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It is known that the construction of the ring of fractions
S^A of a commutative ring A by a multiplicative subset S
of A can be extended to the differential case. This means
that for a given differential ring (A, d), the differential ring
of fractions of (A, d) by S is constructed simply by defining
a derivation operator on S~XA in terms of the derivation
operator d on A. We seek to explain in the categorical
setting of adjunctions and comonads the reasons for which
this and other constructions can be extended to the differential
case. A natural product of this investigation is the construc-
tion of the differential affine scheme of a differential ring.

l Introduction* Stated simply, there are three points which
explain why certain constructions involving commutative rings can
be carried over to the differential case. These three points are
adjunction, comonad and compatibility. The reader is referred to
[9] for the necessary background on adjunctions and monads (to
which comonads are dual). We add a few words to clarify each of
these points.

By adjunction we mean that each of the constructions we con-
sider is part of an adjunction, i.e., is an adjoint functor. This
point will be made clearer as we discuss each example in §§ 3, 4
and 5.

By comonad we mean that for each of the categories related to
commutative rings there is a comonad on that category whose coal-
gebras are isomorphic to the differential analogue of that category.
For example, the category Diff of differential rings is isomorphic to the
category Commfl of β-coalgebras for a comonad Ω on the category
Comm of commutative rings [7]. Since this example is of central
importance for this paper, and since each of the other comonads we
shall discuss is defined in terms of Ω, we elaborate on this point
below.

For the remainder of this paper we adopt the convention that
all rings are commutative with unit and all ring homomorphisms
preserve the unit. We also make frequent use of the notation F:
<Sχr-~*&\ A—>FA: f-*Ff when defining a functor F:j*f->& to
describe its action upon objects Aejϊf and morphisms fej^f.

The category Diff has as its objects differential rings which are
pairs (A, d) where A is a ring and d is a derivation operator on A,
i.e., d:A—>A is additive and satisfies the product rule d(ab) =
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d(a)b + adφ) for any a, be A. A differential ring homomorphism
/: (A, d) —• (A', d') is a ring homomorphism f:A—*A' with <Z'/ = /<$.

There is an adjunction < U, G, η, ε>: Diff -* Comm where U: Diff —>
Comm: (A, d)~+A:f—>f is the forgetful functor. The right adjoint
G is defined by G: Comm-*Diff: A-+(ωA, dΛ):f-+ωf, where for
any ring A, ωA is defined as follows. The elements of ωA are
countable sequences in A, i.e., of the form (an) where ane A, neN=
{0, 1, 2, . •}, with operations (an) + (δn) = (αn + δΛ) and (αΛ) (6») = (O,
where cn = Σt=o Cntkakbn_k. Here Cn>Jb = nl/kl(n - A;)! denotes the
usual binomial coefficient. The derivation operator dA on ωA is
defined by dA((an)) = (an+ί), and for any ring homomorphism /: A —• A',
ωf:(ωA, dΛ)-+(ωA', dA,) is defined by ω/((αj) = (/(αj). The unit
)?:Diff-*Gί7 is, for any (A, d)eDiff and any αeA, a differential
ring homomorphism ηUtd): (A, ώ)->(ωA, 3J given by VuAa) = (ώ(%>(α)),
where cZw denotes the ^ t h iterate of d for n ^ 1, and ώ(0) = ΐeẐ .
The counit ε: ί7G"->Comm is, for any A e Comm and any (an)eωA9

SL ring homomorphism εA: ωA —* A given by εA((an)) = α0.
It follows from [9, p. 135] that the adjunction (U,G,η,e):

Diff -* Comm defines a comonad β = (ω, e, δ) = (UG, ε, UηG) on Comm.
If Comitii? denotes the category of β-coalgebras and their morphisms,
the cocomparison functor Φ: Diff —»Comm0 which exists by [9, Theorem
1, p. 138] is an isomorphism since U satisfies the hypothesis of the
dual of Beck's theorem [9, Theorem 1, p. 147]. We need not
concern ourselves herein with the description of either the category
Coming or the isomorphism Φ, but only with existence of the isomor-
phism Φ: Diff —> Commβ.

Finally, by compatibility we mean that each of the adjunctions
is compatible with the comonads involved in the sense that the right
adjoint of each adjunction commutes with the comonads. As a
consequence of the main result of § 2, the adjunction extends to
one between the coalgebras, which are seen to be the differential
analogues of the categories in the original adjunction. It is in this
sense that the constructions extend to the differential case.

2. Comonad adjunctions. Let gf = (G, ε, δ) and gf' = (G', ε', δ')
be comonads on όzf and J ^ ' respectively. We say that (S, κ)\
(J^, gf) —> (jy", gf') is a comonad functor if S: J^ —• Sff is a
functor and it: SG ~+ G'S is a natural transformation such that
e'S ic = Sε and δ'S ic = G'/c Λ:G . Sδ.

If (S, fc): (jf, gf) — (ja", gf') and (S'f Λ:'): (J^\ gf') -* (J^", ^ " )
are comonad functors, the composite (S'f κ') (S, ιc) = (S'S, ic'S S'IC):

(J&, gf) -> (J^", 5^") is also a comonad functor. Hence there is a
category Cmnd whose objects are pairs (J^, gf) where J ^ is a
category and ^ is a comonad on J ^ and whose morphisms are the



ADJUNCTIONS AND COMONADS IN DIFFERENTIAL ALGEBRA 101

comonad functors defined above. If Cat denotes the category of all
(small) categories, there is a functor Coalg: Cmnd —> Cat: (sf, 5f) —>
J ^ : (S, fc)-+Sκ, where for a comonad functor (S, fc): (s$ζ <&) ~>
(Sff, Sf')> Sκ: sf? -> (sf%>: (A, a) -> (SA, κA . Sa): f — Sf. Other
purely formal considerations in this direction may be found in
[13].

We say that <(S, ιc), (T, λ), σ, r>: (sf, Sf) -- (sf\ Sf') is a comonad
adjunction if (S, ic): (sf, gf) — (J^', Sf') and (Γ, λ): ( j*", Sf') -*
(J< ^ ) are comonad functors and σ: Ssf —> TS and τ: ST—^J^ff are
natural transformations such that

( i ) (S, T, σ, r>: sf —̂  jy" is an adjunction,
(ii) λS T/c σG= Gσ, and
(iii) G'τ.fcT.SX = zGr.
We also say that an adjunction <S, Γ, <J, τ): jtf-± J&" extends

another adjunction <S, Γ, σ, τ>: ̂ r -- j ^ ' by (U, Ur) if ί7: J^"-> J ^
and Ur:^fr^J^r are functors such that ITS = SU, UT = Γί7f,
Uσ — σU and Z7'τ = τ27', or equivalently if (Z7, i7') constitutes a
map from the first adjunction to the second [9, Proposition 1,
p. 97].

THEOREM 2.1. / / <(S, *), (Γ, λ), σ, r>: ( j < ^ ) - - ( j ^ ' , gf') is α

comonad adjunction, there are natural transformations σ, τ such
that (Sκ, Tλ, σ, τ):j^-± (jzf')^, is an adjunction which extends
<S, T, σ, τ): j * - j * " by {Uy, {U%).

Proof. This theorem follows from a theorem of Jean-Pierre
Meyer [10, Theorem 2.2] in the case that ^ = Cat*, the 2-category
Cat with 2-cells reversed. In this case the natural transformation
σ: J^S —*• TλSκ may be defined for any 5^-coalgebra (A, a) byσUιa) =
σA9 and similarly r may be defined for any ^'-coalgebra (A', ar) by

Let ^ = (G, ε, δ) and Sf' = {G\ ε', δ') be comonads on sf and
" respectively, and let S: J*f—+Sf' be a functor. We say that

S commutes with ^ and &' if G'S = SG, ε'S = Sε and δ'S - £®,
or equivalently if the identity natural transformation id: SG —* G'S
makes (S, id): (J< Sf) —> (J^', ^ ' ) a comonad functor.

THEOREM 2.2. Lei gf = (G, ε, δ) α^d &' = (G', ε', δ') 6e comonads
on iSf and Sff respectively, and let <S, T, σ, r ) : J ^ —̂  sf' be an
adjunction. If T commutes with <&' and ^ , there is a natural
transformation tt: SG—> G'S such that <(S, ιc)f (Γ, id), σ, r>: (J< g )̂ -^

^ 0 is a comonad adjunction.
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Proof. Define /c to be the composite τG'S Sλ-1S SGσ, where
λ = id: TG'-*GT. One may then easily check that <(S, Λ:), (Γ, id),
σ, r) is a comonad adjunction.

REMARK. We observe that the conclusion of Theorem 2.2
remains valid if we replace the hypothesis that T commutes with
gf' and & by the hypothesis that T commutes with &' and 2T up
to an isomorphism, i.e., there is a natural isomorphism λ: TG'-+GT
which makes (Γ, λ) a comonad functor. We do not need the added
generality, however.

We now combine Theorems 2.1 and 2.2 to obtain the main result
of this section. We will use this result in the subsequent sections
to obtain the extensions of the constructions to the differential case.

COROLLARY 2.3. Let & and &' be comonads on Szf and
respectively, and let (S, T, σ, τ>: Jzf -^ j y " be an adjunction. If T
commutes with &' and g ,̂ there is an adjunction (S, T, σ, τ>:

* (Jif%, which extends (S, T, σ, r>: sf -* j*f' by (U&, (U%.).

REMARK. The dual of Corollary 2.3 was discovered independently
by Peter Johns tone [6, Theorem 4].

3* Differential rings of fractions* The reader is referred to
[2] for the basic results concerning rings of fractions. We begin
by defining suitable categories for the adjunctions we develop in
this section.

Let Comm' denote the category whose objects are pairs {A, S)
where A is a ring and S is a multiplicative subset of A. A morphism
/: (A, S)—+(B, T) in Comm' is a ring homomorphism /: A—>B such
that f(S) c T. Similarly let Diff' denote the category whose objects
are pairs ((A, d), S) with (A, d) e Diff and S a multiplicative subset
of A, and whose morphisms are the obvious ones.

PROPOSITION 3.1. There is an adjunction (U\ G\ η', e'>: Diff' -»
Comm', and the comonad Ω' defined by this adjunction is such that
(Comm')*' s Diff'.

Proof. The adjunction is defined in terms of the adjunction
< U, G, η, ε>: Diff -- Comm. The left adjoint U' is given by UΊ Diff' —
Comm': {(A, d), S) -»(A, S):f~+f, while the right adjoint G' is defined
by G': Comm' — Diff': (A, S) — ((ωA, dA), So): / — ωf, where So =
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= {(an) e ωA: aQ e S}. The unit η': Diff' -+G'U' and counit ε':
U'G' —* Comm' are given by (r}%A,d),8) = ̂ u,d) and (ε')u,s> = ε4. Observe
that there are faithful functors F: Comm' -> Comm: (A, S)—* A:/—>/
and F ' : Diff' -»Diff: ((A, d), S) — (A, d): / - > / which forget the multi-
plicative subset and are such that F'G' = GF, FU' = t/F', F V =
37F', and JFV = sF. It follows from this observation that {U\ G'9
yff ε'>: Diff' —* Comm' is an adjunction. The cocomparison functor
Φr: Diff' —• (Comm%' which exists by [9, Theorem 1, p, 138] is an
isomorphism since Ur satisfies the hypothesis of the dual of Beck's
theorem [9, Theorem 1, p. 147],

We now observe that the construction of S^A, the ring of
fractions of A by S, is part of an adjunction {L, I, σ, τ>: Comm' -^
Comm. The left adjoint is defined by L: Comm' —•*• Comm: (A, S) —•>
S-'A: f-*f, where for a morphism /: (A, S) -»(B, T) in Comm',
/': S~ιA —* T~ιB is the unique ring homomorphism given by f'(a/s) =
/(α)//(s) [2, Proposition 2, p. 77]. The right adjoint is given by /:
Comm—*Comm': A—»(A, A*): /—•/, where A* denotes the multipli-
cative set of invertible elements in A, i.e., the units of A.

LEMMA 3.2. An element (an) e ωA is invertible if and only if
a0 is invertible in A, i.e., (ωA)* = ε^A*).

Proof. Clearly if (an) e ωA is invertible, then eA((an)) = a0 is
invertible in A. Conversely suppose that (an) e ωA is such that α0

is invertible in A. Let boeA be such that aQb0 = 1, and for n ^ 1
define bn inductively by

One checks that (an)(bn) = 1 = (δo>»), where δQ>0 = 1 and δOj% = 0 for

REMARK. Notice that Lemma 3.2 bears a strong resemblance
to a theorem about formal power series rings, i.e., a power series
Σϊ=oαwΓ is invertible in the ring A[[t]] of formal power series in
one variable with coefficients in A if and only if the constant term
a0 is invertible in A [8, p. 30]. The resemblance is no mere coin-
cidence, however, since for any ring A there is a natural differential
ring homomorphism φA: (A[[t]], d/dt)—+(ωA, dA) defined by φA(Σjn=<>cι>Jn) =

(nlan), where d/dt denotes the usual termwise differentiation of
power series. Moreover, if A contains the ring of rationals, φA is
an isomorphism.
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COROLLARY 3.3. There is an adjunction <Z/, /', σ', r'>: Diff'--
Diflf which extends the adjunction (L, I, σ, τ): Comm' -^ Comm by

Proof. We first claim that / commutes with Ω and Ω'. The
equality Iω — ω'l follows from Lemma 3.2, and since F: Comm' —*
Comm: (A, S) —* A:f—>f is faithful, it suffices to show that Fie =
FeΊ and Fid = Fd'I. But FI = Comm, so that Fie = ε = εFI = Fε'I,
and similarly for the other equation. Now by Corollary 2.3 there
is an adjunction <L, I, σ, τ>: (Comm%/ -^ Commβ which extends (L9 I,
σ, τ>: Comm'-^ Comm. The desired adjunction is induced by <L, Γ,
σ, f> and the isomorphisms Diff = Comm^ and Diff' = (Comm%.

REMARK. The functor I/: Diff' —• Diff constructs the differential
ring of fractions of (A, d) by S. Since UU — LU', we see that
L'((A, d\ S) = (S-1A, dr) for some uniquely determined derivation
operator dr on S~XA. It is possible to show from what we have
done that d' is the derivation operator defined for any ae A and
8 e S by

d'(a/s) = (sd(a) - ad(s))/s2.

This is the usual quotient rule for the derivative of a fraction
[1, p. 310], [3, p. 198], [8, p. 63].

4* Sheaves of differential rings* In this section we adopt the
notation and conventions of [11]. In particular, if X is a topological
space and Ssf is an <J^ category, then ^(H, J^f) denotes the
category of sheaves in j y over X.

If S: Szf —* & is any continuous functor between .^-categories,
there is an induced functor S*: ̂ ~(H, S^)^^(H, &)\ F~>SF:
a—*Sa. This follows from the observation that if S is continuous
then S preserves the equalizer property which characterizes the
sheaves among the presheaves. In particular, if S has a left adjoint,
there is an induced S*.

PROPOSITION 4.1. For any topological space X there is an
adjunction < U*, G*, ψ, ε*>: ^(X, Diff) -* J^(X, Comm), and the
comonad Ω* defined by this adjunction is such that *β~{X, Coming* =

, Diff).

Proof. From the adjunction <£7, G, η9 e): Diff -^ Comm we see
that G has a left adjoint U, and since U is an algebraic functor it
also has a left adjoint [12, Theorem 18.5.3. p. 238]. Hence by the
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observation made above there are induced functors Z7* and G*. If
we define η* and ε* by (η*)P — ηF and (ε*)^ = εF, then it is easy
to see that (U*, G*, ψ, ε*> is an adjunction. The cocomparison
functor Φ*: ^(X, Diff) -> ̂ ( X , Comm)β* which exists by [9, Theorem
1, p. 138] is an isomorphism since Z7* satisfies the hypothesis of the
dual of Beck's theorem [9, Theorem 1, p. 147].

Recall from [11, Theorem 5.1, p. 253] that if j y is an ^-category
and f:X—>Y is a continuous map, there is an adjunction </*,/*,
φ,^y.^(Y,S^)-^^{X,S^). The left adjoint /* is called the
inverse image functor, while the right adjoint /* is called the direct
image functor and is defined for any sheaf F in S$? over X and
open set V in Y by (f*F)(V) =

LEMMA 4.2. If S: Sf —* & is a continuous functor between
^-categories and if f: X—>Y is continuous, then S*f* — f*S*.

Proof. Let F be a sheaf in s$? over X and let V be open in
Y. Then (S*f*)(F)(V) - S((f*F)(V)) - SF(f'\V)) - (f*SF)(V) -
(f*S*)(F){V).

COROLLARY 4.3. If f: X —> Y is continuous, there is an adjunc-
tion </*, /*, φ, f): ^~(Y, Diff) -- JΠX, Diff) which extends the
adjunction </*,/*, Φ, f)\^{Y, Comm)--^"(X, Comm) by (U*, U*).

Proof. It follows from Lemma 4.2 that /*: ^~(X, Comm) —>
, Comm) commutes with the relevant i2*'s. Hence from

Corollary 2.3 there is an adjunction </*,/*, φ, ψ): ^"(Y, Comm)̂ *-̂
^(X, Comm)β*. But ^ " ( ? , Comm)^ ~ ^(Ί, Diff) by Proposition 4.1,
which gives the desired adjunction.

REMARK. We observe from Corollary 4.3 that direct and inverse
images of sheaves of differential rings over a topological space X
are constructed by forming direct or inverse images of the sheaves
of the underlying rings, and the derivation operator on any section
is then uniquely determined in terms of the derivation operator on the
section of the original sheaf of differential rings.

We now observe that, for any complete and cocomplete category
J ^ topological space X and xe X, there is an adjunction (Sx, Kx,
σ, τ>: ̂ (X, J*O -* J ^ where Sx is the stalk functor, defined for
any sheaf F in J / over X by SXF = Fx = limF(U), the colimit

taken over all open sets U in X which contain x. The right adjoint
Kx is sometimes called the skyscraper sheaf functor, and is defined
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for any object A and open set U in X by KXA{ U) — A or 1 depending
whether x e U or x g Z7, where 1 is the terminal object in

COROLLARY 4.4. For any topological space X and any x e X,
there is an adjunction (Sx, Kx, σ, τ>: &~(X, Diff) -* Diff which extends
the adjunction (Sx, Kx, σ9 r>: J^iX, Comm) —* Comm by (Z7*, U).

Proof. The right adjoint Kx: Comm-+^{X, Comm) can be seen
to commute with Ω and i2*, and hence by Corollary 2.3 there is an
adjunction <βx, Kx, σ, F>: ̂ ~(X, Comm)fl* -* Commβ. The desired
adjunction follows from Proposition 4.1 and the isomorphism Φ:
Diff—> Coming.

REMARK. It follows from Corollary 4.4 that the stalk of a
sheaf of differential rings over a point xe X is & differential ring
whose underlying ring is the stalk of the sheaf of the underlying
rings over x, and the derivation operator on that ring is again
uniquely determined.

5* Differential local ringed spaces and the differential affine
scheme of a differential ring* In this section we show that an
adjunction which is of fundamental importance in modern algebraic
geometry is a comonad adjunction. The induced adjunction on the
coalgebras gives the construction of the affine scheme of a differential
ring. A second related adjunction yields the differential affine scheme
of a differential ring.

For most of this section the notation and terminology will be
consistent with that of [4]. We begin by stating several lemmas
concerning local rings and local ring homomorphisms [2, p. 102].
A* will denote the units of the ring A.

LEMMA 5.1. ( i ) Let f: A—>B be a ring homomorphism such that
f'^B*) = A*. Then if B is local, so is A, and f is a local ring
homomorphism.

(ii) Let A and B be local rings and let f: A-+B and g: B~+ A
be ring homomorphisms with gf = id4. Then if g is local, so is /.

LEMMA 5.2. Let {Aa, φβa) be a directed system of rings, and let
A = lim Aa be the direct limit. Then the A* form a directed system

of sets with respect to restrictions of the φβa, and we have A* =
limAJ.

We will say that a sheaf F in Comm over X is local if for
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each xeXt Fx is a local ring, and a morphism a:F—*F' of local
sheaves in Comm over X will be called local if ax: Fx —>FX is a
local ring homomorphism for each x e X. The following proposition
says that the comonad 42* = (ω*, ε*, δ*) on ^ ( X , Comm) of Proposi-
tion 4.1 restricts to the subcategory of local sheaves and local
morphisms.

PROPOSITION 5.3. Let F be a local sheaf in Comm over X.
Then ω*F is also a local sheaf in Comm over X, and ε%:ω*F—+ F
and dpi ω*F—+ω*ω*F are local morphisms. Moreover, if a: F-+Ff

is a local morphism, so is a)*a: ω*F—+ύ)*F'.

Proof. To show that ω*F and εj are both local, it suffices by
Lemma 5.1 to show that (εJ^CF*) = (ω*F)t for any xeX. Taking
all Iim over the directed system <%fx of open sets U in X containing

x, we see that (et)?(F*) = (εj)r1 (Iim F(U))* ( ^ (ej)-1 QimF(U)*) =

Iim εj\σ)(F( 17)*) = Iim ωF{ U)* ~ QimωF( U))* = (ω*F)ϊΓ Here the
— • . — • .—>.

equations (1) follow from Lemma 5.2, (2) since inverse images in the
category of sets, Ens, are really pullbacks, hence finite limits, and
that in Ens finite limits commute with colimits over directed sets
(%SX in this case) [9, Theorem 1, p. 211], and (3) from Lemma 3.2.
Now from the comonad equations we have ε**̂  δj = id^, and since
ε%*F is local by the above argument, Lemma 5.1 shows that <5J is
local. Finally, suppose that a:F—+F' is a local morphism of local
sheaves. Then since ej, ω*a = a. εj and (ω*F)Z = (εj)"1^*), we
see that (ω***)"1^*.?7')*) = (ω*F)t, so again by Lemma 5.1 a)*a is
local.

We will denote the category of local ringed spaces and their
morphisms [4, p. 92-93] by Loc. We define a differential local ringed
space to be a pair (X, ^x) where X is a topological space and έ?x

is a sheaf in Diff on X such that ?7*^ x is local, i.e., (U*^Σ)X =
Uέ?x>x is a local ring for each x e X. Observe that we are not yet
requiring the maximal ideal in Uέ?XjX to be a differential ideal. If
(X, έ?x) and (Y, έ?γ) are differential local ringed spaces, then (f, θ):
(X, έ?x) —• (Y, έ?γ) is called a morphism of differential local ringed
spaces if ψ:X—>Y is continuous and θ: έ?γ-+ έ?x is a local ψ-
morphism of sheaves in Diff, i.e., Θ\^7Y—>ψ*έ?x is a morphism in
JT(F, Diff) such that U*θ: Z7*< F̂-> U*ψ*<rz = f^U*^ is a local
morphism in ^{Y, Comm). If (ψ, θ): (X, έrz)-+(Y, <?τ) and (f, θ'):
(Γ, &Ύ)—>(Z, έ?z) are morphisms of differential local ringed spaces,
then their composite is given by (ψ'f θ') (φ, θ) = (ψ'ψ, f'*θ θf):
(X, έ?x) —> (Z, έ?z). The category of differential local ringed spaces
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will be denoted by Diff Loc.
We have seen that the adjunction (U, G, Ύ}9 ε>: Diff —* Comm

defines the comonad Ω on Comm with Commβ = Diff, and similarly
the adjunction < J7*, G*, ψ, ε*>: J^(X, Diff) -* J^XX, Comm) defines
the comonad β* on ^ ( X , Comm) with ^ ( X , Comm)fl* s ^~(X9 Diff).
We extend the parallel to differential local ringed spaces.

THEOREM 5.4. There is an adjunction <G°, £7°, ε°, γ)ι Loc -^
Diff Loc, and the monad Ω° defined by this adjunction is such that
Locβ0 ~ Diff Loc.

REMARK. We note that differential local ringed spaces are
algebras for a monad, rather than coalgebras for a comonad as
differential rings and sheaves of differential rings have been. This
is due to the nature of the morphisms in Loc and Diff Loc, i.e.,
(f, θ): (X, έ?z)-*(Y9 έ?τ) with θ: ^y^f^x backwards (literally!).

Proof. The right adjoint is defined by Z7°: Diff Loc —> Loc:
(X9<?z)^(X9U*έ?z):(φ9θ)-+(φ9U*θ)9 while the left adjoint is
defined by G°: Loc — Diff Loc: (X, a?z) — (X, G*<?z): (ψ, θ) — (ψ, G*θ).
Note that by Proposition 5.3 if (X, έ?x) is a local ringed space then
U*G*^X — (ύ*έ7x is a local sheaf over X, and if (f, θ) is a mor-
phism of local ringed spaces then U*G*Θ — ω*θ is a local morphism
of sheaves over Y, so that G° is well defined. Define the unit ε°:
Loc — U°G° and counit γ:G°U°~-+ Diff Loc by s\x,#χ) = (idx, εj χ)
and y\χ,<?x) — (idx, y£z) Again by Proposition 5.3, e j x is local and
ε£*^χ U*rj%x = id^^x, so that by Lemma 5.1, U*rj*x is also local.
It is clear that the adjunction equations for <G°, U\ ε°, η°) follow
from those for < U*9 G*, η*f ε*> and the (backward) composition of
morphisms in both Loc and Diff Loc. It remains to show that the
comparison functor Φ°: Diff Loc—*Locβ0 which exists by [9, Theorem
1, p. 138] is an isomorphism, and for this we use Beck's theorem
[9, Theorem 1, p. 147].

Let (fit θt):{X, έ?χ)--*(Y, έ?Y), i = 1, 2, be a parallel pair in
Diff Loc for which U°(ψi9 θt) — (ψi9 U*θz) has a split coequalizer in
Loc, say

(Ψi, ϋ*0i) (q, e)

(X, U*&χ) =Ξ=X (Γ, U*έ?γ) ^H
ί (ψ2> u*e2) i {h,μ)

Using the rule (/', θ'). (/, θ) = (/'/, f'*θ θ') for composition in Loc,
it is not difficult to see that
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_: e U*q*θί

q*μ I U * q *

is a split equalizer in ^~(Z, Comm). Now since the cocomparison
functor Φ*:^r(Z, ΌiS)—^^(Zf Comm)β* is an isomorphism by Pro-
position 4.1, the dual of Beck's theorem implies that ί7* creates an
equalizer for the parallel pair q*θlf q*θ2 in ^{Z, Diff). Hence <ί?z =
U*έ?z and e = U*θ for a unique έ?z e ^~(Z, Diff) and a unique θ: ^z-^

in ^~(Z, Diff), and 0 is the equalizer of q*θ1 and q*θ2 in
, Diff). It follows that (q, θ): (Y, ^ F ) — (Z, ^ ) is the coequalizer

of (fu θt), i = 1,2, in Diff Loc, and from Beck's theorem we now
conclude that Φ°: Diff Loc —* Locβ0 is an isomorphism.

Recall now from [4] that there is an adjunction which enjoys a
central role in modern algebraic geometry and which gives rise to
the fundamental notion of the affine scheme of a ring. This adjunc-
tion will be denoted by (Spec, Γ, θ, p): Comm —* Loc02>, where Loc02?

is the category dual to Loc. Its left adjoint is the (contravariant)
functor Spec: Comm —>Locoί), which defines the affine scheme (Spec (A),
A) of a ring A [4, 1.6.1, p. 209]. The right adjoint of the adjunc-
tion is the (contravariant) global sections functor Γ: Loc03> —> Comm:
(X,έrχ)-*έ?AX):(φ,θ)-+Γ(θ). We also observe that the unit
θ:Comm~+Γ Spec of the adjunction is a n a t u r a l isomorphism [4,
1.3.7, p . 199].

COROLLARY 5.5. There is an adjunction (Spec', Γ', θ', ρ')\ Diff-^
Diff Loco?) which extends the adjunction (Spec, Γ, θ, p): Comm -^
Loc0?), and θ'\ Diff —*Γ" Spec' is a natural isomorphism.

Proof. We first note t h a t by the dual of Theorem 5.4 there is a
comonad, which we shall denote by Ω°, on Loc0P such t h a t (Loc03%o =
Diff Loco?\ F u r t h e r m o r e , the r i g h t adjoint Γ of the adjunction
(Spec, Γ, θ, p): Comm —̂  Loco p commutes wi th t h e comonads Ω° and
β. By Corollary 2.3 there is an adjunction (Spec, Γ, θ, p): Commβ -^
(LocOP)βo which extends (Spec, Γ, θ, p): Comm -^ Loc0?), and the desired
adjunction m a y be defined in t e r m s of the adjunction (Spec, Γ, θ, p):
Commβ —̂  (LocOP)βo and the isomorphisms Commβ ~ Diff and (Loc°*%o ~
Diff Loco2\ Finally, since (Spec', Γ', ff, p') extends (Spec, Γ, θ, p) by
(U, Z7°) we see t h a t Uθ' — ΘU is a n a t u r a l isomorphism. But U re-
flects isomorphisms, so t h a t θf is a n a t u r a l isomorphism.

For any differential r ing (A, d), Spec' (A, d) = (Spec (A), (A, d))
is called the affine scheme of the differential r ing (A, d) and has
many properties in common wi th the affine scheme of a ring. For
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example, we see from Corollary 5.5 that θf\ Diff —»Γ' Spec' is a
natural isomorphism. This means that the differential coordinate
ring of the affine scheme of any differential ring is naturally iso-
morphic to the differential ring, which in the non-differential case
is a well known result. Moreover, one can easily show that the
sheaf (A, d) on Spec (A) is such that for any #eSpec(A), (A, d)x =
(Ax, dx), where Ax is the local ring of fractions S~ιA with S — A — j x

and dx is the derivation operator on Ax defined by

dx(a/s) = (sd(a) — ad(s))/s2

for any aeA, s £ jx(cί. § 3).
Recall from [1, p. 315] that a local differential ring is a differ-

ential ring (A, d) whose underlying ring A is a local ring and whose
maximal ideal mA is a differential ideal, i.e., d(mA)cmA or equivalently
ώ~1(A*)cA*. We now define an LDR-space to be a differential
local ringed space (X, &z) such that for any xeX, έ?XtX is a local
differential ring. The full subcategory of Diff Loc consisting of the
LDR-spaces will be denoted by LDR.

PROPOSITION 5.6. LDR is a coreflective subcategory of Diff Loc.

Proof. We show that the inclusion functor K: LDR —* Diff Loc
has a right adjoint D: Diff Loc —* LDR. For any (X, <?z) e Diff Loc,
define D{X, έ?z) = (Xo, &x \ Xo), where Xo = {x e X: έ?x>x is a local
differential ring} with the subspace topology and έ?x \ Xo is the
restriction of &z to Xo. Note that {^x \ X0)x = &ZtX for any x e Xo,
so that (X09 d7x I JEo) € LDR. Now let (iz, φx): (Xo, έ?x \ Xo) — (-X", <?z)
denote the canonical injection, where ix:X0-+X is the inclusion of
the subspace and φx: 0>

x-+{ix)*{έ?x \ Xo) = (iχ)*(iχY&>χ ί s t h e u n i t

of the adjunction <(iz)*, (ix)*, φ, ψ): J^iX, Όitt)--Jr(Xo, Diff) from
Corollary 4.3. To see that D is a functor, let (ψ, θ): (X, έ?z) ->
(Γ, ^γ) be a morphism of differential local ringed spaces. Then if
x G Xo, έ7x,x is a local differential ring, so that d~\d7x,x) c &£tX9 where
dβ denotes the derivation operator of #Zt9. Since θ*x: έ?Y,ψ(X) ~+ έ?x,x

is a differential ring homomorphism it follows that (θD^d^i&x,*) =
^UίflίΓ'ί^?,.) c (^*)"1(^>ί,a;), and since (ψ, ί) is a morphism in Diff
Loc we see that (β\)~\(^i,x) = ^γ,ir{x). Hence ώ^1

(a.)((̂ /,̂ (ίC)) c έ?γ,ψ[x),
so that ^r,^(e) is a local differential ring and ψ(α?) e yo Therefore
there exists a unique continuous ψ0: Xo —* Yo such that ψ ix = iγ » ψ0.
One checks that θ: έ?γ—>ψ*έ?x also restricts properly to give 0| Yo:
έ?γ\Y0-> (to)*(^r I Xo) by observing that έ?x \ Xo = (i z)*^r, ^ r | Γo =
(ί Γ )*^ F and ψ-ix — iγ- ψ0. Hence i) is a functor, and clearly DK =
idLDR. There is also a natural transformation i: KD—*idDiff LOC with
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components iu,*z) — fe> ΦxY- (Xo> &x I X0)—+(X, έ?x) as above. Finally,
one checks that (K, D, id, i): LDR-^Difiί Loc is the desired adjunction.

COROLLARY 5.7. There is an adjunction <Spec*, ΓDf ΘD, pD):
Diff -* LDR02\

Proof. By the dual of Proposition 5.6 there is an adjunction
(D, K, i, id>:Difiί Loco ? >--LDRo P, and by Corollary 5.5 there is an
adjunction <Spec', Γ\ θ\ p'): Difiί -* Difif Locoί>. The two adjunctions
can be composed [9, Theorem 1, p. 101] to give the adjunction
(Spec*, ΓD, θDf pD) = (D Spec', Γ'K, Γ'i Spec' . θ\ id . Dp'K): Difiί -*
LDRo3>.

REMARK. We observe that the adjunction (Spec*, ΓDf ΘD, pD):
Diff--LDR0?) does not extend <Spec, Γ, θ, p): Comm -^ Loc0P, and
more importantly that ΘD: Difiί —> ΓD Spec^ is not a natural iso-
morphism. The latter observation follows since ΘD = Γ'i Spec' θ',
and while θ'\ Diflί —> Γr Spec' is a natural isomorphism, i is not an
isomorphism.

The adjunction of Corollary 5.7 has considerable significance for
differential algebraists, since the basic objects that one usually
considers in differential algebraic geometry do not involve all the
prime ideals in a differential ring but rather only the prime
differential ideals. We claim that for any differential ring (A, d),
Specs {A, d) is exactly a basic object. By definition, Spec* (A, d) =
D Spec' (A, d) = D (Spec (A)L (A, d)) = (Spec (A)o, (A, d) \ Spec (A)o), where
Spec (A)o = {x e Spec (A): (A, d)x is a local differential ring}. But
(A, d)x = (A,,, cίx) is a local differential ring if and only if mx = iβilyx,
the maximal ideal of Asf is a differential ideal, and this is so if
and only if j x is a differential ideal. Hence Spec (A)o consists of
the prime differential ideals of (A, cZ), and we denote this subspace
of Spec (A) by Spec^CA).

We will call Spec* (A, d) = (Spec* (A), (A, d)*) the differential
afiine scheme of the differential ring (A, d). We observe that since
Spec* is part of an adjunction, (Spec* (A), (A, d)*) has many pro-
perties in common with the affine scheme (Spec (A), (A, d)) defined
earlier. Moreover, these differential affine schemes will be the basic
objects used to define differential schemes which are the differential
analogue of schemes. The definitions and important properties of
differential schemes will be the topic of a separate paper.
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