Pacific Journal of

Mathematics

THE HAAR INTEGRAL VIA NON-STANDARD ANALYSIS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 58, No. 2, 1975

THE HAAR INTEGRAL VIA NON-STANDARD
ANALYSIS

R. B. KirK

Since its discovery by A. Robinson in 1961, nonstandard
analysis has been applied by an increasing number of authors to
various parts of mathematics with the result that new and often
more intuitively satisfying proofs for major theorems have been
discovered. It is the purpose of this note to give a proof of the
existence of a left invariant integral on a locally compact group
using the methods of nonstandard analysis.

In a recent paper (2], M. Hausner indicated how some of the
complications in one of the standard approaches to the existence of
Haar measure can be streamlined using nonstandard analysis. The
approach which will be presented here, on the other hand, develops the
invariant integral from the beginning within the nonstandard
framework.

As is well known, if G is a discrete group, a left invariant integral
on G may be obtained by fixing a nonempty finite subset A,CG and
than defining ®(f) = 1/n(A,) Z,ccf(x) for every real-valued function f
with compact (i.e. finite) support on G. (Of course, n(A,) denotes the
cardinal number of A,.) If G is not discrete, then in standard analysis
the summation above becomes meaningless and other methods must be
employed. However, it is not unreasonable to expect that in
framework of nonstandard analysis it is possible to place a fixed amount
of infinitesimal mass 1/n(A4,) at each point of a set A distributed
uniformly throughout the group such that ®(f) = st(1/n(Ae) Z,ea *f(x))
is a left invariant integral. (Here A, should be a fixed *finite set.) This
is basically the idea of the proof presented below. In the process of
developing this idea, it is necessary to define precisely what is meant by
a set being uniformly distributed. This is done by the notion of a
maximal d-scattered subset of G as defined below.

1. Topological groups. In this section several facts about
topological groups will be collected for later reference. Let N, denote
the neighborhood system at the identity e of G. The left uniformity on
G is the uniform structure which has a base of entourages of the form
{(x,y): y'x € U} foreach U €N,. A pseudometric d on G is said to
be compatible with the left uniformity if {(x,y): d(x,y)<e€} is an
entourage of the left uniformity for every positive number e. The set
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of all pseudometrics on G which are compatible with the left uniformity
is denoted by T and is called the gauge of the uniformity.

For d,,d, €T write d, < d, if for every positive number ¢, there is a
positive number & such that for all x,y € G, di(x,y) =€ whenever
dyx,y)=6. An element d €T is left translation invariant if
d(zx,zy)=d(x,y) for all x,y,z €G. The set of all left translation
invariant elements of I" will be denoted by I',. A proof of the following
may be found in Hewitt and Ross [3] (Theorem 8.2, p. 68).

ProposiTioN 1.1. Let UE N,. Then there is a d €T, such that
{xeG:dx,e)<1}CU.

As a corollary the following can be proved.

ProrosiTiON 1.2. 1. Let d €T. Then there is a d, €T, with
d <d,.

2. If d,, d, €T\, then d=sup(d,, d,) €T, where sup(d,,d,)(x,y)=
sup(d(x, y), dx(x, y)) for all x,y €G.

Proof. 1. Since d,,d,€T,, for every positive integer n, there is
U.EN, such that {(x,y):y'x € U,}C{(x,y): d(x,y)<1/n}. By
Proposition 1.1, there is d, €I, such that {x: d,(x,e) <1}CU,. Since
d, is left translation invariant, it follows that {(x,y): d.(x,y)<1}C
{x,y): y"'x€ U,}. Henceifd,(x,y)<1,itfollowsthat d(x,y) <1/n.

For each x,y € G, define,

’ — dn(X,)’), if d..(X,y)él
d(x,y )_{1, otherwise.

It is easy to check that d,€T,. Now for each x, y EG, define dy(x, y) =
2r.12"di(x,y). Then d,€T, Furthermore, if dy(x,y)<2™", then
d.(x,y)=d)(x,y)<1sothatd(x,y)<1/n. Thusitfollows that d < d,.

2. Since d,, d, €T, it is not difficult to verify that d =sup(d,, d,) is
a left translation invariant pseudometric. For € positive and i = 1,2,
there is U; €N, such that {(x,y): y'x € U}C{(x,y): di(x,y) <€}
Then U=UNU,EN, and {(x,y):y'x € U}C{(x,y):d(x,y) <€}
The proof is complete.

A real-valued function on G is uniformly continuous if for every
€e>0, {(x,y):|f(x)—f(y)|<e} is an entourage of the left
uniformity. This is equivalent to d; € I" where d; is the pseudometric
defined for all x,y € G by di(x,y)=|f(x)—f(y)|]. The following is
then an immediate corollary of Proposition 1.2.
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CoroLLARY 1.3. Let f be a real-valued function on G. Then f is
uniformly continuous if and only if for every positive number a there is a
d€T, such that for all x,y€G, |f(x)— f(y)| = a whenever d(x,y) = 1.

Proof. (<) This is obvious.

(= ) If f is uniformly continuous, then d; €EI". Hence by Proposi-
tion 1.2, thereisa d' €', with d;<d’. Hence if a is a positive number,
there is a positive number 8 such that for all x,y € G, |[f(x) - f(y)| S a
whenever d'(x,y)=6. Now define d=86"'d" where d(x,y)=
87'd'(x,y) for all x,y €G. Then clearly d €T, and satisfies the
requirements of the theorem. The proof is complete.

Let d be a pseudometric on a set S. A subset of A is said to be
d-scattered if d(x,y)>1 for all x,y € A with x# y. The subset A is
maximally d-scattered if it is d-scattered and if n(B) = n(A) whenever
B is a d-scattered subset of S. (Of course, n(Y) denotes the cardinal
number of the set Y.) Recall that a subset S of the group G is bounded
if for every UEN,, there is a finite set TCS such that S C
U{xU:x €T}. (In particular, every compact subset of G is
bounded.) It follows easily from Propositions 1.1 and 1.2 that S is
bounded if and only if for every d €T and for every positive number
€, S contains a finite e-net relative to d. (That is, there is a finite set
T CS with the property that for every x € S, there is a y € T with
d(x,y)=e€)

ProprosiTION 1.4. Let S be a non-empty bounded subset of G and
letd €T'. Then there is a positive integer p such that n(A) = p for every
d-scattered subset A CS. In particular, S contains a finite maximally
d-scattered subset.

Proof. Let T be a finite e-net in S relative to d where e =§. Let
p=n(T). Assume that A CS is d-scattered. Then n(A)=
p. Indeed, assume that p <n(A). For each x € A, take ¢(x)ET
with d(x,p(x))=e. Since p <n(A), there are x,y € A with x# y and
¢(x)=¢(y). Hence d(x,y)>1 since A is d-scattered. However,
since p(x) = @(y),d(x,y)=d(x,¢(x))+d(¢(y),y)=2e¢ =1. Thisisa
contradiction and the proof is complete.

2. The non-standard group *G. In this section proper-
ties of the nonstandard model *G of G which are needed to develop the
Haar integral will be discussed. For background the reader is referred
to the articles [4] and [5] by W. A. J. Luxemburg. Let *G be an
enlargement of the superstructure of G U R (where R is the set of real
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numbers) in the sense of A. Robinson [6]. This model will be fixed for
the remainder of the paper. If C, denotes the set of real-valued,
uniformly continuous functions, then the following holds.

ProrosiTiON 2.1. There is a positive infinitesimal « and there is a
d€*(Ty) such that for all x,y €*G, if d(x, y) = 1, then |*f(x) = *f(y)| = a
for all f € C.,.

Proof. Let ® C(C, X R*) X ([T'yXR*) (where R* denotes the set of
positive real numbers) be the binary relation defined by ((f, €), (d,a)) €
R if and only if (i) 0 < a < € and (ii) for all x,y € G, if d(x,y) =1, then
1f) = )| = e

It is not hard to see that R is concurrent over its domain. Indeed,
let (f,e)EC,XR* fori=1,---,n. Let € = min(e,,---,€,) and take
0<a<e Also for each i=1,---,n, choose, by Corollary 1.3, a
d, €T, such that for all x,y€G, if di(x,y)=1, then |fi(x)-f(y)|=
a. Then by Proposition 1.2, d = sup(d,,--+,d,) €ET,. It follows that
((fie),(d,a)ER fori=1,---,n.

Since R is concurrent over its domain and since *G is an
enlargement, there is (d, a) € *(T'y)Xx*(R*) such that ((*f,€),(d, a)) E*R
for every f€ C, and every e ER*. Thus 0<a <e forall e ER"* so
that « is an infinitesimal. Furthermore, if x,y €*G and if d(x,y) =1,
then |*f(x) —*f(y)|=a for all f€ C,. The proof is complete.

3. The marriage problem. The key to establishing transla-
tion invariance in the proof below is the solution to the so-called
marriage problem. (See P. Halmos and H. Vaughn, [1].) Let two sets
A and B (of boys and girls respectively) be given together with a
relation U (of acquaintance) between them. The marriage problem is
said to have a solution if it is possible to marry every boy to a girl of his
acquaintance. It is obvious that a necessary condition in order that the
marriage problem have a solution is that every set of k boys must have
at least k girls among their total acquaintance. The interesting fact is
that this condition is also sufficient. The precise statement of the result
is as follows. (For a proof the reader is referred to [1] or to [3], p. 248.)

ProrosiTiON 3.1. Let A and B be two nonempty sets with A finite,
and let ACA XB. If S CA, then let AS) =
{yeB:3x €S, (x,y) EN}. Thereis a one-one function ¢ from A into
B such that (x,¢(x)) €U for all x € A if and only if n(S) = n(UA(S)) for
every set S CA.

4. The Haar integral on a compact group. Since the
proof of the existence of the Haar integral on a compact group contains



THE HAAR INTEGRAL VIA NON-STANDARD ANALYSIS 521

all the essential ideas of the proof in the locally compact case and since
it avoids some of the techincal complications, the proof of this special
case will be given separately. Recall that a left invariant Haar integral
on G is a positive linear functional ® defined on the space C(G) (of
continuous, real-valued functions) such that ®(f)=d(f) for all
a € G. (Of course, ,f denotes the left translate of f by a defined by
Jx)=f(a'x) for all x € G.)

Let d € *(I'y) and let a be an infinitesimal such that for all x,y €*G
if d(x,y) =1, then |*f(x) —*f(y)| =« for all f € C(G). (Suchad and
a exist by Proposition 2.1 and the fact every f € C(G) is uniformly
continuous.) By Proposition 1.4 and the fundamental theorem of
nonstandard analysis, there is an internal, *finite d-scattered set A C*G
such that n(B)=n(A) for every internal d-scattered subset of G.

If f € C(G), then f is bounded. This implies that the nonstandard
number 1/n(A) Z,cs *f(x) is finite. It thus makes sense to define
D(f) = st(1/n(A) Z,ea *f(x)).

We can now prove the following.

THEOREM 4.1. Let A C*G be as above and for each f € C(G),
define ®(f) = st(1/n(A)Z,c. *f(x)). Then D is a left invariant integral
on G.

Proof. 1t is obvious that @ is a positive linear functional on
C(G). Hence all that needs to be shown is that ® is left translation
invariant. To this end fix f € C(G) and a € G. Since d € *(T'y) is left
translation invariant on *G, it follows that a A ={a"'x: x € A} is
d-scattered in G. Define A Ca'A XA by (y,x)EU if and only if
dx,y)=1. If S is any internal subset of a™'A and if A(S)=
{xeA:3yeS (y,x)EU}, then n(S)=n(A(S)). Otherwise,
n(A(S)) <n(S) and. B=SU(A —A(S)) is an internal d-scattered
subset of G with n(A)<n(B). This is contrary to the fact that A is
maximally d-scattered. It now follows from the fundamental theorem
of nonstandard analysis applied to Proposition 3.1 and from the fact that
n(A)=n(a'A), that there is an internal, one-one function ¢ from A
onto a 'A. Hence, it follows that:

o - ) = st (055 =, ()= *f(a ™))

= t( (14) [Z *x)— > *f(y)])

XEA y€E€a 'A

= st (g3 2, 170 =)

=st(a) =0,
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since d(x, ¢x) = 1 implies that |*f(x) — *f(¢x)| = a. The proof is com-
plete.

5. The Haar integral on a locally compact group. In
this section G is assumed to be locally compact, and Cy(G) is used to
denote the continuous functions of G with compact support. Recall
that Co(G) CC,. A left invariant Haar integral on G is a positive linear
functional ® on C,(G) such that ®(.f) = &(f) for all f € Co(G) and all
a€eaq.

DerFINITION. A function ¥: C(G)*— R is a left Haar functional if
the following conditions hold:

@) 0=Y(f) for all fE€ Cy(G)".

(i) W) = EV(f) for all fE C(G)* and all £ER".

(i) VY +g)=VY({)+V(g), for all f,g € C(G)".

iv) Y(f)=Y(f), for all f€ C(G)"* and all a €G.

ProposiTION 5.1. Let ¥ be a left Haar functional on G and, for
f € Cy(G), define O(f) =V(f*)—V(f"). Then ® is aleft invariant Haar
integral on G.

Proof. The result is immediate from the identities, (f+g)*+f +
g =U+g) +f +g% () =.(") and (f) =.(f).

It will now be shown how to define a left Haar functional within the
context of the nonstandard group *G. By Proposition 2.1, take d €
*(T'y) and an infinitesimal a such that for all x, y € *G, if d(x,y) = 1, then
[*f(x) = *f(y)|= a forall f € Co(G). Next fix a compact neighborhood
G, of the identity in G. Then by Proposition 1.4, there is an internal,
*finite maximally d-scattered subset A, of ¥*(G,). For each f € Cy(G),
let S; = *(supp f) where supp f denotes the support of f in G. Since
supp f is compact, again by Proposition 1.4 there is an internal, *finite
maximally d-scattered subset A; of S, Then the following holds.

LemMa 5.2. For all f€ CyG), the nonstandard rational
n(A;)/n(A,) is finite.

Proof. Since supp f is compact, there is a finite set {a,,---,a,}C
supp f with supp f C U?_,a,G,. Hence, S;C U?%,a,*(G,). Sinced is
left translation invariant, (a7' A;) N *(G,) is a d-scattered subset of
*(Go). Hence, it follows that n(A; N a;*(G,) =n(a7i' A, N*Gy)=
n(A,) forall i =1,---,p. Thus,

nta)=n( U (40 a*G)

= Zl n(A; N a;*(Go) = pn(Ay).
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Thus n(A;)/n(A)) =p where p is a standard natural number. The
proof is complete.

Now if f € Cy(G), then |f| is bounded by some real number
M. Hence

1 _n(4)
Ay &, ¢ ’l n(A) M

which is finite by the above lemma. It then makes sense to define for
each

n(}“o) x;, *f(x)> ’

f € CAGY, W(f) = st(

THEOREM 5.3. The function ¥: Cy(G)*— R is a left Haar func-
tional.

Proof. 1t is obvious that 0 = W(f) and that W(&f) = £W(f) for all
fECH(G) and all £ € R*. It remains to show that ¥(.f)=¥(f) and
that U(f +g)=VY(f)+¥(g) for all f,g €Cy(G)* and all a €G. The
remainder of the proof will be devoted to demonstrating these two
properties.

I Y(f)=Y() for all f € Cy(G)* and all a € G.

Since d is left translation invariant, a 'A is an internal, dscattered
subset of S, Since A; is maximally d-scattered in S,n(a'Ay)=
n(A;). Similarly, since A, is maximally d-scattered in S, n(4;) =
n(aA;)=n(Ars)=n(a'Ars). Hence n(A;)=n(a'A,). By an appli-
cation of Proposition 3.1 similar to that in the proof of Theorem 4.1, it
follows that there is a one-one, internal function ¢ from A; into a™'A;
such that d(x, ¢(x)) =« for all x € A, It then follows that,

¥~ ¥l = |st (5 | 2 - S o)) |
=st (n(}“o) x;; - yE;Aal R l )
1

sst(niy 3 10— *Se |

= st (M40 o) o,

by Lemma 5.2 and the fact that |*f(x) —*f(y)| =« whenever d(x,y)
=1. Hence (I) follows.
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an Y(f+g)=v({)+¥(g) for all f,g € Cy(G)".

The proof of (II) is essentially combinatorial, but it is technically
rather complicated. For this reason, it will be broken into a number of
steps. Let f € Cy(G)* be fixed, and for each 0 =8 € *R, define S° =
{x € 8: 8 =*f(x)}.

(@) Letg €Cy(G)" andlet 0=8 € *R. Then there is an internal,
one-one function ¢ from A; N\ S°*** into A;, N S®* such that d(x, ¢x)
=1 for all x € A, N S,

Let A=A;NS" B=A;,NS* and

A={(x,y):xEA, yEB and d(x,y)=1}.

If T is an internal subset of A, then n(T) = n(A(T)) where A(T) =
{yveB:3xe€T,(x,y)€U}. Indeed, if this is not so, define D =
T U(Ap, —U(T)). Then D is an internal subset of S;., = S; U S, with
n(As,)<n(D). It will now be shown that D is d-scattered. Since
Ay, i1s maximally d-scattered in S;,,, it will then follow that n(D) =
n(A.,) which is a contradiction.

In order to show that D is d-scattered, it is sufficient to show that if
XET and y € A, —UAU(T), then d(x,y)>1. If y € $°*, then since
y& W(T), d(x,y)>1 by the definition of U. Hence assume that
y& S°** so that *f(y)<8+a. Since x ET CS*?, §+2a =*f(x).
Thus *f(x)—*f(y)>a. But if d(x,y)=1, then [*f(x)—*f(y)|=
a. Hence d(x,y)>1 as claimed.

Since n(T) = n(UA(T)) for every internal subset T of A, it follows
from Proposition 3.1 and the fundamental theorem of nonstandard
analysis that there is an internal one-one function ¢ from A into B such
that (x, ¢x) €U for all x € A. The verification of (a) is complete.

(b) Let g €Cy(G)" and let 0=86€*R. Then n(A,NS*?)=
n(Asp, NS ) =n(A; N S?).

The first inequality follows from (a). In order to see the second,
assume that n(A; N S?)<n(Ap, NS?*). Define B =
(Ajg NS**)U(A,—S?). If xES** and y& S’ then d(x,y)>
1. (Indeed, *f(x)=é + « and *f(y) <& implies that *f(x)—*f(y)>
a. Butif d(x,y)=1, then |*f(x)—*f(y)|=a.) Hence B is an inter-
nal, d-scattered subset of S; and so n(B)=n(A;). This contradicts
n(A;) <n(B) and (b) follows.

(c) There is an infinitesimal 0=6,E*R such that B =
n(A; N[S>— S*2))/n(Af) is infinitesimal.

First choose an infinitesimal 0 < € € *R such that na < € for every
standard positive integer n. (For instance, take € = Va.) For 0=
8 E*R, define n(8)=n(A;N[{S?*-S**]). The set P=
{n(8): 6 €[0, €]} is an internal, nonempty subset of the nonstandard
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natural numbers and, :as such, contains a minimal element n(§,) where
8,€[0,€]. (Thus §, is infinitesimal.) One of the following holds:

(%) 8o+ na <e, for every standard positive integer n or

(#*) &,— na >0, for every standard positive integer n. Indeed,
if neither (*) nor (**) holds, then there is a standard positive integer n,
with € =8, + noa and 0=n,a - 8. But then €=
(8o + noa) + (nya — 8y) = 2n,a which contradicts the fact that na < € for
every standard positive integer n.

It will now be shown that (c) holds for §,. Indeed let p be a fixed
standard positive integer. If (*) holds, then since $*>CS?% if §, = §,, it
follows that

n(A,) — n( LPJ Af N [S80+2m _ SS°+2(r+l)a]>
r=0

v

P
Zo n(A; N[S>*r=— §h+r+vay)

v

pn(A; N[S*—S»*]),

since 8,+2ra <e€ forr=1,---,p by (*) so that n(8,) = n(§,+2ra) for
r=1,---,p. On the other hand, if (**) holds, then

n(Af) = n( LPJ Af n[S50~2ra_ S&o—2(r—l)a ])
r=0

v

P
Zo n(A, N [Sao—zm — S8-2Ar=De ])

Z pn(A; N[S™—S>™]),

since 8,—2ra >0 forr =1,-- -, p by (**) so that n(8,) = n(8,— 2ra) for
r=1,---,p.

In either case, it follows that n(A; N[S%— S***])/n(A;) = 1/p for
every nonstandard positive integer p. Thus the verification of (c) is
complete.

(d) Let g € Cy(G)*. Then there is an infinitesimal y such that
IEXEA! *f(x) = Zyear, *f()’)l =n(Ay)y.

Let §, and B be infinitesimals as in (c) above. By (a) there is an
internal one-one function ¢ from A; N S**** into A, N S**. For
notational convenience, let A = A, NS*? B=A,-S%%* (C=
(Apse NS*)—o[A; N S>?] and D = S; N[Afq, — S**]. Note that
n(C)=n(A,N[S*—S**]) as a consequence of (b). Also n(D)=
n(A;) since D is d-scattered in S; Since A;=A UB and since
S; N Ap, = o[A; NS> 1U C U D, the following holds.
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> )= X )| S 2 M= e+ 3 ()]

+ 2 I+ 2 1)
=n(Apa +n(A)(8+2a)+n(C)M + n(A) (8, + )
=n(A)(28,+4a)+ Mn(A; —[S*— S%*])
= n(A;) (28, + 4a + MB)
=n(Af)y,

where y =28,+4a + MB is infinitesimal. Hence (d) is verified.

It is now possible to prove (II). Since (d) holds for an arbitrary
f€ Co(G), if f,g € Cy(G)*, then there are infinitesimals y, and vy, such
that,

(1) 3 - 3 *f(y)]én(Af)v,
and
(2 ; *g(x)— g *g(y)‘én(Ag)vz.

Thus it follows from (1) and (2) that,

V() +¥(@) -V +8)|=

st (n(;o) [2 )+ S *g(x)

x € Ay xEAg

- 3 ror+gon))|

YEAs+g

S ) - S *f(y)[

xEA¢ YEAf+g

1
+st(m > *g(x)— X g(y)\

XEAg YEAf+g

= (o) = (o)

=st (n(,140)

IA

0,

since n(A;)/n(A,) and n(A,)/n(A,) are finite by Lemma 5.2. Hence
Y(f+g)=VY({)+¥(g). The proof of Theorem 5.3 is complete.
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