SPECTRAL INEQUALITIES INVOLVING THE INFIMA AND
SUPREMA OF FUNCTIONS

Kong Ming Chong
SPECTRAL INEQUALITIES INVOLVING THE INFIMA AND SUPREMA OF FUNCTIONS

Kong-Ming Chong

This paper presents some spectral inequalities from which some useful tools for the investigations of the permanents of nonnegative matrices are derived as particular cases.

Introduction. In this paper, we establish some spectral inequalities involving the infima and suprema of functions as well as their equimeasurable rearrangements, and obtain as particular cases some rearrangement inequalities which turn out to be useful tools for the investigations of the permanents of non-negative matrices (see [4] and [5]).

1. Preliminaries. Let \(M(X, \mu) \) denote the set of all extended real valued measurable functions defined on a finite measure space \((X, \Lambda, \mu)\). Two functions \(f \in M(X, \mu) \) and \(g \in M(X', \mu') \), where \(\mu'(X') = \mu(X) \), are said to be equimeasurable (written \(f \sim g \)) whenever

\[
\mu(\{x: f(x) > t\}) = \mu'(\{x: g(x) > t\})
\]

for all real \(t \). If \(f \sim g \), it follows from (1.1) that

\[
\Phi(f) \sim \Phi(g)
\]

whenever \(\Phi: \mathbb{R} \to \mathbb{R} \) is a Borel measurable function.

If \(f \in M(X, \mu) \), let \(\delta_f: [0, \mu(X)] \to \mathbb{R} \) denote the decreasing rearrangement of \(f \). It is clear that the function \(\iota_f = -\delta_{-f} \), called the increasing rearrangement of \(f \), satisfies \(\iota_f \sim f \).

It is a direct consequence of (1.2) that

\[
\delta_{\psi(f)} = \psi(\delta_f) \quad \text{(respectively} \quad \iota_{\psi(f)} = \psi(\iota_f))
\]

whenever \(\psi: \mathbb{R} \to \mathbb{R} \) is a left continuous (respectively right continuous) and non-decreasing function. Moreover, it is not hard to see that the operation of decreasing or increasing rearrangements preserves a.e. pointwise convergence, convergence in measure and all \(L^p \) convergence, \(1 \leq p \leq \infty \).

If \(f, g \in M(X, \mu) \cup M(X', \mu') \) and \(f^+, g^+ \in L^1(X, \mu) \cup L^1(X', \mu') \), then we write \(f \preceq g \) whenever

\[
\int (f - t)^+ \leq \int (g - t)^+
\]

for all \(t \in \mathbb{R} \) and \(f \prec g \) whenever \(f \preceq g \) and \(\int f = \int g \).
In the sequel, expressions of the form \(f < g \) (respectively \(f \preceq g \)) are called \textit{strong} (respectively \textit{weak}) spectral inequalities.

2. Some spectral inequalities. In what follows, for any given \(n \)-tuple \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \), the \(n \)-tuples \(x^* = (x_1^*, x_2^*, \ldots, x_n^*) \) and \(x' = (x'_1, x'_2, \ldots, x'_n) \) respectively denote the decreasing and increasing rearrangements of \(x \).

Lemma 2.1. If \((a_1, a_2, \ldots, a_n) \in \mathbb{R}^n \) and \((b_1, b_2, \ldots, b_n) \in \mathbb{R}^n \), then

\[
\sum_{i=1}^{n} (a_i^+ \wedge b_i^+) \leq \sum_{i=1}^{n} (a_i \wedge b_i)^+.
\]

Proof. Since \((a^*^+) = (a^+)^*\), \((b'^+) = (b^+)')\), by (1.3), and since \((r \wedge s)^+ = r^+ \wedge s^+\) for all \(r, s \in \mathbb{R} \), we need only prove the lemma for \(a_i \geq 0 \) and \(b_i \geq 0 \), \(i = 1, 2, \ldots, n \).

Without loss of generality, we may assume that \(b_i = b'_i, i = 1, 2, \ldots, n \). In this case, if \(1 \leq i < j \leq n \) and \(a_i < a_j \), then it is easily seen that \(a_i \wedge b_j + a_j \wedge b_i \leq a_i \wedge b_i + a_j \wedge b_j \). Thus, for each pair of integers \(i, j \) such that \(1 \leq i < j \leq n \), if \(a_i < a_j \), the right-hand sum of the asserted inequality is never increased on interchanging \(a_i \) and \(a_j \). We, therefore, conclude that the left-hand sum of (2.1) is the smallest possible value attainable by the right-hand sum as \(a \) ranges through all its rearrangements.

In the sequel, we denote the Lebesque measure on \(\mathbb{R} \) by \(m \).

Lemma 2.2. If \(f, g \in L^1(X, A, \mu) \) where \(\mu(X) = a < \infty \), then

\[
\int_0^a (\delta_{f^*} \wedge \epsilon_{g^*})^+ \, dm \leq \int_X (f \wedge g)^+ \, d\mu.
\]

Proof. If the measure space \((X, A, \mu)\) is non-atomic, then there exist sequences \(\{f_n\}_{n=1}^{\infty}, \{g_n\}_{n=1}^{\infty} \) of simple functions with the same sets of constancy such that \(f_n \rightarrow f \) and \(g_n \rightarrow g \) both pointwise \(\mu \)-a.e. and in \(L^1 \). Since decreasing and increasing rearrangements preserve a.e. pointwise convergence and \(L^p \) convergence, \(1 \leq p \leq \infty \), we see that \(\delta_{f_n^*} \) and \(\epsilon_{g_n^*} \) also converge in \(L^1 \) to \(\delta_f \) and \(\epsilon_g \) respectively.

Now by Lemma 2.1, we have

\[
\int_0^a (\delta_{f_n^*} \wedge \epsilon_{g_n^*})^+ \, dm \leq \int_X (f_n \wedge g_n)^+ \, d\mu
\]

whence (2.2) follows by taking limits and on observing that \(f_n \wedge g_n = f_n - (f_n - g_n)^+ \).

If \((X, A, \mu)\) is not non-atomic, we can imbed it into a non-atomic
measure space \((X, \Lambda, \mu)\) (For details of this device, we refer to [2, pp. 52-54]). Then, \(f, g \in L^1(X, \mu)\) can be identified with \(\bar{f}, \bar{g} \in L^1(X, \mu)\) by a map \(h \mapsto \bar{h}\) which is linear and satisfying \(\bar{h} = h \) and \(\Phi(\bar{h}) = \Phi(h)\) for every Borel measurable \(\Phi: \mathbb{R} \to \mathbb{R}\). Thus

\[
\int_{0}^{\infty} (\delta_f \wedge \tau_g - t)^+ \, dm = \int_{0}^{\infty} (\delta_{f,g} - t)^+ \, dm \leq \int_{X} (f - t)^+ \, d\mu = \int_{X} (f - g)^+ \, d\mu.
\]

THEOREM 2.3. If \(f, g \in L^1(X, \mu)\), where \(\mu(X) = a < \infty\), then

\[
\delta_f \wedge \tau_g \ll f \wedge g \ll \delta_f \wedge \delta_g
\]

where the strong spectral inequality \(f \wedge g < \delta_f \wedge \delta_g\) (respectively \(\delta_f \wedge \tau_g < f \wedge g\)) holds if and only if \(\delta_f \wedge g \sim \delta_f \wedge \delta_g\) (respectively \(\delta_f \wedge \tau_g \sim f \wedge g\)).

Let \(\Phi: \mathbb{R} \to \mathbb{R}\) be any increasing and continuous function, then \(\Phi(\delta_f \wedge \tau_g) \ll \Phi(f \wedge g) \ll \Phi(\delta_f \wedge \tau_g)\). If \(\Phi\) is strictly increasing and convex such that \(\Phi(\delta_f \wedge \delta_g) \in L^1([0, a], m)\) (respectively \(\Phi(f \wedge g) \in L^1(X, \mu)\)), then \(\Phi(f \wedge g) < \Phi(\delta_f \wedge \tau_g)\) (respectively \(\Phi(\delta_f \wedge \tau_g) < \Phi(f \wedge g)\)) if and only if \(\delta_f \wedge g \sim \delta_f \wedge \delta_g\) (respectively \(\delta_f \wedge \tau_g \sim f \wedge g\)).

Proof. The spectral inequality \(\delta_f \wedge \tau_g \ll f \wedge g\) follows immediately from the preceding lemma since, on substituting \(f = t, g = t\) (where \(t \in \mathbb{R}\) for \(f, g\) respectively in (2.2), we have

\[
\int_{0}^{\infty} (\delta_f \wedge \tau_g - t)^+ \, dm = \int_{0}^{\infty} (\delta_{f,g} - t)^+ \, dm \leq \int_{X} (f - t)^+ \, d\mu = \int_{X} (f - g)^+ \, d\mu.
\]

The spectral inequality \(f \wedge g < \delta_f \wedge \delta_g\) is obvious since \(\delta_{f \wedge g} \leq \delta_f \wedge \delta_g\) by the monotonicity of the decreasing rearrangement operator \(\delta\). Thus, if \(f \wedge g < \delta_f \wedge \delta_g\), then \(\int_{0}^{\infty} \delta_{f \wedge g} \, dm = \int_{0}^{\infty} \delta_f \wedge \delta_g \, dm\) which is the case if and only if \(\delta_{f \wedge g} = \delta_f \wedge \delta_g\) \(m\text{-a.e.}\) or, equivalently, \(f \wedge g \sim \delta_f \wedge \delta_g\).

Suppose the strong spectral inequality \(\delta_f \wedge \tau_g < f \wedge g\) holds. Let \(\Psi: \mathbb{R} \to \mathbb{R}\) be any strictly concave and increasing function such that \(\Psi(x) = \log x\) for \(x\) large enough and that \(\Psi(x)\) approaches \(x\) asymptotically as \(x \to -\infty\) (the existence of such a function \(\Psi\) is geometrically clear; if both \(f\) and \(g\) are non-negative, we simply choose \(\Psi(x) = \log (1 + x), x \geq 0\)). Then \(\Psi(h)\) is integrable whenever \(h \in L^1(X, \mu) \cup L^1([0, a], m)\) since \(\Psi^+(h) = \log h^+ \leq h^+\) for \(h^+\) large enough and
\[h^- - \varepsilon \leq W^- (h) \leq h^- + \varepsilon \text{ for } h^- \text{ large enough and for some } \varepsilon > 0. \]

By (1.3), we clearly have \(W(\delta_f \land \tau_g) = W(\delta_f) \land W(\tau_g) = \delta_{\psi(f)} \land \tau_{\psi(g)} < \psi(f) \land \psi(g) = \psi(f \land g) \). Now it is easily seen that the inverse \(\Phi \) of \(\psi \) is strictly convex and increasing, and so, by (1.2) and [1, Theorem 2.3], we have \(\Phi(W(\delta_f \land \tau_g)) = \delta_f \land \tau_g < f \land g = \Phi(W(f \land g)) \) if and only if \(\delta_f \land \tau_g \sim f \land g \).

The rest is easy by virtue of the above result, (1.3) and [1, Theorems 2.3, 2.5 and 2.8].

Corollary 2.4. If \(f, g \in L^1(X, \mu) \) where \(\mu(X) = a < \infty \), then

\[
-(\delta_f \lor \tau_g) < -(f \lor g) < -f \lor -g
\]

where the strong spectral inequality \(-(\delta_f \lor \tau_g) < -(f \lor g) \) (respectively \(-(f \lor g) < -(\delta_f \lor \tau_g) \)) holds if and only if \(\delta_f \lor \tau_g \sim f \lor g \) (respectively \(f \lor g \sim \delta_f \lor \tau_g \)).

Let \(\Phi : R \rightarrow R \) be any nonincreasing and continuous function, then

\[
\Phi(\delta_f \lor \tau_g) < \Phi(f \lor g) < \Phi(-f \lor \tau_g).
\]

If \(\Phi \) is strictly decreasing and convex such that \(\Phi(\delta_f \lor \delta_g) \in L^1([0, a], m) \) (respectively \(\Phi(f \lor g) \in L^1(X, \mu) \)), then \(\Phi(f \lor g) < (\delta_f \lor \delta_g) \) (respectively \(\Phi(f \lor g) < (\delta_f \lor \delta_g) \)) if and only if \(f \lor g \sim \delta_f \lor \delta_g \) (respectively \(\delta_f \lor \tau_g \sim f \lor g \)).

Proof. The result follows immediately from Theorem 2.3 on substituting \(-f\) for \(f \) and \(-g\) for \(g \).

It is now easy to derive the rearrangement inequalities of Jurkat and Ryser given in [4, Lemma 6.1, p. 353] (cf. [5, p. 498]) and also those of Minc given in [5, Theorems 3-5, pp. 501-502].

References

Received November 18, 1974.

University of Malaya
Pacific Journal of Mathematics
Vol. 59, No. 1 May, 1975

Shashi Prabha Arya and M. K. Singal, More sum theorems for topological spaces ... 1
Goro Azumaya, F. Mbuntum and Kalathoor Varadarajan, On M-projective and M-injective modules .. 9
Kong Ming Chong, Spectral inequalities involving the infima and suprema of functions .. 17
Alan Hetherington Durfee, The characteristic polynomial of the monodromy ... 21
Emilio Gagliardo and Clifford Alfons Kottman, Fixed points for orientation preserving homeomorphisms of the plane which interchange two points ... 27
Raymond F. Gittings, Finite-to-one open maps of generalized metric spaces ... 33
Andrew M. W. Glass, W. Charles (Wilbur) Holland Jr. and Stephen H. McCleary, a*-closures of completely distributive lattice-ordered groups ... 43
Matthew Gould, Endomorphism and automorphism structure of direct squares of universal algebras .. 69
R. E. Harrell and Les Andrew Karlovitz, On tree structures in Banach spaces ... 85
Julien O. Hennefeld, Finding a maximal subalgebra on which the two Arens products agree .. 93
William Francis Keigher, Adjunctions and comonads in differential algebra ... 99
Robert Bernard Kelman, A Dirichlet-Jordan theorem for dual trigonometric series ... 113
Allan Morton Krall, Stieltjes differential-boundary operators. III. Multivalued operators–linear relations 125
Hui-Hsiung Kuo, On Gross differentiation on Banach spaces ... 135
Tom Louton, A theorem on simultaneous observability ... 147
Kenneth Mandelberg, Amitsur cohomology for certain extensions of rings of algebraic integers .. 161
Coy Lewis May, Automorphisms of compact Klein surfaces with boundary ... 199
Peter A. McCoy, Generalized axisymmetric elliptic functions .. 211
Muril Lynn Robertson, Concerning Siu's method for solving y'(t) = F(t, y(g(t)))) .. 223
Richard Lewis Roth, On restricting irreducible characters to normal subgroups ... 229
Albert Oscar Shar, P-primary decomposition of maps into an H-space .. 237
Kenneth Barry Stolarsky, The sum of the distances to certain pointsets on the unit circle .. 241
Bert Alan Taylor, Components of zero sets of analytic functions in C^2 in the unit ball or polydisc .. 253
Michel Valadier, Convex integrands on Souslin locally convex spaces .. 267
Januario Varela, Fields of automorphisms and derivations of C*-algebras ... 277
Arnold Lewis Villone, A class of symmetric differential operators with deficiency indices (1, 1) ... 295
Manfred Wollenberg, The invariance principle for wave operators .. 303