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We investigate the invariance of certain classes of gen-
eralized metric spaces under finite-to-one open maps. In
particular, the following classes of spaces are invariant: w4-
spaces, [-spaces, 2¥spaces, wy-spaces, y-spaces, quasi-metriza-
ble T',-spaces, s-spaces and Moore spaces. Several applications
are given, including a metrization theorem via finite-to-one
open maps. We also show that M-spaces, wM-spaces, wN-
spaces, and M ;-spaces (¢ = 1, 2, 3) are not necessarily preserved
by finite-to-one open maps. Further, an example is presented
which shows that some of those classes of space which are
invariant under finite-to-one open maps are not necessarily
invariant under compact open maps.

1. Introduction. Y. Tanaka [28] showed that several classes of
generalized metric spaces are invariant under finite-to-one open maps.
In this paper we extend his results to other classes of spaces. A map
f: X — Y is finite-to-one if, for every ye€ Y, the set f~'(y) is a finite
subset of X. All maps are assumed to be continuous and onto. For
other pertinent references the reader is referred to ([8], [9], [24]).

In §2, the investigation of the invariance of many classes of
spaces under finite-to-one open maps is undertaken. An interesting
consequence of invariance under finite-to-one open maps is a result
on point-finite open covers in Corollary 2.4. Also, in § 2, an example
is presented which discusses the situation for compact open maps.
Further results on finite-to-one open maps, with respect to certain
classes of spaces defined by Hodel [13], are presented in §4.

In §3, we use the results of §2 to obtain some interesting map-
ping theorems of the following sort: Let f: X— Y be a finite-to-one
open map of a regular wd-space X onto a space Y: (1) If Y is a
space with a Gy-diagonal, then both X and Y are developable; (2)
If Y is a collectionwise normal, o*space, then both X and Y are
metrizable.

Before proceeding to our theorems, we consider some of the basic
terminology needed for this paper.

A space X is called a wd-space [5] if there is a sequence (%) of
open covers of X such that if z, € St(x, %,), then the sequence <{z,)
clusters. If there is a sequence (%Z/,) of open covers of X such that
{St(x, Z,):n =1, 2,---} is an open basis at € X, then X is said to
be a developable space. A regular developable space is called a Moore
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space.

A space X is called a B-space [14] if, for each z¢€ X, there is a
sequence {g,(x):n =1, 2, ---} of open neighborhoods of X such that
if zeg,(x,), then the sequence <{x,) clusters.

Instead of giving the definitions of o*-spaces [27], 2*spaces [20]
and quasi-metrizable spaces [29], we present equivalent formulations
which are used in the proof of Theorem 2.1. For the actual defini-
tions of these concepts, the reader is referred to the above references.

LEMMA 1.1 (Heath). A space X is a o*-space if and only if,
for each xze€ X, there is a sequence {g,(x):n =1,2, ---} of open
neighborhoods of x satisfying

(a) N7z g.(@) = {z} for all xe X.

(b) If yeg.(x), then 9.(y¥) C g.(x) for all z, ye X and nec N.

LEMMA 1.2 (Nagata [23]; see also [2]). A space X is a Z*-space
if and only if, for each x € X, there is a sequence {g,(x):m =1, 2, +--}
of open meighborhoods of x satisfying:

(a) If yeg,(x), then 9.,(y) C g.(x) for all x, ye X and ne N.

(b) If xeg,(x,), then the sequence {x,y clusters.

LemMA 1.3 (Ribeiro [25]). A Ti-space X is quasi-metrizable if
and only tif, for each x € X, there is an open basis {g,(x):n =1,2, -..}
such that if y € g9,(x), then ¢,(y) C g._(x) for all x, ye X and n = 2.

Unless otherwise stated no separation axioms are assumed; how-
ever, regular spaces are always assumed to be T, and paracompact
means paracompact T,. The set of positive integers will be denoted
by N.

2. Basic results on finite-to-one open maps.

THEOREM 2.1. Let f: X —Y be a finite-to-one open map.

(A): If X is a wd-space, then Y s a wd-space.

(B): If X ts a B-space, then Y is a [B-space.

(C): If X is a o*-space, then Y is a o*-space.

(D): If X is a Z*space, then Y is a Z*-space.

(E): If X is a quasi-metrizable T,-space, then Y 1is quasi-
metrizable T,-space.

Proof. (A): Suppose (Z,) is a sequence of open covers of X
illustrating that X is a wd-space. We may assume %y < %, for
each ne N. Let ¥, = f(%,) = {f(U):Ue %,} for eachne N. Since
f is an open map, { %;} is a sequence of open covers of Y. Suppose
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yeY and y, € St(y, &;) for each ne N. Then, for each n, there is
an element V,e 27, such that {y, y,} C V, = f(U,) for some U, Z,.
Choose 2, € U, such that f(z,) =y. Since f is a finite-to-one map,
there is an xe€f™'(y) and a subsequence {x, >, of (x,)> such that
%,, =« for all i€ N. Since y,, € f(U,,), there is a z,,¢ U,, such that
fz,) = y.,. But then, {#, z,}CU,, and thus z, e St(r, Z,). Hence
the sequence (z,,) clusters and it follows that the sequence {y,) =
{f(z,,)y clusters. Thus Y is a wd4-space.

(B): For each ze€ X, let {g,(x):% =1,2, --.} be a sequence of
open neighborhoods of x illustrating that X is a G-space. We may
assume ¢,.,(x) C g,(x) for each e N. For each ye Y, let h,(y) =
N {f(9.(x)): we f7(y)}. Since f is an open map, {h,(y):n =1,2, ---}
is a sequence of open neighborhoods of y. Suppose y¢€ k,(y,). Then,
for each n, there is a z,€ f'(y,) such that v e f(g,(z,) and thus an
%, € 9,(2,) such that f(x,) =y. Since f is a finite-to-one map, there
is an re f~'(y) and a subsequence {, i, of <{x,) such that x,, =2
for all e N. Thus zeg,(2,)Cg.(2,,) and the subsequence {z,}:,
has a cluster point. Therefore <z,) has a cluster point and thus so
does {f(z,)> = {¥.) showing that Y is a B-space.

(C): Since X is a o*-space, there is a sequence {g,(z): n=1, 2, -- -}
of open neighborhoods of each xe¢ X satisfying conditions (a) and (b)
of Lemma 1.1. For each ye Y, let &,(y) = N {f(g.(): xef ()}
Since f is an open map, {4, (¥):n =1,2, ---} is a sequence of open
neighborhoods of y. To verify condition (1) of Lemma 1.1, suppose
yeY. Ifze Yandz # y, then f~'() N f*(y) = @. Since f7'(2) and
f'(y) are finite sets, there is an integer » such that g,(x) N /') = ©
for all xef'(y). It follows that z¢ M {f(9.()): xe ()} = h.(y).
Thus {y} = N #.(y). For condition (2) of Lemma 1.1, we suppose
2€ h,(y). Then ze€ f(g,(x)) for every z€ f'(y) and thus there is an
2, € g,(x) such that f(x,) = 2. Since x,€ g,(x), 9.(x,) C g.(x) and thus
Fga(2.)) C f(ga(x)). Thus N {f(g.(x.): e )} N{flg.(x): xe (W)}
It follows that %,(2) C h,.(y) and thus Y is a o*space.

(D): Using the characterization of X*-spaces given in Lemma
1.2, (D) is proved by essentially combining the arguments presented
in proving (B) and (C).

(E): By Lemma 1.3, for each x € X, there exists an open basis
{9.(x):n =1, 2, ---} such that if y € g,.(x), then g,(y) C g.-.(x) for every
2, ye X andn = 2. ForeachyecV,leth,(v) = N{f9.&):xef (y)).
It is easy to verify that {k,(y):n =1,2, ---} is an open basis for
y. Also, using an argument analogous to that used in (C), it follows
that if zeh,(y), then A,(2) Ch,_,(y). Thus, since Y is clearly a
T,-space, Y is quasi-metrizable by Lemma 1.8.

As immediate consequences of Theorem 2.1, we have the follow-
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ing results concerning o-spaces and Moore spaces. As in [28], we
define a o-space to be a space with a o-locally-finite closed net.

COROLLARY 2.2 (Tanaka [28]). Let f: X—Y be a finite-to-one
open map of a o-space X onto o space Y. Then Y is a o-space.

Proof. Since X is a og-space, X is clearly both a 2* and o*-space.
Thus, by Theorem 2.1, Y is a % and o*-space. But a 3* and o*space
is a o-space [26].

COROLLARY 2.3. Let f: X —Y be a finite-to-one open map of a
Moore space X onto a space Y. Then Y is a Moore space.

Proof. Since X is a Moore space, X is a w4 and o*space. Thus,
by Theorem 2.1, Y is a w4 and o*-space. Also, since f is a finite-
to-one open map and X is regular, it follows that Y is regular. But
a regular, wd and o*space is a Moore space [6].

As an immediate consequence of the results of this section we
have the following:

COROLLARY 2.4. Let {0,: e A} be a point-finite open covering
of X. If each 0, is a wd-space (B-space; o*-space; Z*-space, quasi-
metrizable T,-space; o-space; Moore space), then so is X.

The following example shows that Corollary 2.4 and thus Theorem
2.1 do not hold for M-spaces [21], M*spaces [27], M*-spaces [15],
wM-spaces [16] or M;-spaces (v = 1, 2, 3) [7].

ExampLE 2.5. In [10] Corson and Michael constructed a non-
normal, completely regular space X which is the union of two open
metrizable subsets. By Corollary 2.4, X is developable. It follows
that X is not an M, M*, M* wM or M;space (¢ =1, 2, 3).

The following example shows that we can not replace the finite-
to-one open map by a compact open map in Theorem 2.1 (A), (B), (D)
and Corollaries 2.2 and 2.3. This example also shows that semi-
metrizable and semi-stratifiable spaces [11] are not preserved by
compact open maps.

ExAMPLE 2.6. Let Q be an uncountable subset of [0, 1] whose
only compact sets are countable, such spaces exist [17, p. 514]. Let
Y be [0, 1] retopologized so that the open sets have the form UU T~
where U is open in the usual topology of [0,1] and Vc Q. The
space Y is a nonmetrizable, paracompact space with a G;-diagonal.
It [19] Michael showed that the product of Y with a metric space
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is not normal. It follows from [18, Proposition 5] that there is a
closed subset of Y which is not a G,-set. Thus Y is not semi-
stratifiable and hence not a semimetrizable space, o-space, nor a
developable space. Further, since Y is a paracompact space with a
G,-diagonal, Y is not a GB-space nor a Y*space. In [3] Bennett showed
that there is a T,, metacompact developable space X and a compact
open map from X onto Y.

We remark that Tanaka [28] constructs many other interesting
examples concerning finite-to-one open maps and compact open maps.

3. Applications. A space X is said to have a G¥-diagonal [14]
if there exists a sequence (¥, of open covers of X such that, for
each z¢ X, Ny St (z, &,) = {x}. According to Hodel [14], a space is
a Moore space if and only if it is a regular, w4-space witn a G¥-

diagonal

THEOREM 3.1. Let f: X—Y be a finite-to-one open map of a
regular wd-space onto a space Y. If Y has a GF-diagonal or is a
ag*-space, then both X and Y are Moore spaces.

Proof. By Theorem 2.1, Y is a wd-space. If Y has a Gj-
diagonal, then Y is a Moore space by Hodel’s theorem. If Y is a
o*-space, then Y is a Moore space by a result of Burke [6, Theorem
2.4]. Thus, in either case, Y is a Moore space. On the other hand,
using a result of Tanaka [28] (see also Coban [9]), it follows that
X is a o-space since Y is a Moore space. But, a o-space which is
a wd-space is a Moore space. Thus X is a Moore space.

Let Z be a collection of open subsets of a space X. The col-
lection Z is called point-countable if each point x e X belongs to at
most countable many members of Z. The collection Z is called
point-separating provided that if p # q are points in X, there is
some Ue 7 such that pe U and g¢ U. Nagata [22] proved that
a space is metrizable if and only if it is a paracompact, w4d-space
space with a point-countable, point-separating open cover.

THEOREM 3.2. Let f: X—Y be an open finite-to-one map of a
regular wd-space X onto a space Y. If Y has any one of the fol-
lowing properties, then both X and Y are metrizable.

(a) Y is a paracompact space with a point-countable, point-
separating open cover.

(b) Y is a paracompact space with a G,-diagonal.

(¢) Y is a collectionwise normal, o*space.

Proof. By Theorem 2.1, Y is a wd-space. Thus, in case (a),
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Y is a paracompact, w4-space with a point-countable, point-separating
open cover and therefore metrizable by Nagata’s result. For (b), we
note that it is easy to verify that a paracompact space with a G;-
diagonal has a point-countable, point-separating open cover. Thus
(b) follows from (a). For (c), we note that since Y is clearly a
regular space, Y is a Moore space by Theorem 3.1. Consequently,
since Y is a collectionwise normal Moore space, Y is metrizable [4].
The above arguments show that if Y satisfies (a), (b) or (c), then
Y is metrizable. It remains to show that X is metrizable.

To verify the metrizability of X we use the fact that, since Y
is metrizable, Y is a hereditarily paracompact, o-space. Since Y is
hereditarily paracompact and f is a finite-to-one open map, X is
hereditarily paracompact [8, Theorem 38]. Furthermore, since Y is
a o-space and f is a finite-to-one open map, X is a o-space ([9], [28]).
However, it is well known that a paracompact, o, wd-space is
metrizable. Thus X is metrizable.

In order to prove Theorems 3.3 and 3.4 we need the following
results:

LEMMA A (Shiraki [26, Corallary 2.2]). A space X is a o-space
if and only if X is a 2% and o*-space.

LeEvMMA B (Hodel [14]). A T,-space X is semi-stratifiable if and
only if X is a B and o*-space.

THEOREM 3.3. Let f: X—Y be a finite-to-one open map of a
o*-space X onto a S*-space Y. Then both X and Y are o-spaces.
Moreover, we may interchange the roles of X and Y.

Proof. By Theorem 2.1, Y is a o*-space and thus a o-space by
Lemma A. Since Y is a o-space and f a finite-to-one open map X
is a o-space ([9], [28]). The “moreover” is proved in exactly the
same manner.

THEOREM 3.4. Let f: X —Y be fintite-to-one open map of a T,
o*-space onto a B-space Y. Then both X and Y are semi-stratifiable.
Moreover, we may interchange the roles of X and Y.

Proof. By Theorem 2.1, Y is a o*space and thus a semi-strati-
fiable space by Lemma B. Since Y is semi-stratifiable, X is semi-
stratifiable [28, Theorem 2]. The “moreover” is proved in exactly
the same manner.

4. Hodel’s spaces. The author is very grateful to the referee
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(R. E. Hodel) for suggestions which led to this portion of the paper.

By Hodel’s spaces we mean those classes of spaces which were
introduced in [13]; these include wY-spaces, wf-spaces and wN-spaces.

A space X is a w7v-space if, for each xre X, there is a sequence
{9.(): =1, 2, --.} of open neighborhoods of 2 such that if y, € g,(x)
and z,€ ¢.(¥.), then the sequence {(x,> has a cluster point. If we
require that x is a cluster point of the sequence (x,>, then X is
called 7-space [13].

For wv-spaces and 7v-spaces we have the following results analo-
gous to Theorem 2.1

THEOREM 4.1. Let f: X —Y be a finite-to-one open map.
(a) If X is a wY-space, then Y is a wY-space.
(b) If X is a 7Y-space, then Y s a 7-space.

Proof. (A): For each zc X, let {g,(x):n =1,2, ...} be a se-
quence of open neighborhoods of x illustrating that X is a wv-space.
We may assume ¢,..(x)C g.(x) for each ne N. For each ye Y, let
ha(y) = N {f(9.(2)): x€ f7(y)}. Since f is an open map, {k,(y): n€ N}
is a sequence of open neighborhoods of y. Suppose, for ye Y, that
t. € h.(y) and s, € h,(t,). Since f is a finite-to-one map and ¢, € k.(¥),
there is a subsequence (%,:., of (%,) such that i,;€ f(g.,(x)) for some
€ f(y). Thus, there is an z, €g,,(®) such that f(x,) =t¢,. Also,
since s,, € A, (t.,) C f(9.,(%.,), there is a 2, € g, ,(x,,) such that f(z,) =
8., Since w,,€ g,(x) and 2, €g9,(x,), it follows that (z,)i, has a
cluster point. Therefore, s, = {(f(z,)>%. has a cluster point
and thus so does {s,) showing that Y is a w7v-space.

To prove (B), we merely have to observe that if & were a cluster
point of (2, )%, in the preceding argument, then y = f(x) would be
a cluster point of (s, )il..

The author has not been successful in obtaining an analogue of
the preceding result for wéd-spaces and @#-spaces, although a straight
forward argument for these cases yields the following.

THEOREM 4.2. Let {O,: a € A} be a point-finite open covering of X.
If each O, is a v-space (wY-space; wd-space; O-space), then so is X.

Turning our attention to wN-spaces, we note the following result
of Hodel [13]: A space X is a wM-space if and only if it is wN-
space and a wvY-space. As an immediate consequence of this result
and Theorem 4.2, Example 2.5 shows that wN-spaces are not preserved
by finite-to-one open maps and that Theorem 4.2 does not hold for
wN-spaces.
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5. Summary. In this section we summarize the known results
concerning the invariance of certain classes of generalized metric
spaces under finite-to-one open maps.

(A): Classes of spaces invariant under finite-to-one open maps:
In this paper we have shown that wd4-spaces, w7Y-spaces, Y-spaces,
[B-spaces, o*-spaces, X*-spaces, quasi-metrizable T,-spaces, o-spaces
(see also [28]), and Moore spaces are invariant. Also, according to
Tanaka [28], P-spaces, strict p-spaces, symmetric spaces, semimetri-
zable spaces and semi-stratifiable spaces are invariant. In fact, Henry
[12], showed that semi-stratifiable spaces are invariant under pseudo-
open finite-to-one maps.

(B): Classes of spaces mot imvariant under finite-to-one open
maps: We have shown in Example 2.5 that M-spaces, wN-spaces
M*-spaces, M*-spaces, wlM-spaces and M;-spaces (¢ =1, 2, 3) are not
invariant. Also, Example 8.3 of [28] shows that X-spaces and sub-
paracompact spaces are not invariant.

Finally, we note that it does not seem to be known if p-spaces
[1] or quasi-complete spaces [11] are preserved by finite-to-one open
maps. As mentioned previously, the invariance of w@-spaces and
f-spaces is not known.
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