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Let Sx denote the group of permutations of the set X. IfN,
is an infinite cardinal, the set of permutations having support
with cardinality less than or equal to N, is a normal subgroup of
Sx. The principal result of this paper is a constructive proof
that Sx is generated by its cycles, if X is countably infinite. Of
particular interest is the corollary that for any set X, the cycles of
Sx generate the subgroup of permutations with countable sup-
port.

If fE€Sx and x € X, then let O;(x) denote the orbit of x under
f. The set X is the disjoint union of the distinct orbits of f [1]. Incase
f(x)#x, Oi(x) is called a nontrivial orbit of f. Let S(f) denote the
support of the permutation f. If S(f) consists of exactly one nontrivial
orbit, then f is called a cycle. Let Cx be the subgroup of Sy consisting
of all finite products of cycles. If X is finite, then Cx = Sy. For an
uncountable set X, Cx is a proper subgroup of Sx. We now show that
Cx = Sx in the remaining case.

THeOREM. If X is countably infinite, then Sy is generated by its
cycles.

Proof. Clearly, the subgroup Cx of Sx generated by its cycles is a
normal subgroup. But the only normal subgroups of Sx are {1}, the set
of even permutations of finite support, the set of all permutations of
finite support, or Sy (see, e.g., [2]). Hence, Cx = Sx.

CoroLLARY. For any set X, the cycles of Sx generate the subgroup
of permutations with countable support.

Proof. Clear.

However, one can give a more constructive proof by means of the
following lemma.

LemMA. Let f € Sy such that S(f) is a countably infinite union f’f
finite orbits, or a countably infinite union of countably infinite
orbits. Then f is the product of two cycles in Sx.

Proof. Suppose that S(f) = U{O(x;)|i € Z}, where O;(x;) is finite
for each integer i, and O;(x;))NOs(x;)=¢ if i#]. Let Os(x.)=
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{al, az - " aap}’ Of(x()) = {bth, ) bq}’ and Of(xl) ={Cl’ (S TR ’C’}' It
follows that

f= "'(alaz"‘ap)(b1b2"‘bq)(clcz"’c,)"’

=(...alal."apb]bz".qulCZ..'cr'.')('..Clblal.")~

Now, suppose that S(f) consists of orbits which are _countably
infinite. Chose a partition A U B of S(f) such that A ={x; |i € Z} and
B={y,|i€Z and i=0}. Let g denote the infinite cycle (---x-

_3x_2x_|x0y0xly1x2y2 v ), and let

h=(:- " X3X_ X 1YoY1XoY2Y3X1YaYsX2Y6Y7X3* " *)-
Then

gh = (- + X_3XoX i XoPeX1 Y1+ ) (+* * X3X X1 YoYiXoY2YsX 1+ )
= (XXX YaYeYa0t ) (¢ 0t XoXaX 5 YoYaYr2" " *)

(D 25 #5725 75 73 Z7SRRD RREN (R X202j)+1X2jY2+1Y 20 +1)+4 * ° ° )

It is easy to see that gh fixes none of the elements in the set
A UB. Hence S(gh)= S(f). Since each cycle of gh contains at most
one y with an odd subscript, gh has infinitely many cycles. Clearly,
each of these cycles is infinite. Using the fact [2] that f and gh are
conjugate in S if and only if f and gh have the same support structure,
there exists a permutation t such that f=t""(gh)t =(t""gt)(t 'ht),
where ¢ 'gt and ¢t 'ht are necessarily cycles in Sx. This completes the
proof of the lemma.

The theorem follows from this, since if f is a permutation on X,
then f = f,f,, where f, agrees with f on its finite orbits and f, agrees with
f on its infinite orbits.

REMARK. It is known [3] that if G is an abelian group, then G is
isomorphic to a group of permutations on some set X, where each
permutation has countable support. It follows that each abelian group
is isomorphic to a subgroup of Cy, for some set X.
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