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INFIMA AND SUPREMA OF FUNCTIONS

KonGg-MinGg CHONG

This paper presents some spectral inequalities from which
some useful tools for the investigations of the permanents of
nonnegative matrices are derived as particular cases.

Introduction. In this paper, we establish some spectral ine-
qualities involving the infima and suprema of functions as well as
their equimeasurable rearrangements, and obtain as particular cases
some rearrangement inequalities which turn out to be useful tools
for the investigations of the permanents of non-negative matrices
(see [4] and [5]).

1. Preliminaries. Let M(X, y) denote the set of all extended
real valued measurable functions defined on a finite measure space
(X, 4, 1r). Two funetions feM(X, ¢) and ge M(X', t), where
(X' = i(X), are said to be equimeasurable (written f ~ g) whenever

(1.1) u{m: f(x) > 8)) = p#'({: g(x) > t})
for all real t. If f~ g, it follows from (1.1) that
(1.2) o(f) ~ 0(9)

whenever @: R— R is a Borel measurable function.

If feM(X, p), let 8,: [0, #(X)] — R denote the decreasing rear-
rangement of f. It is clear that the function ¢, = —d_y, called the
increasing rearrangement of f, satisfies ¢, ~ f.

It is a direct consequence of (1.2) that

(1.3) Opiry = ¥(0s)  (respectively tyisy = ¥(¢r))

whenever ¢: R— R is a left continuous (respectively right continuous)
and non-decreasing function. Moreover, it is not hard to see that
the operation of decreasing or increasing rearrangements preserves
a.e. pointwise convergence, convergence in measure and all L” con-
vergence, 1 < p £ oo.

If figeM(X, 1)U M(X', ) and f7, g*e LNX, p) U L(X', i),
then we write f << g whenever

[¢-v={w-v
for all te R and f < g whenever f <<g and§f=Sg.
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In the sequel, expressions of the form f < g (respectively f<<g)
are called strong (respectively weak) spectral inequalities.

2. Some spectral inequalities. In what follows, for any given
n-tuple x = (x,, X, - -, ¢,) € B*, the n-tuples x* = (xF, =¥, ---, #¥) and
x' = (2, x3, -+, x,) respectively denote the decreasing and increasing
rearrangements of x.

LEmma 2.1. If (@, @, -+, a,) € B* and (b, b,, +-+, b,) € B", then
@.1) 3 (ar A b S 3 (a AB)T

Proof. Since (a*)* = (a™)*, (b')" = (b*), by (1.3), and since
(r As)" =rt Ast for all », se R, we need only prove the lemma for
a;=0and b, =20,7=1,2, ..., n.

Without loss of generality, we may assume that b, =b;, 7 =1,
2, -+, n. Inthiscase, if 1<¢<j=<mn and g, < a;, then it is easily
seen that a, Ab; + a; Ab, <a, Ab, + a; A\ b;. Thus, for each pair
of integers 4, j such that 1 <7 < j < n, if a; < a;, the right-hand
sum of the asserted inequality is never increased on interchanging
a; and a;. We, therefore, conclude that the left-hand sum of (2.1)
is the smallest possible value attainable by the right-hand sum as
a ranges through all its rearrangements.

In the sequel, we denote the Lebesque measure on R by m.

LEmMA 2.2, If f, ge LNX, 4, pt) where pp(X) = a < o, then
(2.2) Lo neram=| (5 Agyan.

Proof. If the measure space (X, 4, #) is non-atomic, then there
exist sequences {f.}i=;, {g.}o=. of simple functions with the same sets
of constancy such that f,—f and g, — ¢ both pointwise p-a.e. and
in L', Since decreasing and increasing rearrangements preserve a.e.
pointwise convergence and L® convergence, 1 < p £ «, we see that
ds, and ¢, also converge in L' to d; and ¢, respectively.

Now by Lemma 2.1, we have

[[ronnyan = | (7a o)

whence (2.2) follows by taking limits and on observing that f, A g, =
fn - (fﬂ. - gn)+'

If (X, 4, p) is not non-atomic, we can imbed it into a non-atomic
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measure space (X, 4, ) (For details of this device, we refer to [2,
pp. 52-54]). Then, f, g € L'(X, #) can be identified with f, §e LY(X, )
by a map k— k which is linear and satisfying & ~ & and @(%) = O(h)
for every Borel measurable ¢: R— R. Thus

NG~ FARg=F=(F =9 =F- (-9 =FAG

and so
[orneyam={"6;napam=| Grorap={ 7 roap.

THEOREM 2.3. If f, g€ LNX, t), where (X)) = a < o, then
(2.3) 0, NG<fFNGg=<<0; N0,

where the stromg spectral inequality fA g <6; Ad, (respectively
Or Nty <fNAg) holds if and only if fAg~0d;AJ, (respectively
af Nty ~ f/\ g)'

Let @: R— R be any increasing and continuous jfunction, then
D0, Ne) < D(fNG) << D05 NO,). If @ is strictly increasing and convex
such that @0, N d,) € L([0, a], m) (respectively @(f A g) e LY(X, t)),
then O(f N\ g) < @ (05 A\ 0,) (respectively @(5; A ¢,) < O(f A g)) if and
only if fA\g~0; A0, (respectively o5 A ¢, ~ f A g).

Proof. The spectral inequality d; A ¢,<<f A g follows immediately
from the preceding lemma since, on substituting f — ¢, g — ¢ (Where
te R) for f, g respectively in (2.2), we have

\@rAe —tyram = {6, neyam = | 17 =0 A0 — o1dn
= T ng—vrap.

The spectral inequality f A g <0, A 0, is obvious since ;,, <
05 A\ 0, by the monotonicity of the decreasing rearrangement operator

8. Thus, if f A g <25, Ad, then S"amdm — S“af A 8,dm which is
0 0

the case if and only if d;,, = 0, A 0, m-a.e. or, equivalently, f A g ~
dr N 0,.

Suppose the strong spectral inequality 6, A ¢, < f A g holds. Let
¥U: R~ R be any strictly concave and increasing function such that
U(x) = log « for x large enough and that ¥(x) approaches x asympto-
tically as * — — o (the existence of such a function 7 is geometrically
clear; if both f and ¢ are non-negative, we simply choose ¥(z) =
log (1 + ), = 0). Then ¥(h) is integrable whenever he L\(X, ) U
L]0, a], m) since ¥*(h) =logh™ < h* for h* large enough and
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h™—e=<¥(h) £h + ¢ for h~ large enough and for some &> 0.
By (1.3), we clearly have ¥(0; A¢,) =T©0,) AT,) = Oy N tpy <
V() A¥(9) = ¥(f A g). Now it is easily seen that the inverse @ of
v is strictly convex and increasing, and so, by (1.2) and [1, Theorem
2.3], we have @(T (5, N¢,)) =0; N ¢, < f AN g =OF(f A g) if and only
if af/\lg’\'f/\g-

The rest is easy by virtue of the above result, (1.3) and [1,
Theorems 2.3, 2.5 and 2.8].

COROLLARY 2.4. If f, ge LXX, 1) where (X)) = a < oo, then
(24) _(Bf vV lg) '<< —(f V g) '<< "‘(5f V 39)

where the strong spectral imequality —(6; \V ¢,) < —(f V g) (respec-
tively —(f'V 9) < =3,V 8,)) holds if and only if 6;V ¢4~ f Vg
(respectively f \ g ~ 8,V 4,).

Let @: R— R be any nonincreasing and continuous function,
then

(2.5) D07V ) <O(f V g) <D0,V d,) .

If @ s strictly decreasing and convex such that @07\ d,)¢€
LY([0, a], m) (respectively ®(f \ g) € LX(X, p)), then ®(f \V 9) < (8;\V 8,)
(respectively @(0; V ¢,) < O(f \V 9)) if and only if fFV 9g~0;V0,
(respectively 6,V ¢, ~ f \V 9).

Proof. The result follows immediately from Theorem 2.3 on
substituting —f for f and —g for g.

It is now easy to derive the rearrangement inequalities of Jurkat
and Ryser given in [4, Lemma 6.1, p. 353] (cf. [5, p. 498]) and also
those of Minc given in [5, Theorems 3-5, pp. 501-502].
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