Vol. 59, No. 1, 1975

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
P-primary decomposition of maps into an H-space

Albert Oscar Shar

Vol. 59 (1975), No. 1, 237–240
Abstract

If Y is a finitely generated homotopy associative H-space and X is finite CW then [X,Y ] is a nilpotent group. Using this it is easy to show that for any set of prime integers P, a localization map I: Y Y P induces l[X,Y ] [X,Y P] with the order of 11(α) prime to P. (e.g. see [2]) Since there is no theory of the localization of algebraic loops the same technique does not apply if Y is not homotopy associative. The purpose of this paper is to show that the above theorem holds in this situation.

Mathematical Subject Classification
Primary: 55D45
Milestones
Received: 7 January 1975
Revised: 6 March 1975
Published: 1 July 1975
Authors
Albert Oscar Shar