is a map $v: Q \to X$ such that fv is β-near s. Define $g: Y \to X$ by $g = vc$. Note that fg is β-near sc and hence $fg \preceq sc$. But $sc \preceq id_Y$ and hence $fg \preceq id_Y$. Denote this α_1-homotopy by h; then, $h: Y \times I \to Y$ is a α_1-homotopy with $h_0 = id_Y$ and $h_1 = fg$.

It remains to be shown that gf is $f^{-1}(\alpha)$ homotopic to id_X.

Choose a locally finite polyhedron, P, maps $b: \to P$ and $r: P \to X$ and a homotopy $W: X \times I \to X$ with the following properties:

(a) $W_0 = rb$ and $W_1 = id_X$

(b) W is limited by $f^{-1}(\alpha_1)$ and by $(gf)^{-1}(f^{-1}(\alpha_1))$.

Next, define $H: P \times I \to Y$ by $H(p,t) = h_t(fr(p))$ and note that $H(p,0) = fr(p)$ and $H(p,1) = fgfr(p)$. Define $G': P \times \{0,1\} \to X$ by $G'(p,0) = r(p)$, $G'(p,1) = gfr(p)$. Then by Lemma 3 there is a map $G: P \times I \to X$ extending G' with the property that fG is α_1-near H.

Define $\psi: X \times I \to X$ by $\psi(x,t) = G(b(x),t)$.

Note that: $\psi_0(x) = G(b(x),0) = G'(b(x),0) = rb(x)$ and $\psi_1(x) = G(b(x),1) = G'(b(x),1) = gfrb(x)$.

Now, W is a homotopy taking rb to id_X and is limited by $f^{-1}(\alpha_1)$. Also, since W is limited by $(gf)^{-1}(f^{-1}(\alpha_1))$, $gfW: X \times I \to X$, defined by $gfW(x,t) = gf(W(x,t))$, is a homotopy taking $gfrb$ to gf and is limited by $f^{-1}(\alpha_1)$.

Recall that α_1 is a star refinement of α. Therefore, to show that $id_X \preceq (gf)^{-1}$, it suffices to show that $f\psi: X \times I \to Y$ is limited by star α_1. Fix $x \in X$. Since the homotopy h is limited by α_1, there exists $U \in \alpha_1$ with $h(f(x) \times I) \subset U$. we claim that $f(\psi(x \times I)) \subset st^3(U)$.

Fix $t \in I$. Recall $f(\psi(x,t)) = f(G(b(x),t))$. Thus there exists $U' \in \alpha_1$ such that $f^{-1}(U')$ contains x and $rb(x)$. Hence $f(x)$ and $frb(x)$ are elements of U' and $U \cap U' \neq \phi$. Since h is limited by α_1, we can choose $U'' \in \alpha_1$ so that $hfrb(x)$ and $frb(x)$ are elements of U''. Note that $U'' \cap U' \neq \phi$. Also, there exists $U''' \in \alpha_1$ containing $H(b(x),t)$ and $f(b(x),t)$, since fG is α_1-near H. But $H(b(x),t) =$
Hence \(U'' \cap U' \neq \phi \) and we have completed the proof of the theorem by showing that \(f\psi: X \times I \to Y \) is limited by \(\text{star}^3(\alpha) \).

Added in proof. I would like to thank Bob Edwards for some suggestions concerning this paper and for pointing out that George Kozlowski [Images of ANR's, to appear] has shown that a \(UV^\omega \)-map between ANR's is a homotopy equivalence.

Remark. If in addition it is assumed that \(X \) and \(Y \) are locally compact and \(f \) is a proper map it follows immediately that \(f \) is a proper fine homotopy equivalence.

References

Received March 12, 1974 and in revised form July 20, 1974.

University of Tennessee
Pacific Journal of Mathematics
Vol. 58, No. 2 April, 1975

Zvi Artstein and John Allen Burns, Integration of compact set-valued functions .. 297
Mark Benard, Characters and Schur indices of the unitary reflection group [321]3 .. 309
Simeon M. Berman, A new characterization of characteristic functions of absolutely continuous distributions .. 323
Monte Boisen and Philip B. Sheldon, Pre-Prüfer rings .. 331
Hans-Heinrich Brungs, Three questions on duo rings .. 345
Iracema M. Bund, Birkhoff-Orlicz spaces of functions on groups .. 351
John D. Elwin and Donald R. Short, Branched immersions between 2-manifolds of higher topological type .. 361
Eric Friedlander, Extension functions for rank 2, torsion free abelian groups .. 371
Jon Froemke and Robert Willis Quackenbush, The spectrum of an equational class of groupoids 381
Barry J. Gardner, Radicals of supplementary semilattice sums of associative rings 387
Shmuel Glasner, Relatively invariant measures .. 393
George Rudolph Gordh, Jr. and Sibe Mardešić, Characterizing local connectedness in inverse limits .. 411
Siegfried Graf, On the existence of strong liftings in second countable topological spaces 419
Stanley P. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces .. 427
Darald Joe Hartfiel and Carlton James Maxson, A characterization of the maximal monoids and maximal groups in βX .. 437
Robert E. Hartwig and S. Brent Morris, The universal flip matrix and the generalized faro-shuffle .. 445
William Emery Haver, Mappings between ANRs that are fine homotopy equivalences 457
J. Bockett Hunter, Moment sequences in 1p .. 463
Barbara Jeffcott and William Thomas Spears, Semimodularity in the completion of a poset 467
Jerry Alan Johnson, A note on Banach spaces of Lipschitz functions ... 475
David W. Jonah and Bertram Manuel Schreiber, Transitive affine transformations on groups 483
Karsten Juul, Some three-point subset properties connected with Menger’s characterization of boundaries of plane convex sets ... 511
Ronald Brian Kirk, The Haar integral via non-standard analysis ... 517
Justin Thomas Lloyd and William Smiley, On the group of permutations with countable support .. 529
Erwin Lutwak, Dual mixed volumes .. 531
Mark Mahowald, The index of a tangent 2-field ... 539
Keith Miller, Logarithmic convexity results for holomorphic semigroups ... 549
Paul Milnes, Extension of continuous functions on topological semigroups ... 553
Kenneth Clayton Pietz, Cauchy transforms and characteristic functions ... 563
James Ted Rogers Jr., Whitney continua in the hyperspace C(X) ... 569
Jean-Marie G. Rolin, The inverse of a continuous additive functional ... 585
William Henry Ruckle, Absolutely divergent series and isomorphism of subspaces 605
Rolf Schneider, A measure of convexity for compact sets ... 617
Alan Henry Schoenfeld, Continuous measure-preserving maps onto Peano spaces 627
V. Merriline Smith, Strongly superficial elements .. 643
Roger P. Ware, A note on quadratic forms over Pythagorean fields ... 651
Roger Allen Wiegand and Sylvia Wiegand, Finitely generated modules over Bezout rings 655
Martin Ziegler, A counterexample in the theory of definable automorphisms .. 665